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Abstract. In this paper, we study the regularity of weak solutions to the 3D Micropolar-
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1 Introduction

In this paper, we consider the Cauchy problem for the 3D Micropolar-fluid(MP) equa-

tions:






















∂tu+(u·∇)u−∆u+∇p= 1
2∇×w,

∂tw−∆w−∇(∇·w)+w+u·∇w= 1
2∇×u,

∇·u=0,

u(x,0)=u0(x), w(x,0)=w0(x),

(1.1)

where u(x,t), w(x,t) are the unknown velocity field and micro-rotational velocity field;

p= p(x,t) is the unknown scalar pressure. While u0(x), w0(x) are the given initial data

with ∇·u0=0 in the sense of distribution.

Micropolar fluid system was firstly developed by Eringen [1, 2]. It is a type of fluids

which exhibits microrotational effects and microrotational inertia and can be viewed as
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a non-Newtonian fluid. It can describe many phenomena that appear in a large num-

ber of complex fluids such as the suspensions, animal blood, and liquid crystals which

cannot be characterized appropriately by the Navier-Stokes system and that is important

to the scientists working with the hydrodynamic-fluid problems and phenomena. The

existences of weak and strong solutions for micropolar fluid equations were treated by

Galdi and Rionero [3] and Yamaguchi [4] , respectively. The uniqueness of strong solu-

tions to the micropolar flows and the magnetomicropolar flows either local for large data

or global for small data is considered in [5, 6] and references therein.

In the present paper, we consider the problem of the regularity of weak solutions to

3D MP equations. We observe that the equations include as a particular case the classical

Navier-Stokes(NS) equations, which widely has been studied. There is a large literature

on the problem of regularity of weak solutions to the 3D NS equations. It may be supe-

ruous to recall all results. To go directly to the main points of the present paper, we only

review some known results which are closely related to our main result.

The study of conditions which involving the direction of voriticity and its physical-

geometric interpretation, started with Constantin and Fefferman [7], who first derived

some exact formulas and employed them in order to prove regularity in the whole space.

They pointed out in the 3D case, NS equations exists a stretching mechanism for the

vorticity magnitude which is non-linear and potentially capable of producing finite time

singularities. They showed that the solution is smooth, if the direction of vorticity is

sufficiently well behaved in the region of high vorticity magnitude. It is proved that if

the direction field j̃(x,t) of the vorticity j(x,t)=∇×u(x,t) satisfies that

| j̃(x+y,t)− j̃(x,t)|≤ρ|y|, t∈ [0,T]. (1.2)

for some constant ρ>0 when |j(x,t)|>K, |j(x+y,t)|>K for some K>0; then the solution

is smooth.

There are many improved and extended results to (1.2), we can see [9–13] etc. Espe-

cially, H Beirão da Veiga [9] proved that the following condition implies regularity:

Assumption H: For some β∈ [ 1
2 ,1] and g∈La(0,T;Lb), where

2

a
+

3

b
=β−

1

2
, a∈

[

4
2β−1 ,∞

]

,

The weak solutions satisfy

| j̃(x+y,t)− j̃(x,t)|≤ g(t,x)|y|β , t∈ [0,T], (1.3)

when |j(x,t)|>K,|j(x+y,t)|>K for some K>0.

In [13], He and Xin gave a stronger condition than (1.3) to 3D MHD equations.It is

worthy to emphasize that extend (1.3) to MHD equations is difficult because of the strong
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coupled terms of velocity and magnetic field. More precisely, they gave the following

regularity condition :

|j(x+y,t)− j(x,t)|≤ c|j(x+y,t)||y|
1
2 , t∈ [0,T]. (1.4)

The conditions (1.4) was extended to generalized MHD [14]. In this paper, we improve

the (1.4) to establish a condition which involving the direction of the vorticity of velocity

to MP equations. More precisely, our major assumption about the vorticity of velocity is

Assumption A: For some β∈ [ 1
2 ,1] and g∈La(0,T;Lb), where

2

a
+

3

b
=β−

1

2
, a∈

[

4
2β−1 ,∞

]

.

The weak solutions satisfy

|j(x+y,t)− j(x,t)|≤ g(t,x)|j(x+y,t)||y|β , t∈ [0,T], (1.5)

when |j(x,t)|>K, |j(x+y,t)|>K for some K>0.

Under this assumption, we can show the following a priori estimate

Theorem 1.1. Let (u0,w0)∈H1(R3). Assume that (u,w) is a smooth solution of MP equations

on some interval [0,T). Then if the assumption A holds on [0,T), one has

j(x,t),∇w∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). (1.6)

Remark 1.1. After we have the above a priori estimate, we can easily give a proof about

the weak-strong uniqueness follows from the standard continuation principle.

2 Preliminaries

By the Biot-Savart law, the velocity field can be expressed in terms of its vorticity

u(x,t)=−
1

4π

∫

R3
∇

(

1

|y|

)

× j(x+y,t)dy. (2.1)

The following two integral equations were obtained in [7]:

j(x,t)=
1

4π
P.V.

∫

R3
σ(ŷ)j(x+y,t)

dy

|y|3
,

S(x,t)=
1

2
[∇u+(∇u)T]=

3

4π
P.V.

∫

R3
M(ŷ, j(x+y,t))

dy

|y|3
,

where the matrixes

σ(ŷ)=3(ŷ⊗ ŷ)− I, M(ŷ, j)=
1

2
[ŷ⊗(ŷ× j)+(ŷ× j)× ŷ],
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with ŷ=y/|y|, I is the identity matrix and the tensor product simply denotes the matrix

(a⊗b)ij = aibj. Moreover, the matrix σ is symmetric, traceless and has zero mean on the

unit sphere. M is also a symmetric traceless matrix; which mean on the unit sphere is

zero when the second variable j is held fixed and M is viewed as a function of ŷ alone.

Let K be the number in assumption A, we split j(x,t) and S(x,t)as

j(x,t)=χ

(

|j(x,t)|

K

)

j(x,t)+

(

1−χ
( |w(x,t)|

K

)

)

j(x,t)= j1(x,t)+ j2(x,t), (2.2)

S(x,t)=χ

(

|j(x,t)|

K

)

S(x,t)+

(

1−χ
( |j(x,t)|

K

)

)

S(x,t)=S1(x,t)+S2(x,t), (2.3)

where the smooth bump function χ(λ)∈ [0,1], is identically equal to 1 for 0≤λ≤ 1 and

identically equal to 0 for λ≥2 or λ≤−1.

By the Calderón-Zygmund inequality, we have

‖ji(x,t)‖p ≤‖j(x,t)‖p, (2.4)

‖Si(x,t)‖p ≤‖S(x,t)‖p, (2.5)

‖Si(t)‖p ≤ c‖ji(x,t)‖p, (2.6)

for any i=1,2 and 1< p<∞.

3 Proof of theorem

By applying that curl operator both sides of the first equation and ∂i(i = 1,2,3) to the

second equations of (1.1), we have

{

∂t j−∆j+(u·∇)j−(j·∇)u= 1
2 (∇×)2w,

∂t∂iw−∆∂iw−∇(∇·∂iw)+∂iw+u·∇∂iw+∂iu·∇w− 1
2 ∂i j=0.

(3.1)

Multiply the first equation by j(x,t) and the second by ∂iw of (3.1) respectively, and take

integral on the whole space, then we have

1

2

d

dt
(‖j‖2

2+‖∂iw‖2
2)+‖∇j‖2

2+‖∇∂iw‖2
2+‖∇·∂iw‖2

2+‖∂iw‖2
2

=
∫

R3
j·∇u· jdx+

1

2

∫

R3
(∇×)2w · jdx+

1

2

∫

R3
∂i j·∂iwdx−

∫

R3
∂iu·∇w ·∂iwdx

=:I1+ I2+ I3+ I4. (3.2)

The first term at the right-hand side can be written as

I1=
∫

R3
S(x,t)j(x,t)· j(x,t)dx
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=
2

∑
i=1

∫

R3

(

2

∑
k=1

(Si(x,t)j1(x,t))· jk(x,t)+Si(x,t)j2(x,t)· j1(x,t)

)

dx

+
∫

R3
S1(x,t)j2(x,t))· j2(x,t)dx+

∫

R3
S2(x,t)j2(x,t))· j2(x,t)dx

=:I
(1)
1 + I

(2)
1 + I

(3)
1 . (3.3)

By using the inequalities (2.4)-(2.6) with q=2, we have

∣

∣

∣

∣

∫

R3
Si(x,t)jk(x,t)· jl(x,t)dx

∣

∣

∣

∣

≤CK‖j(·t)‖2
2, (3.4)

when (k,l) 6=(2,2); so we have

|I
(1)
1 |≤CK‖j(·t)‖2

2. (3.5)

Let us recall the following inequalities

‖j(·t)‖4 ≤C‖j(·t)‖
1
4
2 ‖∇j(·t)‖

3
4
2 ,

‖j1(·t)‖4 ≤C‖j1(·t)‖
1
2
∞‖j1(·t)‖

1
2
2 ≤CK

1
2 ‖j(·t)‖

1
2
2 .

Then we have

|I
(2)
1 |≤C‖j1(·t)‖4‖j(·t)‖4‖j(·t)‖2 ≤CK

4
5 ‖j(·t)‖

14
5

2 +
1

6
‖∇j(·t)‖2

2 . (3.6)

It follows from the definition of S(x,t)

|S2(x,t)|=

∣

∣

∣

∣

3

4π
P.V.

∫

R3
M(ŷ, j2(x+y,t))

dy

|y|3

∣

∣

∣

∣

≤

∣

∣

∣

∣

3

4π
P.V.

∫

|y|≥ρ
M(ŷ, j2(x+y,t))

dy

|y|3

∣

∣

∣

∣

+

∣

∣

∣

∣

3

4π
P.V.

∫

|y|≥ρ
M(ŷ, j2(x+y,t))

dy

|y|3

∣

∣

∣

∣

≤

∣

∣

∣

∣

3

4π
P.V.

∫

|y|≥ρ
M(ŷ, j2(x+y,t))

dy

|y|3

∣

∣

∣

∣

+

∣

∣

∣

∣

3

4π
P.V.

∫

|y|≥ρ
M(ŷ, j2(x+y,t)− j2(x,t))

dy

|y|3

∣

∣

∣

∣

≤C
(

ρ−β+g(x,t)
)

H(x,t), (3.7)

where

H(x,t)=
∫

R3
|j2(x+y)|

dy

|y|3−β
.

So, we have the following iequality

|I
(3)
1 |≤Cρ−β‖H(·t)‖ 6

3−2β
‖j(·t)‖2

12
3−2β

+C‖H(·t)‖ 6
3−2β

‖j(·t)‖2
q‖g(·t)‖b . (3.8)
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Applying interpolation and Young inequalities, we have

‖H(·t)‖ 6
3−2β

‖j(·t)‖2
12

3+2β
≤C‖j(·t)‖2‖j(·t)‖

2(1−ϑ)
2 ‖∇j(·t)‖2ϑ

2

≤C‖j(·t)‖
1

1−ϑ

2 ‖j(·t)‖2
2+

1

12
‖∇j(·t)‖2

2 . (3.9)

we should point out because β∈ [ 1
2 ,1], then 1

1−ϑ ≤2.

By the classical interpolation and Hardy-Littlewood-Sobolev inequalities, we have

‖j(·t)‖2
q ≤C‖j(·t)‖

2(1−θ)
2 ‖∇j(·t)‖2θ

2 , ‖H(·t)‖ 6
3−2β

≤C‖j(·t)‖2.

So, we have

‖H(·t)‖ 6
3−2β

‖j(·t)‖2
q‖g(·t)‖b ≤C‖j(·t)‖

2+ 1
1−θ

2 ‖g(·t)‖
1

1−θ

b +
1

12
‖∇j(·t)‖2

2. (3.10)

Note the parameters q,b,θ satisfy

2

q
+

1

b
=

1

2
+

β

3
; θ=

3

2
−

3

q
, (3.11)

and
1

1−θ
≤2 ⇒ q≤3.

Applying Young inequality, we can get

|I
(3)
1 |≤C‖j(·t)‖2

2

(

‖j(·t)‖2
2+‖g(·t)‖

2q
6−2q

b

)

+
1

6
‖∇j(·t)‖2

2. (3.12)

In fact, set a= 2q
6−2q , then we have 2

a +
3
b =β− 1

2 .

Then we can estimate I1 as following

|I1|≤C‖j(·t)‖2
2

(

‖j(·t)‖2
2+‖g(·t)‖

2q
6−2q

b

)

+
1

3
‖∇j(·t)‖2

2 . (3.13)

Now, we pay attention to the term I2+ I3,

|I2+ I3|=
1

2

∣

∣

∣

∣

∫

R3
(∇×)2w(x,t)· j(x,t)dx+

∫

R3
∂i j(x,t)·∂iw(x,t)dx

∣

∣

∣

∣

≤C‖j(·t)‖2‖∇∂iw(·t)‖2+C‖∇j(·t)‖2‖∂iw(·t)‖2

≤C

(

‖j(·t)‖2
2+‖∂iw(·t)‖2

2

)

+
1

6

(

|∇j(·t)‖2
2+‖∇∂iw(·t)‖2

2

)

. (3.14)

where we used the inequality: |(∇×)2w|≤ |∇∂iw|.
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Finally, we estimate the term of I4

|I4|=

∣

∣

∣

∣

∫

R3
∂iu(x,t)·∇w(x,t)·∂iw(x,t)dx

∣

∣

∣

∣

≤C‖j1(·t)‖4‖∇w(·t)‖2
2+C

∣

∣

∣

∣

∫

R3
j2(x,t)·∇w(x,t)·∂iw(x,t)dx

∣

∣

∣

∣

=I
(1)
4 + I

(2)
4 , (3.15)

where we used the following inequality

‖∇ f‖p ≤C‖∇× f‖p, for any f ∈W1,p with div f =0.

Similarly, we get

|I
(1)
4 |≤CK

1
2 ‖j(·t)‖

1
2
2 ‖∇w‖2

2. (3.16)

From the expression of j(x,t), we obtain that

|j2(x)|=

∣

∣

∣

∣

∫

R3
σ(ŷ)j2(x+y,t)

dy

|y|3

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

|y|≤ρ
σ(ŷ)(j2(x+y,t)− j2(x,t))

dy

|y|3

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

|y|≥ρ
σ(ŷ)j2(x+y,t)

dy

|y|3

∣

∣

∣

∣

≤C(ρ−β+g(x,t))
∫

R3
|j2(x+y,t)|

dy

|y|3−β
. (3.17)

Then the last term can be estimate as following

|I
(2)
4 |≤Cρ−β‖H(·t)‖ 6

3−2β
‖∂iw‖2

12
3+2β

+C‖H(·t)‖ 6
3−2β

‖∂iw(·t)‖2
q‖g(·t)‖b .

Similar to the term I
(3)
1 , we have

‖H(·t)‖ 6
3−2β

‖∂iw‖2
12

3+2β
≤C‖j(·t)‖2‖∂iw‖

2(1−ϑ)
2 ‖∇∂iw‖2ϑ

2

≤C‖j(·t)‖
1

1−ϑ

2 ‖∂iw‖2
2+

1

6
‖∇∂iw‖2

2, (3.18)

‖H(·t)‖ 6
3−2β

‖∂iw(·t)‖2
q‖g(·t)‖b

≤C‖∂iw(·t)‖2
2

(

‖∂iw(·t)‖2
2+‖g(·t)‖a

b

)

+
1

6
‖∇∂iw(·t)‖2

2.

Then we have

|I4|≤C(‖∂iw(·t)‖2
2+‖j(·t)‖2

2+‖g(·t)‖a
b)‖∂iw(·t)‖2

2+
1

3
‖∇∂iw(·t)‖2

2. (3.19)
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Using (3.13), (3.14), (3.19) in (3.2), we obtain

d

dt

(

‖j‖2
2+‖∂iw‖2

2

)

+‖∇j‖2
2+‖∇∂iw‖2

2

≤C
(

‖∂iw(·t)‖2
2+‖j(·t)‖2

2+‖g(·t)‖a
b

)(

‖∂iw(·t)‖2
2+‖j(·t)‖2

2

)

. (3.20)

(1.6) is a straight consequence by applying the Gronwall inequality on (3.20).

This finishes the proof of theorem. �

Acknowledgments

The author thanks to the editior and the referee for their invaluable comments and sug-

gestion which helped improve the paper greatly. This work supported by Anhui Educa-

tion Bureau (AQKJ2014B009) and by the Doctor’s funding of AnQing teacher’s Univer-

sity (K05000130009).

References

[1] Eringen A. C., Theory of micropolar fluids. J. Mathematics and Mechanics., 16 (1966), 1-18.
[2] Eringen A. C., Simple microfluids. Inter. J. Engineering Science, 2 (1964), 205-217.
[3] Galdi G. P. and Rionero S., A note on the existence and uniqueness of solutions of the mi-

cropolar fluid equations. Inter. J. Engineering Science, 15 (1977), 105-108.
[4] Yamaguchi N., Existence of global strong solution to the micropolar fluid system in a

bounded domain. Math. Methods Appl. Sci., 28 (2005), 1507-1526.
[5] Boldrini J., Rojas-Medar M. A., Fernandez-Cara E., Semi-Galerkin approximation and strong

solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl.,
82 (2003), 1499-1525.

[6] Rojas-Medar M. A., Magneto-micropolar fluid motion: existence and uniqueness of strong
solution. Math. Nachr., 188 (1997), 301-319.

[7] Constantin P., Fefferman C., Direction of vorticity and the problem of global regularity for
the Navier-Stokes equations. Indiana Univ. Math. J., 42 (1993), 775-789.

[8] Constantin P., Geometric statistics in trubulence. SIAM Rev, 36 (1994), 73-98.
[9] Beirao da Veiga, H., Berselli, L.C., On the regularizing effect of the vorticity direction in

incompressible viscous flows. Differ. Integral Eqs., 15 (2002), 345-356.
[10] Zhou Y., A new regularity criterion for the Navier-Stokes equations in terms of the direction

of vorticity. Monatsh. Math., 144 (2005), 251-257.
[11] Zhou Y., Direction of vorticity and a new regularity criterion for the Navier-Stokes equa-

tions. ANZIAM J., 45 (2005), 309-316.
[12] Zhang Z., Zhou Y., On regularity criteria for the 3D Navier-Stokes equations involving the

ratio of the vorticity and the velocity. Comput. Math. Appl., 72 (2016), 2311-2314.
[13] He C., Xin Z., On the regularity of solutions to the magnetohydrodynamic equations. J.

Differential Equations, 213 (2005), 235-254.
[14] Zhou Y., Regularity criteria for the generalized viscous MHD equations. Ann. I. H. Poincare,

24 (2007), 491-505.


