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Abstract

Inductive transfer learning is a major research area in transfer learning which aims at achieving a
high performance in the target domain by inducing the useful knowledge from the source domain. By
combining decisions from individual classifiers, ensemble learning can usually reduce variance and achieve
higher accuracy than a single classifier. In this paper, we propose a novel Ensemble Inductive Transfer
Learning (EITL) method. EITL builds a set of classifiers by recording the iterative process of knowledge
transfer. In each iteration, it uses the classifier of the source domain, the base classifier of the target
domain built on the initial labeled data, and the most recent classifier built on the updated labeled
data, to classify unlabeled instances, and add some self-labeled instances to the labeled data, and then
trains a new classifier. At the end, all the classifiers built in this process are used for classification. We
conduct experiments on synthetic data sets and six UCI data sets, which show that EITL is an effective
algorithm in terms of classification accuracy.
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1 Introduction

In the machine learning field, a major challenge is that labeled data is easy to outdate, and data
labeling is often expensive and time-consuming. One direct consequence is the lack of training
data, which may result in an unsatisfactory performance by using the traditional machine learning
methods to construct a model. Moreover, the feature space or distributions may change over time.
Transfer learning is a new research area in machine learning, which provides a new approach to
tackle this issue. Transfer learning reuses the useful certain parts of auxiliary data sets to train
a classifier for the new data, although the auxiliary data sets may have different feature spaces
or different distributions [12]. We called the outdated data sets or the auxiliary data sets as
the source domain data sets. Usually, there are a variety of approaches to transfer knowledge
from source domain to target domain, such as transferring some useful instances [3], feature
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representation [13], parameters [2], or relational knowledge [11]. In our method, we utilize the
source domain to help the target domain to label the unlabeled data in the target domain.

Ensemble approach is usually more reliable than single approach to make classification [17].
Our motivation is that, we construct a set of classifiers and then classify unlabeled data by taking
a vote on their predictions [4]. The initial ensemble includes two distinct classifiers built on the
source domain and the target domain with a few initial labeled data, which are used for partly
classifying the unlabeled data in target domain. The resulting labeled data is combined with the
initial labeled data in the target domain to create a third classifier of the ensemble. The third
classifier is updated with newly labeled data at each successive iteration. After many iterations,
we have generated a set of classifiers for the target domain. Then these classifiers are used to
predict the labels of test data by the majority vote strategy [8].

The main contributions of this paper are: (1) We use the ensemble method to repeatedly
label the unlabeled data in the target domain, which can improve the performance of the target
domain’s task – classification. Meanwhile, the source domain takes part in the decision at each
iteration, which can always play a role in the ensemble. (2) Our method is useful to do transfer
learning. When only a few labeled data is given in the target domain, our method successfully
use the source domain to help the target domain to label the unlabeled data in the target domain.
Thus, the smaller the number of labeled data in the target domain is, the more useful our method
is.

The rest of this paper is organized as follows: Section 2 presents related work about transfer
learning and ensemble machine learning. The detailed introduction of our improved algorithm is
described in Section 3. Section 4 displays the experiments on synthetic data sets and six UCI
data sets, and analyzes the results. And Section 5 gives the conclusions of our work.

2 Related Work

The source domain data usually has a different distribution from the target domain data. If we
reuse the source domain data directly, it will be unfeasible. If we discard the source domain
data completely, the few labeled instances in the target domain are insufficient to train a good
classifier. How to deal with those situations is the major challenge in transfer learning.

Dai et al. [3] proposed the TrAdaBoost method which iteratively re-weights the source domain
data to reduce the effect of the bad source data while encouraging the good source data to
contribute more to the target domain. Shi et al. [14] proposed a framework to actively transfer
the knowledge from the source domain to help learn the target domain, and query experts only
when necessary. Jiang et al. [6] proposed a general instance weighting framework for domain
adaptation, which removed misleading source domain instances and added labeled target domain
instances with higher weights. Liao et al. [9] proposed Migratory-Logit algorithm which is a new
active learning approach for selecting the labeled examples in a target domain.

Constructing a good ensemble of classifiers has been an active research area in machine learning
[4]. By combining decisions from individual classifiers, ensembles can usually reduce variance and
achieve higher accuracy than an individual classifier.

Kamishima et al. [7] proposed a TrBagging method which is an extension of bagging. In order
to reuse certain parts of the data in the source domain to benefit the learning in the target
domain, the authors combined the source domain data sets and the target domain data sets, used



X. Liu et al. / Journal of Fiber Bioengineering and Informatics 8:1 (2015) 105–115 107

a bootstrap-sampled approach to train many weak classifiers, then created an ensemble based on
their usefulness for the target domain.

Gao et al. [5] presented a locally weighted ensemble framework to combine multiple models for
transfer learning, where the weights are dynamically assigned according to a model’s predictive
power on each test example. By mapping the structures of models onto the structures of the
test domain, each model is weighted locally according to its consistency with the neighborhood
structure around the test example.

In [16], it is assumed that the training and the test examples are generated from a mixture
of different models, and the test distribution has different mixture coefficients than the training
distribution. In [10], Marx et al. proposed an algorithm through a simple maximum a posteriori
elaboration on the logistic regression approach demonstrating that in the transfer learning an
ensemble of background tasks is more helpful than single background task. Bennett et al. [1]
proposed a methodology for building a meta-classifier which combines multiple distinct classifiers
through the use of reliability indicators.

In this paper, we adopt a different strategy to build an ensemble classifier and label the unlabeled
data in the target domain. Our main ideas to the task of the transfer learning problem are briefly
described as follows:

(1) Knowledge transfer is an iterative process. In each iteration, typically, only part of the
useful knowledge from the source domain is transferred successfully. So it is hard to use a single
classifier to represent this iterative process. On the other hand, we can use a classifier to record
the transfer in each iteration, and then build an ensemble classifier at the end. It is a natural
idea to do so.

(2) Knowledge transfer is also a process with high variance. Because the source and target
domains have different distributions or even different feature spaces, any automatic transfer from
the source domain to the target domain has a high risk or high variance. The ensemble approach
can be used to alleviate the issue of high variance to some extent.

3 Ensemble Inductive Transfer Learning

3.1 Definition

In our setting, a lot of labeled data in the source domain are available, and a few labeled data
in the target domain are available, but a large number of unlabeled data remain in the target
domain. In order to easily understand our algorithm, we follow the notations of transfer learning
problem presented in [12].

The source domain data is represented as DS and the target domain data as DT . The condition
DS ̸= DT implies that the source domain and the target domain have different distributions which
could be denoted as PS(X) ̸= PT (X). X is the space of features; Y is the space of labels. X
is a particular learning instance, xi is the ith vector in a instance. The source domain data is
described as DS = {(xS1 , yS1), ..., (xSmS

, ySmS
)}, where xSi

∈ XS is the data instance and ySi
∈ YS

is the corresponding class label. The target domain includes two parts: one part is a few labeled
data DTL

= {(xT1 , yT1), ..., (xTnT
, yTnT

)}, where xTi
∈ XT is the data instance and yTi

∈ YT is the
corresponding class label; another part is unlabeled data DTU

= {(xTnT+1 , ..., xTkT
}. And we have

a test data set DTest which has the same distribution with the target domain.
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3.2 Ensemble Construction

Because the labeled data in target domain, DTL
, is too scarce to build a high-quality classification

model when evaluated on the test data, we have to increase the number of labeled instances.

Although we have a large number of source data in DS, the two domains have different distri-
butions. So we use source classifier CS, target classifier CT0 , and a new classifier CTk−1

built on
the expanded target data, to learn classifiers in the ensemble.

Algorithm 1 Framework of EITL

Input: the source domain data DS, the labeled target domain data DTL
, the unlabeled target

domain data DTU
, a base learning algorithm, and the maximum number of iteration K.

Initialization: build the source classifier CS based on DS and the target classifier CT0 based
on DTL

.
for k ∈ 1, ..., K do
repeat
for i ∈ 1, ...,Max(DTU

) do
repeat
Assign label labels to instance(i) by classifier CS;
Assign label labelt to instance(i) by classifier CT0 .
if (k==1) then
if (labels==labelt) then
DTL

= DTL

∪
instance(i);

end if
else
Assign label labelk−1 to instance(i) by
the newly-built classifier CTk−1

.
if (labels == labelk−1 and labelt == labelk−1) then
DTL

= DTL

∪
instance(i);

end if
end if

until the maximum number of instances in DTU

end for
build CTk

on newly obtained DTL
.

until the maximum number K is reached or the target domain has no change.
end for
Output the classifiers CT1 , CT2 , ..., CTK

.

For repeatedly labeling the unlabeled instances in DTU
, an unlabeled instance can be labeled

as long as the three classifiers CS, CT0 , and CTk−1
agree on the labeling of this instance, while the

confidence of the labeling of the classifiers is not needed to be explicitly measured. For example, if
CS, CT0 , and CTk−1

agree on the labeling of an instance x in DTU
, then x can be labeled by CTk−1

.
It is obvious that in such a scheme if the prediction of the three classifiers on x is correct, then
DTL

will receive a valid new example for further training; otherwise DTL
will get an example with

a noisy label. However, even in the worst case, the increase in the classification noise rate can be
compensated if the amount of newly labeled examples is sufficient, which has been demonstrated
in [18].
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The main flow of the proposed approach EITL to build an ensemble classifier is summarized in
Algorithm 1. It could be summarized as the following four parts.

Step 1: Initialization: At the beginning, we build the source classifier CS and the target
classifier CT0 on DS and DTL

respectively, and utilize CS and CT0 to label the data in DTU
. We

add the newly labeled data into DTL
. Then, we build a new classifier CT1 based on the newly

updated labeled data set DTL
.

Step 2: Improvement: Use classifiers CS, CT0 , and classifier CTk−1
that is built on the newly

updated labeled data set, to classify unlabeled instances. An unlabeled instance is labeled only
when the three classifiers agree on the labeling of this instance. The newly labeled instances are
added to the labeled data set, and new classifier CTk

is built on the newly updated labeled data
set.

Step 3: Stopping criterion: Two strategies are adopted to stop our algorithm. If the number
of iterations reaches the maximum number K, the algorithm stops; or if the labeled data set in
the target domain does not change anymore after a iteration, it terminates.

Step 4: Classification: For a given test data instance, we calculate the prediction of every
classifier CTk

that is built in each iteration, then we use the majority vote strategy to assign a
label to the test data.

4 Experiments

In this section, we demonstrate the effectiveness of the ensemble transfer learning method EITL.
The experiments are performed on synthetic data sets from [14] and six UCI Machine Learning
Repository data sets1.

Without loss of generality, we choose two classic classifiers in machine learning, Naive Bayes
(NB) and the decision tree learning algorithm J48 [17], as the underlying learners. We set the
maximum number of iteration K is five.

In the experiments, we compare EITL with the classifier built on the initial labeled data in
target domain (DTL

) which is the “basic” method in the following sections.

4.1 Synthetic Data Sets

The synthetic data sets include five two dimensional data sets which are generated in [14]. The
target domain has one data set DT . The source domain has four data sets with different dis-
tributions separately. “Transfer dataset” O1 is similarly distributed as DT ; “Partly dataset” O2

has some similarity distribution as DT ; “Different dataset” O3 is XOR distribution; “Reverse
dataset” O4 has a similar shape as DT , but with reversed class labels.

Fig. 1 plots the performance comparison of EITL vs. basic method learned on the four source
domain data sets; both are based on NB. It is important to note that, both of the two methods
have good convergency. The number of test data is 100, the number of labeled data in DTL

varies
from 2 to 60, and the remainder of DT are unlabeled. From Fig. 1, it could be observed that:

(1) The error rates given by EITL significantly drop when there are only a few labeled data in

1http://archive.ics.uci.edu/ml/datasets.html
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Fig. 1: The classification error rates of NB based EITL vs. NB based basic method on test data, using
different number of labeled data in target domain of the synthetic data sets

DTL
. Particularly, when the size of DTL

varies from 2 to 4, the average error rates decreased by
0.31 on four source domain datasets.

(2) EITL has similar performance as the basic method when the size of DTL
is small, however,

EITL performs consistently better than the basic method when the size of DTL
is less than 20,

which means that EITL can effectively utilizes the source domain knowledge to help label the
unlabeled data in the target domain.

(3) O4 has a similar distribution but totally reversed class labels with the target domain DT ,
which causes negative transfer. Although the error rate of EITL is higher than that of the basic
method, it can still converge to zero when the number of DTL

reached to 60.

4.2 UCI Data Sets

The data sets Mushroom, Waveform, Magic, and Splice are split following the method in [15].
In [15], the class labels are binary. In order to demonstrate that our algorithm can solve multi-class
problems, we add Hypothyroid and Segment data sets to our experiments.

In Hypothyroid data set, for each instance, if the value of the second attribute Sex is “female”,
the instance is added to the target domain data set; otherwise, it is added to the source domain
data set. In Segment data set, for each instance, if the value of the first attribute is larger than
127.5, it is added to target domain data set; otherwise, it is added to source domain data set.
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Information on these data sets is tabulated in Table 1. The second column is the number of
attributes. The third column is the number of class values. The fourth column is the number of
test instances. And the fifth column “source/target” presents the number of source data versus
that of target data.

Table 1: The information of the six data sets

Data set Attri. Cla. Test Sour./targ.

Mushroom 22 2 1000 4608/3516

Waveform 21 2 500 2279/1025

Magic 10 2 1000 16808/2212

Splice 60 2 1000 1571/1619

Hypothyroid 30 4 1000 1142/2629

Segment 20 7 500 1206/1103
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Fig. 2: The classification error rates of NB based EITL vs. NB based basic method on test data, using
different numbers of labeled data in target domain of the six UCI data sets

The error rates associated with different sizes of initial labeled data in DTL
are summarized

in Table 2. To test the performance of each learning method in different conditions, the size of
DTL

is changed from 10 to 500 in mushroom, magic, splice, and hypothyroid data sets, and it is
increased from 5 to 250 in waveform and segment data sets. It is observed that, interestingly, the
classifier error rates are inversely related to the size of DTL

in almost all the cases.
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Table 2: The experimental results of six UCI data sets

(a)

Data set Learner Method
The number of labeled data in DTL

10 20 40 60 80 100 250 500

Mushroom

NB
EITL 0.172 0.177 0.177 0.177 0.177 0.177 0.164 0.164

Basic 0.203 0.182 0.157 0.14 0.12 0.124 0.119 0.11

J48
EITL 0.209 0.13 0.047 0.027 0.027 0.027 0.023 0.001

Basic 0.209 0.13 0.034 0.027 0.032 0.029 0.023 0.001

Magic

NB
EITL 0.122 0.087 0.103 0.093 0.091 0.097 0.115 0.136

Basic 0.152 0.088 0.103 0.113 0.113 0.122 0.121 0.13

J48
EITL 0.3 0.191 0.117 0.141 0.115 0.114 0.088 0.076

Basic 0.3 0.194 0.117 0.144 0.115 0.115 0.093 0.079

Splice

NB
EITL 0.149 0.188 0.199 0.163 0.162 0.154 0.102 0.085

Basic 0.388 0.368 0.3 0.213 0.185 0.168 0.108 0.084

J48
EITL 0.505 0.451 0.321 0.231 0.302 0.224 0.134 0.088

Basic 0.508 0.455 0.312 0.223 0.314 0.255 0.255 0.097

Hypo

NB
EITL 0.093 0.102 0.124 0.122 0.127 0.123 0.114 0.093

Basic 0.091 0.091 0.096 0.097 0.099 0.097 0.098 0.085

J48
EITL 0.14 0.14 0.129 0.095 0.088 0.111 0.111 0.092

Basic 0.14 0.14 0.127 0.091 0.1 0.115 0.112 0.096

(b)

Data set Learner Method
The number of labeled data in DTL

5 10 20 30 40 50 125 250

Waveform

NB
EITL 0.256 0.156 0.202 0.202 0.202 0.192 0.176 0.166

Basic 0.43 0.376 0.11 0.126 0.136 0.11 0.118 0.126

J48
EITL 0.508 0.256 0.306 0.202 0.202 0.23 0.162 0.196

Basic 0.508 0.256 0.306 0.202 0.202 0.23 0.222 0.204

Segment

NB
EITL 0.282 0.456 0.3 0.302 0.232 0.2 0.214 0.162

Basic 0.38 0.588 0.406 0.324 0.282 0.236 0.218 0.16

J48
EITL 0.486 0.54 0.272 0.328 0.224 0.25 0.098 0.084

Basic 0.864 0.85 0.85 0.82 0.302 0.252 0.134 0.08



X. Liu et al. / Journal of Fiber Bioengineering and Informatics 8:1 (2015) 105–115 113

To clearly demonstrate the performance, Fig. 2 and Fig. 3 show the learning curves of EITL
compared with the basic method on each data set, when different numbers of labeled data in the
target domain are used.
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Fig. 3: The classification error rates of J48 based EITL vs. J48 based basic method on test data, using
different numbers of labeled data in target domain of the six UCI data sets

Fig. 2 shows the error rates of the methods base on NB. When the number of labeled data
in the target domain reaches 250 or 125, the basic method has sufficient data to train a good
classifier. Therefore, we just compare EITL with basic method when the number of labeled data
increases from 10 to 100 (on mushroom, magic, splice, and hypothyroid data sets) or from 5 to 50
(on waveform and segment data sets). It reveals that:

(1) From the performance on waveform and mushroom data sets, the EITL method is effective
when only a few labeled data exist in the target domain. Compared with the basic method, the
error rates of EITL are generally lower when the size of DTL

is smaller than or close to 20. When
the size of DTL

is over 20, the basic method has enough data to train a good classifier; if we still
use the source domain to take part in classifying, the accuracy will be influenced.

(2) From the performance on magic, splice, and segment data sets, the EITL method always
outperforms the basic method. It means that, EITL effectively uses the source domain to help
label the unlabeled data in the target domain, no matter how many original labeled data exist in
the target domain.

The error rates of the two methods based on J48 are depicted in Fig. 3. It could be obtained
that, the EITL method has similar performance as the basic method; however, as the size of DTL
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increases, the error rates of EITL are lower than those of the basic method.

5 Conclusion

In this paper, we propose a novel ensemble method to solve the instance based inductive transfer
learning problem. At each iteration, we adopt the ensemble idea that combines the classifier
learned from the source domain data, the base classifier built on the initial labeled data in the
target domain, and the classifier built on the updated labeled data in the target domain to label
unlabeled instances, and then build a new classifier based on the expanded labeled data. The
classifier learned in each iteration is added to the ensemble. Then, after many ensemble classifiers
are built iteratively, we use the majority vote strategy to predict the labels of test data. Based
on the experimental results on synthetic data sets and six UCI data sets, it is concluded that, the
new algorithm EITL is effective on inductive transfer learning in terms of accuracy.
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