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1 Introduction

This paper is devoted to establish BKM’s criterion of smooth solutions for the Cauchy
problem for 3D Boussinesq equations with viscosity in R3

ut+u·∇u−η△u+∇p= θe3, (1.1)

θt+u·∇θ−ν△θ=0, (1.2)

∇·u=0, (1.3)

t=0 : u=u0(x), θ= θ0(x), (1.4)

here u is the velocity field, p is the pressure, θ is the small temperature deviations which
depends on the density. η≥0 is the viscosity, ν≥0 is called the molecular diffusivity and
e3=(0,0,1)T . The above systems describe the evolution of the velocity field u for a three-
dimensional incompressible fluid moving under the gravity and the earth rotation which
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come from atmospheric or oceanographic turbulence where rotation and stratification
play an important role. When the initial density θ0 is identically zero (or constant) and
η=0, then (1.1)-(1.4) reduce to the classical incompressible Euler equation:

ut+u·∇u+∇p=0, (1.5)

∇·u=0, (1.6)

u(x,t)|t=0=u0(x). (1.7)

For the incompressible Euler equation and Navier-Stokes equation, a well-known cri-
terion for the existence of global smooth solutions is the Beale-Kato-Majda criterion in [1]
which states the control of the vorticity when ω= curl u in L1(0,T;L∞), this is sufficient
to get the global well-posedness of solutions, i.e., any solution u is smooth up to time T

under the assumption that
∫ T

0 ‖∇×u(t)‖L∞ dt<+∞. Kozono and Taniuchi [2] improved

the Beale-Kato-Majda criterion under the assumption
∫ T

0 ‖∇×u(t)‖BMOdt < +∞. The
regularity criteria for the Navier-Stokes equations, we can refer to Bahouri, Chemin and
Danchin [3], Cao and Titi [4], Kato and Ponce [5], Kozono and Taniuchi [2], Zhou [6, 7],
Zhou and Lei [8], Zhang and Chen [9].

The global well-posedness for two-dimensional Boussinesq equations which has re-
cently drawn a lot of attention. More precisely, the global well-posedness has been shown
in various function spaces and for different viscosity, we can refer to [10–20]. When
η = ν = 0, the Boussinesq system exhibits vorticity intensification and the global well-
posedness issue remains an unsolved challenging open problem (if θ0 is a constant) which
may be formally compared to the similar problem for the three-dimensional axisymmet-
ric Euler equations with swirl.

For the three-dimensional case, Hmidi and Rousset [16, 17] proved the global well-
posedness for the 3D Navier-Stokes-Boussinesq equations and Euler-Boussinesq equa-
tions with axisymmetric initial data without swirl respectively. Danchin and Paicu [12]
obtained the global existence and uniqueness result in Lorentz space for the Boussinesq
equations with small data.

Our purpose of this paper is to obtain logarithmically improved regularity (BKM’s)
criterion of smooth solutions in terms of velocity field in BMO space.

Now we state our result as follows.

Theorem 1.1. Assume that (u0,θ0)∈Hm(R3) holds with divu0=0 and m≥3. If u satisfies the
condition

∫ T

0

‖∇×u(t)‖BMO
√

ln(e+‖∇×u(t)‖BMO)
dt<+∞, (1.8)

then the solution (u,θ) for the Cauchy problem (1.1)-(1.4) can be extended smoothly beyond T.

The paper is organized as follows. We shall state some important inequalities in Sec-
tion 2 and prove Theorem 1.1 in Section 3.
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2 Preliminaries

Throughout this paper we use the following notations. Lp(R3) denotes the generic Lebe-
gue space, Hm(R3) denotes the standard Sobolev space. BMO is the bounded mean os-
cillations space. Ḃ0

m,n(R
3) is the homogeneous Besov space, where 0≤m, n≤+∞. S(Rn)

be the Schwartz class of rapidly decreasing functions.
The Fourier transformation of f ∈S(Rn) is defined as

F f = f̂ (ξ)=
∫

Rn
e−ix·ξ f (x)dx (2.1)

and the inverse Fourier transformation of g∈S(Rn) is defined as

F−1g= ǧ(x)=
∫

Rn
eix·ξ g(ξ)dξ. (2.2)

Next, we shall recall the Littlewood-Paley decomposition and define some functional
spaces which can be found in [3, 21, 22].

Definition 2.1. Denote C as the annulus of center on 0 with short radius 3/4 and long radius
8/3. Then there exist two positive functions ϕ∈C∞

0 (B(0,4/3)) and χ∈C∞
0 (C) such that

χ(ξ)+∑
q≥0

ϕ(2−qξ)=1, (2.3)

|p−q|≥2 ⇒ suppϕ(2−q·)∩suppϕ(2−p·)=Φ, (2.4)

q≥1 ⇒ suppχ∩suppϕ(2−q·)=Φ. (2.5)

Remark 2.1. The frequency localization operator is defined as

∆ku=
∫

Rn
φ̆(y)u(x−2−qy)dy. (2.6)

Definition 2.2. BMO denotes the homogeneous bounded mean oscillation space which equipped
with the norm

‖ f‖BMO = sup
x∈Rn,r>0

1

|Br(x)|

∫

Br(x)

∣

∣

∣
f (y)−

1

Br(y)

∫

Br(y)
f (z)dz

∣

∣

∣
dy. (2.7)

Definition 2.3. (The Triebel-Lizorkin space Ḟs
p,q) The homogeneous Triebel-Lizorkin space Ḟs

p,q

is defined as the set of tempered distributions u, i.e.,

‖u‖Ḟs
p,q
=
∥

∥

∥

(

∑
k∈Z

2sqk|∆ku|q
)1/q∥

∥

∥

Lp
<+∞. (2.8)

Moreover, when s=0, p=∞, q=2, Ḟ0
∞,2=BMO.



BKM’s Criterion of Weak Solutions for the 3D Boussinesq Equations 67

Lemma 2.1. (The Bernstein inequality) Let C is a annulus of center on 0, B is a ball of center
on zero, then there exists a constant C>0 such that for any integer k≥0 and function u∈Lα(Rn),
b≥ a≥1, we have

sup
|α|=k

‖∂αu‖Lα(Rn)≤Ck+1λk+n( 1
a −

1
b )‖u‖Lα(Rn), supp û⊂λB, (2.9)

C−(k+1)λk‖u‖Lα(Rn)≤ sup
|α|=k

‖∂αu‖Lα(Rn)≤Ck+1λk‖u‖Lα(Rn), supp û⊂λC. (2.10)

Proof. See, e.g., [3].

Lemma 2.2. (The Special Bernstein inequality) For any integer k≥ 0, 1≤ p≤ q≤+∞ and
function u∈Lp(Rn), we have

c2km‖∆ku‖Lp(Rn)≤‖∇m∆ku‖Lp(Rn)≤C2km‖∆ku‖Lp(Rn), (2.11)

‖∆ku‖Lq(Rn)≤C2
n( 1

p−
1
q )k‖∆ku‖Lp(Rn), supp û⊂2C, (2.12)

where c and C are positive constants independent of u and k.

Proof. See, e.g., [3].

Lemma 2.3. (The Gagliardo-Nirenberg inequality)

‖∇i f‖L2m/i ≤C‖ f‖1−i/m
L∞ ‖∇m f‖i/m

L2 , i∈ [0,m] (2.13)

holds for all u∈L∞(Rn)∩Hm(Rn).

Lemma 2.4. (The Interpolation Inequalities) The following inequalities hold in the three di-
mensional Lebesgue space

‖∇u‖L4 ≤C‖u‖1/5
L4 ‖∆u‖4/5

L2 , (2.14)

‖∇u‖L2 ≤C‖u‖2/3
L2 ‖∇3u‖1/3

L2 , (2.15)

‖u‖L∞ ≤C‖u‖1/4
L2 ‖∇2u‖3/4

L2 , (2.16)

‖u‖L4 ≤C‖u‖3/4
L2 ‖∇3u‖1/4

L2 . (2.17)

Lemma 2.5. The following inequality holds:

‖∇m(u·∇v)−u·∇∇mv‖L2 ≤C(‖∇u‖L∞‖∇mv‖L2 +‖∇v‖L∞‖∇mu‖L2). (2.18)

Proof. See, e.g., [3].

Lemma 2.6. There exists a uniform positive constant C such that

‖∇u‖L∞ ≤C

(

1+‖u‖L2 +‖∇×u‖BMO

√

ln(e+‖u‖H3)

)

(2.19)

holds for all u∈H3(R3) with ∇·u=0.
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Proof. Using the similar technique as in [8], we can derive our result. From the Littlewood-
Paley decomposition, we have

∇u=
+∞

∑
k=−∞

∆k∇u=

( 0

∑
k=−∞

+
A

∑
k=1

+
+∞

∑
k=A+1

)

∆k∇u. (2.20)

Using the Bernstein inequality, setting A=
ln(e+‖u‖H3)

(2−n/2)ln2
+1, we deduce that

‖∇u‖L∞ ≤
0

∑
k=−∞

‖∆k∇u‖L∞+‖
A

∑
k=1

∆k∇u‖L∞+
+∞

∑
k=A+1

‖∆k∇u‖L∞

≤
0

∑
k=−∞

2k(1+n/2)‖∆k∇u‖L2+A1/2
∥

∥

∥
(

A

∑
k=1

|∆k∇u|2)1/2
∥

∥

∥

L∞

+
+∞

∑
k=A+1

2−k(2−n/2)‖∆k∇
3u‖L2

≤C(‖u‖L2 +A1/2‖∇u‖BMO+2−A(2−n/2)‖∇3u‖L2). (2.21)

Denote Rj=(∂/∂xj)(−∆)−1/2 (R=(R1,R2,··· ,Rn)) be the Riesz transformation, from
the Biot-Savard law, we see uXj

=Rj(R×∇u) (j=1,2,··· ,n), Since R is a bounded opera-
tor in BMO, we derive that ‖∇u‖BMO ≤C‖∇×u‖BMO. Combining (2.20) and (2.21), we
complete the proof of lemma.

3 Proof of main theorem

Proof of Theorem 1.1: Multiplying (1.1) by u, using (1.3) and integrating by parts in R3,
we derive

1

2

d

dt
‖u‖2

L2+η‖∇u‖2
L2 =

∫

R3
θe3 ·udx≤‖θ‖L2‖u‖L2 ≤

1

2
‖θ‖2

L2 +
1

2
‖u‖2

L2 . (3.1)

Multiplying (1.2) by θ, using (1.3) and integrating in R3, we obtain

1

2

d

dt
‖θ‖2

L2 +ν‖∇θ‖L2 =0. (3.2)

Combining (3.1) and (3.2), integrating with respect to t, using the Gronwall inequality,
we conclude that

‖u‖2
L2 +‖θ‖2

L2 +2η
∫ t

0
‖∇u(s)‖2

L2 ds+2ν
∫ t

0
‖∇θ(s)‖L2 ds

=2
∫ t

0

∫

R3
θ(s)e3 ·udxds+

∫ t

0
‖θ(s)‖2

L2 ds+
∫ t

0
‖u(s)‖2

L2 ds+‖u0‖
2
L2+‖θ0‖

2
L2 , (3.3)

‖u‖L∞(0,T;L2)+‖u‖L2(0,T;H1)≤C, (3.4)

‖θ‖L∞(0,T;L2)+‖θ‖L2(0,T;H1)≤C. (3.5)
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Applying ∇ to the both sides of (1.1), taking a L2 inner product of the resulting equation
with ∇u, integrating by parts, we derive

1

2

d

dt
‖∇u(t)‖2

L2 +µ‖∇2u(t)‖2
L2 =−

∫

R3
∇(u·∇u)∇udx+

∫

R3
∇(θe3)∇udx. (3.6)

The similar steps to (1.2), we obtain

1

2

d

dt
‖∇θ(t)‖2

L2 +ν‖∇2θ(t)‖2
L2 =−

∫

R3
∇(u·∇θ)∇θdx. (3.7)

From (3.6), (3.7) and ∇·u=0, it follows that

1

2

d

dt

(

‖∇u(t)‖2
L2 +‖∇θ(t)‖2

L2

)

+µ‖∇2u(t)‖2
L2 +ν‖∇2θ(t)‖2

L2

=−
∫

R3

[

∇(u·∇u)−u·∇∇u
]

∇udx−
∫

R3

[

∇(u·∇θ)−u·∇∇θ
]

∇θdx+
∫

R3
∇(θe3)∇udx

=I1+ I2+ I3. (3.8)

By Lemmas 2.5 and 2.6, using the incompressible condition ∇·u = 0, we give the
estimate of Ii(i=1,2,3).

I1=−
∫

R3

[

∇(u·∇u)−u·∇∇u
]

∇udx≤2C‖∇u‖L∞‖∇u‖2
L2 , (3.9)

I2=−
∫

R3

[

∇(u·∇θ)−u·∇∇θ
]

∇θdx=−
∫

R3
∇u·∇θ∇θdx

≤C‖∇u‖L∞‖∇θ‖2
L2 , (3.10)

I3=
∫

R3
∇(θe3)∇udx≤

1

2
‖∇u‖2

L2 +
1

2
‖θ‖2

L2 . (3.11)

It follows from (3.8)-(3.11) that

1

2

d

dt

(

‖∇u(t)‖2
L2 +‖∇θ(t)‖2

L2

)

+µ‖∇2u(t)‖2
L2+ν‖∇2θ(t)‖2

L2

≤C(1+‖∇u‖L∞)(‖∇u‖2
L2 +‖∇θ‖2

L2 )

≤C

(

1+‖u‖L2 +‖∇×u‖BMO

√

ln(e+‖u‖H3)

)

(‖∇u‖2
L2 +‖∇θ‖2

L2). (3.12)

By the Gronwall inequality, we arrive at

‖∇u(t)‖2
L2 +‖∇θ(t)‖2

L2 +2µ
∫ t

t0

‖∇2u(s)‖2
L2 ds+2ν

∫ t

t0

‖∇2θ(s)‖2
L2 ds

≤(‖∇u(t0)‖
2
L2 +‖∇θ(t0)‖

2
L2)

×exp

{

C
∫ t

t0

(

1+‖u(s)‖L2 +‖∇×u(s)‖BMO

√

ln(e+‖u(s)‖H3)

)

ds

}

. (3.13)
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From (1.8), there exist an arbitrary small constant ε>0 and T∗<T such that

∫ T

T∗

‖∇×u(t)‖BMO
√

ln(e+‖∇×u(t)‖BMO)
dt≤ ε. (3.14)

Hence, combining (3.13) and (3.3)-(3.5), we conclude

‖∇u(t)‖2
L2 +|∇θ(t)‖2

L2 +2µ
∫ t

t0

‖∇2u(s)‖2
L2 ds+2ν

∫ t

t0

‖∇2θ(s)‖2
L2 ds

≤C0exp

{

C1

∫ t

T∗

‖∇×u(s)‖BMO

√

ln(e+‖u(s)‖H3)ds

}

≤C0exp{C1”ln(e+A(t))}≤C2(e+A(t))C1ε, (3.15)

where A(t)=supT∗≤s≤t(‖∇
3u(s)‖2

L2+‖∇3θ(s)‖2
L2), t∈[T∗ ,T], C0 depends on ‖∇u(T∗)‖2

L2+

‖∇θ(T∗)‖2
L2 , C1>0 is a uniform constant.

Applying ∇m to (1.1) and (1.2), then taking L2 inner product of the resulting equation
with ∇mu and ∇mθ respectively, integrating by parts, we get

1

2

d

dt
‖∇mu(t)‖2

L2 +η‖∇m∇u(t)‖2
L2

=−
∫

R3
∇m(u·∇u)∇mudx+

∫

R3
∇m(θe3)∇

mudx, (3.16)

1

2

d

dt
‖∇mθ(t)‖2

L2 +ν‖∇m∇θ(t)‖2
L2 =−

∫

R3
∇m(u·∇θ)∇mθdx. (3.17)

It follows from (3.16), (3.17) and ∇·u=0 that

1

2

d

dt

(

‖∇mu‖2
L2+‖∇mθ‖2

L2

)

+η‖∇m∇u(t)‖2
L2 +ν‖∇m∇θ(t)‖2

L2

=−
∫

R3
∇m(u·∇u)∇mudx+

∫

R3
∇m(θe3)∇

mudx−
∫

R3
∇m(u·∇θ)∇mθdt

=−
∫

R3
[∇m(u·∇u)−u·∇∇mu]∇mudx+

∫

R3
∇m(θe3)∇

mudx

−
∫

R3
[∇m(u·∇θ)−u·∇∇mθ]∇mθdx

=I4+ I5+ I6. (3.18)

Since the proof for the case m> 3 is similar to m= 3, here we only need to prove the
case m=3. By the Hölder inequality, the Cauchy inequality and Lemma 2.6, we get

I4=
∣

∣

∣
−
∫

R3

[

∇3(u·∇u)−u·∇∇3u
]

∇3udx
∣

∣

∣
≤‖∇3(u·∇u)−u·∇3u‖L2‖∇3u‖L2

≤C‖∇u‖L∞‖∇3u‖2
L2 , (3.19)
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I5=
∫

R3
∇3(θe3)∇

3udx≤
1

2

(

‖∇3θ‖2
L2 +‖∇3u‖2

L2

)

, (3.20)

I6=−
∫

R3

[

∇3(u·∇θ)−u·∇∇3θ
]

∇3θdx

=−3
∫

R3
∇u·∇∇2θ∇3θdx−3

∫

R3
∇2u·∇∇θ∇3θdx−

∫

R3
∇3u·∇θ∇3θdx

=−3
∫

R3
∇u·∇∇2θ∇3θdx−3

∫

R3
∇2u·∇∇θ∇3θdx+

∫

R3
∇3u·θ∇4θdx

≤C‖∇u‖L∞‖∇3θ‖2
L2 +C‖∇2u‖L4‖∇2θ‖L4‖∇3θ‖L2 +‖θ‖L∞‖∇3u‖L2‖∇4θ‖L2

= I7+ I8+ I9. (3.21)

Using Lemma 2.4 and ‖θ‖L∞ ≤‖θ0‖L∞ , we obtain

I8=3‖∇2u‖L4‖∇2θ‖L4‖∇3θ‖L2

≤C‖∇u‖
1
2
L∞‖∇

3u‖
1
2

L2‖θ‖
1
2
L∞‖∇

4θ‖
1
2

L2‖∇
2θ‖

1
2

L2‖∇
4θ‖

1
2

L2

≤C‖∇u‖
1
2
L∞‖∇3u‖

1
2

L2‖θ0‖
1
2
L∞‖∇4θ‖L2‖∇2θ‖

1
2

L2

≤
ν

4
‖∇4θ‖2

L2 +C‖∇u‖L∞‖∇3u‖L2‖∇2θ‖L2

≤
ν

4
‖∇4θ‖2

L2 +C‖∇u‖L∞

(

1+‖∇3u‖2
L2+‖∇3θ‖2

L2

)

≤
ν

4
‖∇4θ‖2

L2 +C‖∇u‖L∞(e+A(t)). (3.22)

Noting that ‖θ‖L∞ ≤‖θ0‖L∞ and using the Cauchy inequality, we deduce

I9=‖θ‖L∞‖∇3u‖L2‖∇4θ‖L2 ≤
ν

4
‖∇4θ‖2

L2 +C‖θ‖2
L∞‖∇3u‖2

L2

≤
ν

4
‖∇4θ‖2

L2 +C‖∇3u‖2
L2 ≤

ν

4
‖∇4θ‖2

L2+C(e+A(t)). (3.23)

From direct computation, we have

I7≤C‖∇u‖L∞(e+A(t)). (3.24)

Combining (3.18)-(3.24) and (3.4), we conclude

−
∫

R3

[

∇3(u·∇θ)−u·∇∇3θ
]

∇3θdx≤
ν

2
‖∇4θ‖2

L2 +C
(

‖∇u‖L∞ +1
)(

e+A(t)
)

. (3.25)

Thus, it follows from (3.18)-(3.25) that

d

dt

(

‖∇3u(t)‖2
L2 +‖∇3θ‖2

L2

)

+ν‖∇4θ‖2
L2 ≤C

(

‖∇u‖L∞ +1
)(

e+A(t)
)

, (3.26)

holds for all T∗≤ t<T.
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Integrating (3.26) over [T∗,s] with respect to t, using Lemma 2.5, we arrive at

‖∇3u(s)‖2
L2 +‖∇3θ(s)‖2

L2 +ν
∫ s

T∗

‖∇4θ(t)‖2
L2 dt

≤‖∇3u(T∗)‖
2
L2 +‖∇3θ(T∗)‖

2
L2

+C
∫ s

T∗

(

1+‖u(t)‖L2 +‖∇×u(t)‖BMO

√

ln(e+‖u(t)‖H3)
)

(e+A(t))dt

≤‖∇3u(T∗)‖
2
L2 +‖∇3θ(T∗)‖

2
L2

+C
∫ s

T∗

(

1+‖u(t)‖L2 +‖∇×u(t)‖BMO

√

ln(e+A(t))
)

(e+A(t))dt, (3.27)

which implies

e+A(t)≤ e+‖∇3u(T∗)‖
2
L2+‖∇3θ(T∗)‖

2
L2

+C
∫ t

T∗

(

1+‖u(s)‖L2 +‖∇×u(s)‖BMO

√

ln(e+‖u(s)‖H3)
)

(e+A(s))ds. (3.28)

For all T∗≤ t<T, then using the Gronwall inequality and (3.28), we deduce that e+A(t)
is bounded, i.e.,

‖∇3u(t)‖2
L2 +‖∇3θ(t)‖2

L2 ≤C, (3.29)

where C is dependent on ‖∇3u(T∗)‖2
L2 +‖∇3θ(T∗)‖2

L2 . Thus, we complete the proof of
Theorem 1.1. �

Acknowledgments

Xinguang Yang was in part supported by the NSFC (No. 11326154), the Key Scientific and
Technological Project of Henan Province (No. 142102210448), the Innovational Scientists
and Technicians Troop Construction Projects of Henan Province (No. 114200510011) and
the Young Teacher Research Fund of Henan Normal University (qd12104).

References

[1] Beale T., Kato T. and Majda A., Remarks on the breakdown of smooth solutions for the 3D
Euler equations. Comm. Math. Phys., 94 (1984), 61-66.

[2] Kozono H., Taniuchi Y., Bilinear estimates in BMO and the Navier-Stokes equations. Math.
Z., 235 (2000), 173-194.

[3] Bahouri H., Chemin J. Y. and Danchin R., Fourier Analysis and Nonlinear Partial Differential
Eqautions, 343, Springer, 2011.

[4] Cao C., Titi E. S., Global regularity criterion for the 3D Navier-Stokes equations involving
one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal., 202 (3) (2011), 919-932.

[5] Kato T., Ponce G., Communtator estimates and the Euler and Navier-Stokes equations.
Comm. Pure Appl. Math., 41 (7) (1988), 891-907.



BKM’s Criterion of Weak Solutions for the 3D Boussinesq Equations 73

[6] Zhou Y., Regularity criteria in terms of pressure for the 3D Navier-Stokes equations in a
generic domain. Math. Ann., 328 (2004), 173-192.

[7] Zhou Y., A new regularity criterion for weak solutions to the Navier-Stokes equations. J.
Math. Pures Appl., 84 (2005), 1496-1514.

[8] Zhou Y., Lei Z., Logarithmically improved criterion for Euler and Navier-Stokes Equations.
arXiv: 0805. 2784, 2008.

[9] Zhang Z., Chen Q., Regularity criterion via two components of vorticity on weak solutions
to the Navier-Stokes equations in R3. J. Diff. Equ., 216 (2005), 470-481.

[10] Abidi H., Hmidi T., On the global well-posedness for the Boussinesq system. J. Diff. Equ.,
233 (2007), 199-220.

[11] Chae D., Global regularity for the 2D Boussinesq equations with partial viscous terms. Adv.
Math., 203 (2006), 497-513.

[12] Danchin R., Paicu M., Existence and uniqueness results for the Boussinesq system with data
in Lorentz spaces. Physica D, 237 (2008), 1444-1460.

[13] Danchin R., Paicu M., Global well-posedness issues for the inviscid Boussinesq system with
Yudovichs type data. Comm. Math. Phys., 290 (2009), 1-14.

[14] Fan J., Zhou Y., A note on regularity criterion for the 3D Boussinesq system with partial
viscosity. Appl. Math. Letters, 22 (2009), 802-805.

[15] Hmidi T., Keraani S., On the global well-posedness of the Boussinesq system with zero vis-
cosity. Indiana Univ. Math. J., 58 (2009), 1591-1618.

[16] Hmidi T., Rousset F., Global well-posedness for the Navier-Stokes-Boussinesq system with
axisymmetric data. arXiv: 0912.135, 2009.

[17] Hmidi T., Rousset F., Global well-posedness for the Euler-Boussinesq system with axisym-
metric data. arxiv: 1003. 0436, 2010.

[18] Hou T. Y., Li C., Global well-posedness of the viscous Boussinesq equations. Disc. Cont. Dyn.
Syst., 12 (2005), 1-12.

[19] Ishimura N., Morimoto H., Remarks on the blow up criterion for the 3D Boussinesq equa-
tions. Math. Model. Meth. Appl. Sci., 9 (1999), 1323-1332.

[20] Qin Y., Yang X., Wang Y. and Liu X., Blow-up criteria of smooth solutions to the 3D Boussi-
nesq equations. Math. Meth. Appl. Sci., 35 (2012), 278-285.

[21] O’Neil R., Convolution operators and Lp,q spaces. Duke Math. J., 30 (1963), 129-142.
[22] Triebel H., Theory of Function Spaces, Birkhaüser, Boston, 1983.
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