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Abstract. In this paper, we construct a global repair technique for the finite element
scheme of anisotropic diffusion equations to enforce the repaired solutions satisfying
the discrete maximum principle. It is an extension of the existing local repair tech-
nique. Both of the repair techniques preserve the total energy and are easy to be
implemented. The numerical experiments show that these repair techniques do not
destroy the accuracy of the finite element scheme, and the computational cost of the
global repair technique is cheaper than the local repair technique when the diffusion
tensors are highly anisotropic.
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1 Introduction

Anisotropic diffusion equations appear in many physical models describing subsurface
flows, heat conduction in structured materials, biological systems and plasma physics.
A good diffusion scheme should be not only stable and convergent, but also possesses
the mathmatical property of the physical system, such as the discrete maximum principle
(DMP). The discrete maximum principle means, if the source term is non-positive, then
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the solution attains its maximum on the boundary. In the context of the anisotropic ther-
mal conduction, a discrete scheme without satisfying the discrete maximum principle
can lead to the violation of the entropy constraints of the second law of thermodynamics,
causing heat to flow from regions of lower temperature to higher temperature. In the re-
gion of high temperature variations, this can cause the temperature to become negative.
Therefore, the discrete maximum principle is an essential requirement in such diffusion
processes to avoid the occurrence of unphysical phenomena.

As we know, it is very difficult to make the solution satisfy the discrete maximum
principle. The classical finite volume and finite element schemes fail to satisfy the discrete
maximum principle for strong anisotropic diffusion tensors or on highly distorted mesh-
es [16–18]. The multi-point flux approximation (MPFA) method [10–12] and the mimetic
finite difference (MFD) method [13,14] are second-order accurate on shape-regular mesh-
es, but when the diffusion tensors are anisotropic or the meshes are highly distorted,
these methods do not satisfy the discrete maximum principle. The diamond scheme [15],
which is the so-called nine-point scheme on arbitrary quadrilateral meshes, is popular in
solving diffusion equations. This method is a linear scheme and can be used on various
distorted meshes for both smooth and non-smooth highly anisotropic solutions. How-
ever, this scheme is only positive-preserving and does not satisfy the discrete maximum
principle. In the finite element schemes, the discrete maximum principle is satisfied by
imposing severe restrictions on the choice of basis functions and on the geometric prop-
erties of the mesh. For a triangulation of acute or non-obtuse type (all angles smaller
than or equal to π/2) the piecewise-linear finite element approximation of the Poisson
equation satisfies DMP [4]. In the case of bilinear finite elements, it is sufficient to require
that all quadrilaterals be of non-narrow type (aspect ratios smaller than or equal to

√
2).

Recently, a nonlinear Galerkin finite element method [5] is proposed for isotropic Laplace
equation on distorted meshes. Based on the repair technique and constrained optimiza-
tion, the methods addressed in [2, 3, 7] enforce the linear finite element solution and the
mixed element solution satisfying the DMP. Since the quadratic optimization is used, it
is very expensive to solve the problem as the number of unknowns is increased. A con-
strained finite element method is described in [1], which can solve the problems with
smooth coefficients very well, but is not satisfactory for the discontinuous anisotropic
diffusion problems.

Compared with the existing methods, the repair technique is cheap and effective. In
addition, it preserves the same total energy and accuracy as the original discrete scheme.
The authors in [7, 19–21] have proposed a local repair technique to enforce the linear
finite element solutions satisfying DMP. This technique repairs the out-of-bounds values
one by one. Suppose a value below its minimum, we fix the value to the minimum, and
the needed energy is taken from the neighborhood proportionally. If there isn’t enough
energy, we extend the neighborhood until enough energy is found. Then, the next value
is checked and repaired if necessary. The procedure is similar to repair over-bounds
values. Recently, a new repair technique [8], which is called the global repair technique,
is addressed on finite volume diamond scheme for diffusion equations. In the present
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paper, we will extend this global repair technique to the finite element scheme. In our
method, the node values are divided into two parts: out-of-bounds node values and
within-bounds node values. Firstly, all the out-of-bounds node values are repaired to
the minimum (or maximum) at the same time. Then, the total needed (or excess) energy
is taken from (or to) all the within-bounds node values proportionally. Comparing to
the local repair technique, our method is to spread the total needed (or excess) energy
throngh the whole domain instead of the neighborhood to preserve the same total energy.
The underlying idea of our method is similar to the repair technique proposed in [20,21],
which is addressed in a different form.

The outline of this paper is as follows. In Section 2, we give the model problem and
briefly review the maximum principle and the discrete maximum principle. In Section
3, we describe the local repair technique, and extend the global repair technique to the
finite element scheme. Numerical experiments will be presented in Section 4 which is
followed by a summary and conclusions in Section 5.

2 The model problem and the maximum principle

In this section, we consider the stationary diffusion problem with the Dirichlet boundary
condition:

−div·(κ∇u)= f in Ω, (2.1a)

u(x)=ψ(x) on ∂Ω, (2.1b)

where κ is a 2×2 symmetric positive defined diffusion tensor, f is a source term, and Ω

is an open bounded polygonal set of R
2 with boundary ∂Ω.

The maximum principle is a basic and important feature of second-order elliptic equa-
tions. It can be described as follows. If f (x)≤0 for all x∈Ω, then u(x) has the maximum
on the boundary, that is

u(x)≤max
x∈∂Ω

ψ(x), ∀x∈Ω. (2.2)

If f (x)≥0 for all x∈Ω, then u(x) has the minimum on the boundary, so that

u(x)≥ min
x∈∂Ω

ψ(x), ∀x∈Ω. (2.3)

We use the finite element method to discretize (2.1a)-(2.1b) on triangular meshes, the
discrete values of u(x), f (x) at the mesh node K are denoted by UK and fK. It is well
known that under some assumptions about the mesh regularity, the solution of the stan-
dard finite element method converges to the solution of the Dirichlet problem with mesh
refinements [6]. The discrete version of the maximum principle (2.2) for non-positive
sources (∀K, fK ≤0) states that,

UK ≤max
J∈∂Ω

ψJ , ∀K, (2.4)
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where J∈∂Ω is the boundary node, and the discrete Dirichlet boundary condition is given
by ψJ =ψ(J).

The discrete version of the minimum principle (2.3) for the non-negative sources (∀K,
fK ≥0) states that,

UK ≥min
J∈∂Ω

ψJ , ∀K. (2.5)

3 Enforcing the discrete maximum principle

The repair technique is a kind of posteriori corrections of the discrete solution, and it
allows to correct the discrete solution in such a way that the total discrete energy is p-
reserved. In this section, two repair techniques will be considered for the finite element
scheme. One is the local repair technique [7], and the other is the global repair technique,
which was firstly proposed in [8] for the finite volume diamond scheme. In this section,
we will extend the global repair technique to the finite element scheme, and describe both
of the repair techniques in details.

3.1 Notions of the energy

In the case of heat diffusion equations, u is the temperature and the discretization of the
total energy

∫

Ω
udx is defined as

E(U)= ∑
K∈J

UKVK, (3.1)

where J is the set of mesh nodes, and VK is the volume associated with the node K
defined as one third of the sum of areas of all triangles which have the node K as one of
their vertices. In many applications, it is important to preserve the conservation of total
energy when modifying the discrete solution to satisfy the discrete maximum principle.
Define Umin=minJ∈∂Ω ψJ as the minimum on the boundary. Define Uu as the unrepaired
solution and Ur as the repaired solution. The total energy of the unrepaired solution is
E(Uu), and we require that the repaired solution preserves the same total energy, that is,

E(Ur)=E(Uu)=∑
K

Uu
KVK. (3.2)

3.2 Local repair technique

Following [7], we repair the node values which violate the discrete maximum principle
by redistributing the heat energy to and from their neighbors so that (3.2) remains valid.
For simplicity, we drop the superscript u denoting the unrepaired solution. We denote by
N (K) the set of nodes neighboring the node K (each neighboring node defines one edge
connecting this node with the node K). Assume that UK<Umin, to correct the violation of
the lower bound on the node K, we have to add the needed energy EK=−(UK−Umin)VK
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to the node K. For all neighboring nodes L of N (K), the available energy at node L is
Ea

L=max(0,(UL−Umin)VL), which can be taken out and given to the node K. So, the total
available energy in N (K) is

Ea= ∑
L∈N (K)

Ea
L. (3.3)

Now, if Ea≥EK, we have enough available energy to correct the temperature on the node
K to the minimal value Umin. Set Ur

K = Umin and take out the needed energy EK from
N (K) in proportion to what they can give, which leads to the following formula

Ur
L=UL−

Ea
L

EK
Ea

VL
. (3.4)

On the other hand, if the availbale energy Ea is less than the needed energy EK, we extend
the neighborhood N (K) by the neighbors of all nodes from N (K) and repeat the outline
procedure.

When the upper bound on the solution is not valid, the repair of the temperature
violating the upper bound proceeds in a similar way as that described above.

3.3 Global repair technique

In this subsection, we extend the global repair technique [8], which was firstly proposed
for the finite volume diamond scheme, to the finite element scheme. We divide the mesh
nodes set J into two parts: Jp = {K : UK ≥ Umin} and Jn = {K : UK < Umin}. Define
Ep =∑K∈Jp

(UK−Umin)VK as the total available energy, and En =−∑K∈Jn
(UK−Umin)VK

as the total needed energy. For each K∈J , let

EK =

{

(Uk−Umin)VK, K∈Jp,

−(UK−Umin)VK, K∈Jn,
(3.5)

then

Ep= ∑
K∈Jp

EK = ∑
K∈Jp

(UK−Umin)VK, En = ∑
K∈Jn

EK =− ∑
K∈Jn

(UK−Umin)VK. (3.6)

If Ep<En, then the total energy in the whole domain becomes negative and the numerical
solution is non-physical. In such case, any repair technique will keep the total energy
being negative, so it is unnecessary to proceed the repair process, and we have to take
other suitable methods to solve the diffusion problems.

If Ep ≥ En, then the total available energy in the whole domain is greater than the
total needed energy. We can take the energy from Jp to compensate the deficiency of the
energy in the set Jn.

For the repaired solution, it is required that Ur
K≥Umin, so we set

Ur
K=Umin, ∀K∈Jn, (3.7)
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and

Ur
K=UK−

EK
En
Ep

VK
, ∀K∈Jp. (3.8)

Because Ep≥En, there holds

Ur
K ≥UK−

EK

VK
=Umin, ∀K∈Jp. (3.9)

Following the proof of Theorem 4.1 in [8], we can deduce that this global repair technique
also preserves the same total energy as the unrepaired solution, that is E(U)=E(Ur).

When the upper bound on the solution (2.4) is not valid, the repair of the temperature
violating the upper bound proceeds in a similiar way as that described above.

As we mentioned above that when the total available energy is greater than the total
needed one, the repair technique can proceed with no problem. However, when the total
available energy is less than the total needed one, the local repair technique will result
in a dead circle and has to terminate, see details in [7]. But, in the context of the global
repair technique, a necessary condition to enable the repair procedure can be derived,
that is Ep≥En.

4 Numerical experiments

In this section, we apply both of the repair techniques to the diffusion problems. In
the Subsection 4.1-4.3, we consider the linear steady diffusion model (2.1a), (2.1b). In
the Subsection 4.4, we consider the nonlinear steady diffusion model, while the time-
dependent nonlinear diffusion problem is addressed in the Subsection 4.5.

The computational domain is the unit square [0,1]×[0,1]. The standard linear tri-
angular finite elements are used, we adopt two different meshes: uniform meshes and
distorted meshes. The distorted mesh is constructed from the uniform mesh with mesh
size h by random perturbations of the internal nodes (x,y)

x := x+αηxh, y :=y+αηyh,

where ηx and ηy are random numbers with values in the range from −0.5 to 0.5. The
parameter α∈[0,1] quantifies the degree of distortion. The default value α=0.4 is adopted
to introduce sufficiently strong grid deformations without tangling. When the mesh is
refined, we proceed the above disturbance on the relatted uniform mesh.

We use the discrete L2-norm and L∞-norm to evaluate the approximation errors. For
the exact solution u, define the following L2-norm error

ε2=
[

∑
K∈J

(UK−u(K))2VK

]
1
2
,

and the L∞-norm error

ε∞ =max
K∈J

|UK−u(K)|.



X. D. Chen, G. W. Yuan and Y. L. Yu / Adv. Appl. Math. Mech., 6 (2014), pp. 849-866 855

4.1 Anisotropic medium (Test Problem 1)

Consider the homogeneous Dirichlet boundary condition, i.e., ψ(x)=0. The source func-
tion is taken as follows:

f =

{

1, if (x,y)∈ [3/8,5/8]2 ,

0, otherwise.

The diffusion tensor is given by

κ=

(

y2+ǫx2 −(1−ǫ)xy
−(1−ǫ)xy ǫy2+x2

)

.

In this test, three values of the parameter ǫ=0.05, ǫ=0.01 and ǫ=0.001 are specified, and
we use the uniform triangular meshes.

The unrepaired solutions of this problem for all three parameters have some negative
values, the minimal values of the unrepaired solutions on refined meshes are presented
in Table 1. To quantify how badly the solutions are, we give the ratio of the areas where
the solutions are negative and the area of the whole domain.

The exact solution of this problem is not known, so for convergence study we use the
reference unrepaired solution computed on the finest mesh with mesh scale N=128×128.

Table 1: Test Problem 1. Minimal of unrepaired solutions and the percentage of nodes that have negative
temperature under different parameters (denoted as % of negative nodes).

cells
ǫ=0.05 ǫ=0.01 ǫ=0.001

Minimal negative (%) Minimal negative (%) Minimal negative (%)

8×8 -6.6681e-007 1.23 -1.1771e-003 6.17 -1.7516e-003 14.81
16×16 -1.6138e-007 0.69 -5.6343e-004 15.22 -1.8964e-003 25.25
32×32 -3.8309e-008 0.36 -6.4127e-005 7.80 -1.2213e-003 30.39
64×64 -9.1877e-009 0.44 -3.9338e-005 4.99 -7.3838e-004 33.15

Table 2: Test Problem 1. The L2-norm error when ǫ=0.01, and the convergence order.

cells
Unrepair Local repair Global repair

ε2 Order ε2 Order ε2 Order

8×8 4.8248e-003 - 4.7850e-003 - 4.8593e-003 -
16×16 1.6730e-003 1.5280 1.6689e-003 1.5196 1.6839e-003 1.5289
32×32 4.9900e-004 1.7453 4.9892e-004 1.7593 4.9988e-004 1.7522
64×64 1.1486e-004 2.1192 1.1486e-004 2.1189 1.1486e-004 2.1217

Table 3: Test Problem 1. The L∞-norm error when ǫ=0.01, and the convergence order.

cells
Unrepair Local repair Global repair

ε∞ Order ε∞ Order ε∞ Order

8×8 1.5094e-002 - 1.5094e-002 - 1.5334e-002 -
16×16 6.5022e-003 1.2150 6.5022e-003 1.2150 6.5894e-003 1.2185
32×32 2.3650e-003 1.4591 2.3650e-003 1.4591 2.3732e-003 1.4733
64×64 6.4490e-004 1.8747 6.4450e-004 1.8756 6.4449e-004 1.8806



856 X. D. Chen, G. W. Yuan and Y. L. Yu / Adv. Appl. Math. Mech., 6 (2014), pp. 849-866

Table 4: Test Problem 1. Numbers of repair for the global and local repair techniques, mesh scale is N=64×64.

negative (%)
ǫ=0.05 ǫ=0.01 ǫ=0.001

0.44 4.99 33.15
Number of local repair 114 1266 8406

Number of global repair 4206 4014 2824

Table 5: Test Problem 1. Numbers of repair for the global and local repair techniques, the parameter ǫ=0.001.

negative (%)
N=16 N=32 N=64
25.25 30.39 33.15

Number of local repair 438 1986 8406
Number of global repair 216 758 2824

The convergence results are presented in Table 2 and Table 3. We can see that both of the
repair techniques do converge, and the L2-norm and L∞-norm errors after repairing are
about the same as the original finite element method. Hence, the repair techniques do
not destroy the convergence.

We compare the global repair technique with the local repair technique. When the
formula (3.4) or (3.8) is computed once, the number of repairs add one. The compared
results are shown in Table 4 and Table 5. From the tables, we can see, when the percent-
age of nodes that give negative temperature becomes large, the number of global repair
become smaller than the local repair remarkably.

4.2 Heterogenous diffusion tensor (Test Problem 2)

Consider the case of strong jumps of full diffusion tensors across mesh edges. Assume
ψ(x)=0, and the forcing term is

f =

{

1, if (x,y)∈ [7/18,11/18]2 ,

0, otherwise.

The domain Ω is partitioned into four square subdomains Ωi, i=1,··· ,4. The diffusion
tensor is given by

κ=

(

cosθ sinθ
−sinθ cosθ

)(

k1 0
0 k2

)(

cosθ −sinθ
sinθ cosθ

)

.

Case 1: we fix the anisotropic ratio by setting k1 = 1000, k2 = 1 and vary only the
parameter θ, see Fig. 1(a). Case 2: we use different parameters k1, k2 and θ on different
subdomains, see Fig. 1(b). The computational mesh is the uniform triangular mesh.

The minimal values of the unrepaired solutions and the ratio of negative values are
presented on Table 6. The solution colormaps of Case 1 and Case 2 are given in Fig. 2.
From this figure, we can see that both of the repair techniques enforce the finite element
solutions satisfying the discrete maximum principle.
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Table 6: Test Problem 2. Minimal of unrepaired solutions and the percentage of nodes that have negative
temperature under different parameters (denoted as % of negative nodes).

cells
Case 1 Case 2

Minimal negative (%) Minimal negative (%)
8×8 -2.8007e-006 7.41 -5.1343e-005 27.16

16×16 -7.6743e-006 33.22 -5.1717e-004 31.83
32×32 -1.9284e-005 39.67 -4.1800e-005 20.75
64×64 -2.8121e-005 42.27 -1.9009e-005 16.52

Table 7: Test Problem 2. Case 1, numbers of repair for the global and local repair techniques.

negative (%)
N=16 N=32 N=64
33.22 39.67 42.27

Number of local repair 576 2592 10916
Number of global repair 193 657 2439

Table 8: Test Problem 2. Case 2, numbers of repair for the global and local repair techniques.

negative (%)
N=16 N=32 N=64
31.83 20.75 16.52

Number of local repair 552 1356 4188
Number of global repair 197 863 3527

The number of repairs for the two repair techniques are presented in Table 7 and Table
8. We can see, when the percentage of nodes that give negative temperature becomes
large, the number of global repair is smaller than the local repair.

Figure 1: Parameters in Test Problem 2.

4.3 Non-smooth anisotropic solution (Test Problem 3)

Consider the Dirichlet boundary conditions: when x=0 or x=1, ψ(x)=2.0; when y=0
or y=1, ψ(x)=0.0. The four corners of the domain satisfy ψ(x)=0. The forcing function
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Figure 2: Test Problem 2. Solution colormaps of Case 1 (left) and Case 2 (right) of (a), (b) unrepaired; (c),
(d) local repaired; (e), (f) global repaired. Mesh scale is 64×64. The regions that have negative temperature
are indicated in white.

is taken as f =0. The diffusion tensor is given by

κ=

(

cosθ sinθ
−sinθ cosθ

)(

k1 0
0 k2

)(

cosθ −sinθ
sinθ cosθ

)

.

We take k1=1, k2 =103, 104, 105, and θ=π/6, and the problem is solved on the distorted
triangular meshes.

The convergence results are shown in Table 10 and Table 11. We can see that both of
the repair techniques do not destroy the L2-norm and L∞-norm convergences. In Table 9,
we compare the repair numbers between the local and the global repaire techniques. The
numerical solution profiles and the colormaps are shown in Fig. 3.
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Table 9: Test Problem 3. Numbers of repair for the global and local repair techniques, mesh scale is N=64×64.

violate DMP(%)
k2=103 k2=104 k2=105

16.68 17.58 17.63
Number of local repair 4230 4458 4470

Number of global repair 3520 3482 3480

Table 10: Test Problem 3. The L2-norm error when k1=1, k2 =103 and the convergence order.

cells
Unrepair Local repair Global repair

ε2 Order ε2 Order ε2 Order
8×8 2.1277e-001 - 2.1277e-001 - 2.1277e-001 -

16×16 1.4563e-001 0.5470 1.4563e-001 0.5470 1.4563e-001 0.5470
32×32 8.8668e-002 0.7158 8.8389e-002 0.7207 8.8917e-002 0.7112
64×64 4.2959e-002 1.0455 4.2588e-002 1.0534 4.3838e-002 1.0203

Table 11: Test Problem 3. The L∞-norm error when k1=1,k2 =103 and the convergence order.

cells
Unrepair Local repair Global repair

ε∞ Order ε∞ Order ε∞ Order
8×8 5.6869e-001 - 5.6867e-001 - 5.6867e-001 -

16×16 4.4338e-001 0.3591 4.4338e-001 0.3590 4.4338e-001 0.3590
32×32 3.1625e-001 0.4875 3.1625e-001 0.4875 3.1525e-001 0.4920
64×64 2.0849e-001 0.6011 2.0849e-001 0.6011 2.0187e-001 0.6431

4.4 The nonlinear diffusion problem (Test Problem 4)

Consider the following nonlinear diffusion problem with Dirichlet boundary condition
on the domain Ω=[0,1]×[0,1]:

{

−div(κ(u)∇u)= f in Ω,

u=0, on ∂Ω,
(4.1)

where κ(u) is the diffusion tensor associated with u, f is the source term.

As usual, we use the Picard method to solve the discrete nonlinear system of problem
(4.1). After the finite element solution is gotten, we apply the local and global repair
techniques to enforce the solution satisfying the discrete maximum principle.

Set

f =

{

1000, (x,y)∈ [7/18,11/18]2 ,

0, otherwise.

The diffusion tensor is

κ(u)=

(

cosθ sinθ
−sinθ cosθ

)(

1+u 0
0 ǫ(1+u)

)(

cosθ −sinθ
sinθ cosθ

)

.
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Figure 3: Test Problem 3. k1 = 1, k2 = 103, distorted triangular mesh. Solution profiles (left) and solution
colormaps (right) of (a), (b) unrepaired; (c), (d) local repaired; (e), (f) global repaired. Mesh scale is 64×64.
The regions that violate the DMP are indicated in white.

Choose ǫ = 102,103,104 and θ = π/6, we solve the nonlinear problem on the uniform
triangular mesh. The exact solution of this problem is not known, so for convergence
study we use the reference unrepaired solution computed on the finest mesh with mesh
scale N=128×128.

The unrepaired solutions of this problem for all three parameters have some negative
values, the minimal values and the ratio of negative values of the unrepaired solution on
refined meshes are presented in Table 12.

The convergence results are presented in Table 13 and Table 14. From the L2-norm and
L∞-norm errors of the repaired solutions, we can see that both of the repair techniques
do not destroy the convergence. We compare the global repair technique with the local
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Table 12: Test Problem 4. Minimal of unrepaired solutions and the percentage of nodes that have negative
temperature under different parameters (denoted as % of negative nodes).

cells
ǫ=102 ǫ=103 ǫ=104

Minimal negative (%) Minimal negative (%) Minimal negative (%)

8×8 -3.6743e-003 4.93 -4.5521e-004 4.93 -4.6521e-005 7.40
16×16 -5.0403e-003 17.99 -7.4394e-004 20.76 -7.7103e-005 20.76
32×32 -4.8529e-003 24.97 -1.1036e-003 27.91 -1.1946e-004 28.28
64×64 -1.9240e-003 26.93 -1.1001e-003 32.61 -1.2767e-004 32.94

Table 13: Test Problem 4. The L2-norm error when ǫ=103, and the convergence order.

cells
Unrepair Local repair Global repair

ε2 Order ε2 Order ε2 Order

8×8 8.2783e-003 - 8.2682e-003 - 8.2821e-003 -
16×16 6.7787e-003 0.2883 6.7680e-003 0.2888 6.8667e-003 0.2703
32×32 3.5394e-003 0.9375 3.5212e-003 0.9426 3.6689e-003 0.9042
64×64 1.4476e-003 1.2898 1.4434e-003 1.2865 1.6269e-003 1.1732

Table 14: Test Problem 4. The L∞-norm error when ǫ=103, and the convergence order.

cells
Unrepair Local repair Global repair

ε∞ Order ε∞ Order ε∞ Order
8×8 2.3467e-002 - 2.3467e-002 - 2.3572e-002 -

16×16 2.3913e-002 -0.0271 2.3913e-002 -0.0271 2.4397e-002 -0.0496
32×32 1.1538e-002 1.0514 1.1538e-002 1.0514 1.2390e-002 0.9775
64×64 4.8933e-003 1.2375 4.8933e-003 1.2375 5.6403e-003 1.1353

Table 15: Test Problem 4. Numbers of repair for the global and local repair techniques, mesh scale is N=64×64.

negative (%)
ǫ=102 ǫ=103 ǫ=104

26.93 32.61 32.94
Number of local repair 6828 8268 8352

Number of global repair 3087 2847 2833

repair technique, the results are shown in Table 15. The numerical solution profiles and
the colormaps are shown in Fig. 4.

4.5 The time-dependent diffusion problem (Test Problem 5)

Consider the following time-dependent nonlinear diffusion problem on the domain Ω=
[0,1]×[0,1]:







































∂u

∂t
−div(κ(u)∇u)= f in Ω,

u(x,y,t)=10exp
( a2(x−c)2+b2(y−c)2

a2(x−c)2+b2(y−c)2−a2b2

)

, a2(x−c)2+b2(y−c)2
< a2b2,

u(x,y,t)=0, a2(x−c)2+b2(y−c)2 ≥ a2b2,

K(u)
∂

∂n
u(x,y,t)=0, (x,y)∈∂Ω, t∈ (0,T],

(4.2)
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Figure 4: Test Problem 4. ǫ=103, solution profiles (left) and solution colormaps (right) of (a), (b) unrepaired;
(c), (d) local repaired; (e), (f) global repaired. Mesh scale is 64×64. The regions that have negative temperature
are indicated in white.

where n is the unit outward normal vector on ∂Ω, the parameters a=b=0.1, c=0.5.
We use the unconditionally stable connotative scheme to discrete the time. In each

time step, the Picard method is adopted to solve the relatted nonlinear system. After
the finite element solution of (4.2) is gotten, we apply both of the local and global repair
techniques to enforce the solution satisfying the discrete maximum principle.

Set the time T=0.001, and choose the time interval ∆t=10−6. The force term is

f =

{

1000, (x,y)∈ [7/18,11/18]2 ,

0, otherwise.

The diffusion tensor is

κ(u)=

(

cosθ sinθ
−sinθ cosθ

)(

1+u 0
0 ǫ(1+u)

)(

cosθ −sinθ
sinθ cosθ

)

,
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Table 16: Test Problem 5. The L2-norm error and the convergence order.

cells
Unrepair Local repair Global repair

ε2 Order ε2 Order ε2 Order
8×8 0.2207 - 0.2191 - 0.2201 -

16×16 0.2024 0.1248 0.1996 0.1344 0.2025 0.1202
32×32 0.1568 0.3682 0.1552 0.3629 0.1591 0.3479
64×64 0.1034 0.6006 0.1015 0.6126 0.1069 0.5736

128×128 4.5552e-2 1.1826 4.4556e-2 1.1556 4.9229e-2 1.1186

Table 17: Test Problem 5. The L∞-norm error and the convergence order.

cells
Unrepair Local repair Global repair

ε∞ Order ε∞ Order ε∞ Order
8×8 0.4607 - 0.4607 - 0.4676 -

16×16 0.4440 0.0532 0.4440 0.0532 0.4620 0.0173
32×32 0.3404 0.3833 0.3404 0.3833 0.3636 0.3455
64×64 0.2236 0.6063 0.2236 0.6063 0.2517 0.5306

128×128 9.5903e-2 1.2213 9.5903e-2 1.2213 0.1199 1.0698

Table 18: Test Problem 5. Numbers of repair for the global and local repair techniques under different mesh
scales.

negative (%)
N=32 N=64 N=128
27.18 31.85 34.57

Number of local repair 1664 7890 34072
Number of global repair 793 2879 10887

where ǫ = 1000, θ =π/6. The problem is solved on the distorted triangular mesh. For
the exact solution is unknown, the numerical solution on the mesh scale N=256×256 is
taken as the reference solution.

The convergence results are presented in Table 16 and Table 17. From the L2-norm
and L∞-norm errors of the repaired solutions, we can see both of the repair techniques
do not destroy the convergence.

Figure 5: Test Problem 5. The CPU time of the local and global repair techniques under different mesh scale.
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Figure 6: Test Problem 5. Solution profiles (left) and solution colormaps (right) of (a), (b) unrepaired; (c), (d)
local repaired; (e), (f) global repaired. Mesh scale is 64×64. The regions that have negative temperature are
indicated in white.

We compare the global repair technique with the local repair technique, the results are
shown in Table 18. The CPU time of the two repair techniques is presented in Fig. 5. We
can see, it costs very little CPU time to implement the repair procedures in this numerical
experiment. But, when the mesh scale is increased, the CPU time of the local repair tech-
nique increases remarkably, while the CPU time of the global repair technique increases
very slowly. The numerical solution profiles and the colormaps are shown in Fig. 6.

5 Conclusions

In this paper, we extend the global repair technique [8] to the finite element scheme and
make the repaired solutions satisfy the discrete maximum principle. It is showed that
both of the repair techniques do not destroy the convergence of the original finite element
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method. When the diffusion tensors are highly anisotropic, the computational cost of the
global repair technique is cheaper than the local repair technique.
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