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Abstract. We study capillary spreadings of thin films of liquids of power-law rheol-
ogy. These satisfy
ut+ (u/\+2 | uxxx‘)\iluxxx)x =0,

where u(x,t) represents the thickness of the one-dimensional liquid and A >1. We look
for traveling wave solutions so that u(x,t) =g (x+ct) and thus g satisfies

1
"n_ |g7€‘)‘

2
gl"r;

sgn(g—e).

We show that for each € >0 there is an infinitely oscillating solution, g¢, such that

lim ge =€

t—o00

and that g¢ — go as e =0, where g9 =0 for >0 and
3A
go=cy|t|2A+T for £<0

for some constant c,.
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1 Introduction

In this work, we study capillary spreadings of thin films of liquids of power-law rheology,
also known as Ostwald-de Waele fluids. The following equation for one-dimensional
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motion was derived in [1, 2] and is
A+2 A—1
U+ (u + ‘uxxx‘ uxxx) =0,
X

where A is a real constant and u(x,t) represents the thickness of the one-dimensional
liquid film at position x and time t. See also [3,4]. When A > 1, the fluid is called shear
thinning and the viscosity tends to zero at high strain rates [5]. Typical values for A are
between 1.7 and 6.7 [6].

For gravity driven spreadings studied in [7], u(x,t) satisfies

up— <u)‘+2]ux\A_lux) =0.
X
If we look for traveling wave solutions of the above equation so that u(x,t) =g (x+ct) for
some nonzero ¢ € R, we obtain

/
cg' = (181
and thus

c(g—K)=g¢""2g'" ¢

for some constant K. In the case K=0 we obtain
g(z)=d(z—z) 70

for some constant d which represents a current advancing with constant speed, c, and
front located at x = —ct—z¢. In particular, this differential equation has no oscillatory
traveling wave solutions. Similarly, in the case K # 0 there are no oscillatory traveling
wave solutions. If ¢’'(my) =g’ (my) =0 with m; <mjy, then it follows from the differential
equation that g(mq) = K= g(my). Now let M be the maximum (or minimum) of ¢ on
[m1,m3]. Then ¢'(M) =0 and thus g(M) =K. Thus ¢=K on [m,m].

In this paper, we will study traveling wave solutions for capillarity-driven spreadings

in which case we obtain
Cg’—l— <g/\+2’g///‘/\—1g///> ! —0

and so

Cg+gA+2 ’g///’/\flg/// —K.

If we expect that ¢ will be essentially constant as t — oo, say € > 0, then this gives the
equation
c(g—e) _i_g)\-&-z‘g///’)x—lg/// —0.

This reduces to
c

g///:d !g—el%

-—sgn(¢g—e), where d=—
g+

Fia
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Letting y(t) =g(7) gives

1
///_|y_€’X
= sgn(y—e).
We now consider
y"(t) = fe(y(t)), (1.1)
y(to) =y0>0, y'(to)=yo, y"(to))=y0, (1.2)
where )
_ly—el?
fely)= 2 sgn(y—e), y€eA€R, y>0, €e>0, A>1. (1.3)
y A

We note that f is increasing for 0 <y < (14 y37)€, decreasing for (14 115 )e <y < oo,
and has an absolute maximum at y= (1+ 127 )e. We also see that f(y) is not integrable at
y=0and is integrable at y = co. Next we define

Fe(y):/eyfe(t)dt for y>0.

We see that F.(y) >0, F. is decreasing on (0,€), increasing on (€,00),

lim Fe(y) =00, (1.4a)
y—0*
and there exists 0 < F¢ o < o0 such that
lim Fe(y) = Fe,co- (1.4b)
y—)OO

Also we see that there exists 0 < L. < € such that
Fe(Le):Fe,OO~ (1.5)

We now define the following “energy” type functions which will be useful in analyz-
ing solutions of Eq. (1.1). Let

1
Ery=5)~(y—e)y", (1.6a)
Eyy=F(v)—v'y",, (1.6b)

1
Esy=5 (")~ fe()y" (1.6¢)

Note that
/ " ‘]/_6’“_%
Eiy=—(y—e)y :_(y_e)fe(y):—T <0, (1.7a)
y A

Ey,=—(")?<0, (1.7b)

By, =—fl)()> (1.7¢)
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It can be verified that

Eg,ygo for 0<y< <1+A+1>€

and

Eé’yzo for y> <1+)\-1|-1)€'

In this paper we prove the following:

Main Theorem. Let € >0 and A > 1. There exists a solution of (1.1) with y(0) =L, y'(0) =0,
and y"(0) =be > 0 and yy,_ is decreasing on (—c0,0), oscillates infinitely often on [0,00) and

tlim Y. (1) =€. (1.8)
In addition,

limys. (£)=yo(t), (1.9)

where
0, for t>0, (1.102)
= .10a

s cﬂt\%, for <0,
where

(2A+1)° ] ot (1.10b)

‘= [3A(A—1)(A+2)

Note that y, satisfies the limiting differential equation

1
=—— for t<O0.
yl+a
Also, since A >1 then 31/ (2A+1) >1 so that y, has zero contact angle at t=0. According

to [3], there are other solutions to
1 1
y

1
Yyl

with nonzero contact angle at t =0 which grow like [¢|3}/(?**1) at —co. However, zero
contact angle is more physically reasonable.

2 Preliminaries

In this section, we fix € >0 and write f, F, Eq,E3, and Ej; instead of fe, Fe, E1,4,E>y, and
Esy.

Lemma 2.1. Let tg € R. There is a solution of (1.1)-(1.2) on (to—&,to+06) for some § >0. Also,

for
v0>0, |yo—el+lyol+lyo]>0,

the solution is unique and the solution varies continuously with respect to the parameters (Yo,Y0, Y )-
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Proof. The standard existence-uniqueness-continuous-dependence theorem applies for
all yo >0 with yg #e.

If yo = € then we still have existence by the Peano existence theorem. Now suppose
yo=¢ but that y{, #0. Then near f, we have that

[(y—e€) —yo(t—to)| < Clt—to|?,
which implies
1, ,
E\yon—fOIS!y—G\SZIyOHt—to\ near fto.

Assuming without loss of generality that y(, > 0 then we see that this means

1

Ey{)]t—to\ <(y—e)<2y,lt—to| for t near ty and t>t. (2.1)
Similarly, if z is another solution (1.1)-(1.2) with zg =€, zj, =y, and z{ =y, then

1
—yplt—to| <(z—e€) <2yp|t—to| for t near to and t>t. (2.2)
>Y0 Yo

Now
== [ [ [ 1700 - fetodnaas,

so for any fixed x we have by the Mean-Value Theorem that

Fy(x)) = f(2(x)) = £ (y (x) + (1= p)z(x)) [y (x) = 2(x)]
for some 0 < u < 1. Using (2.1) and that A >1 gives for some constant C >0
L (my () + (1=p)z(x))]
<Cluy+(1—p)z—e*!
=Clu(y—€)+(1=p)(z=e)|F"!

1

SC(%.‘/G) el

Therefore

=< [ [ [ 1w~ r@laxdwas

11 ¢t ps fw
SC(lyé)A / / / |x—to| |y —z|dxdwds
2 to Jtg Jto

1 ’ %_l 2 t 1 1
()" =t [ ls—tol "y —zlds.
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It follows from (2.1) and (2.2) that the last integral on the right-hand side is defined. Thus
for some constant C >0

t
[y=21<Clt—to)? [ ls—tol}ly—z|ds. 23)
to

Letting

t

w:/ |s—t0|%_1|y—z]d520.

to

Then

W =|t—to| T y—z|.

Consequently, (2.3) becomes
w'|[t—to|"F < C(t—to) 2w

so that 1
w <Clt—to|' T w<Cw for t near to.

Therefore,
t
to

which implies w=0 on (to,t). Hence y=z on (t,f). A similar argument shows y=z on

(t,t0).
Now suppose yp =€ and y;, =0 but y{ #0. Then a similar argument as above shows
that

}L]yé’ (t—to)?> <|y—e| <|yg|(t—to)? for t near to.

Assuming without loss of generality that y >0, we see that this means

1
Zyé’(t—to)zgy—egy{)’(t—to)z for t near to and t>t. (2.4)

Similarly if z is another solution then

1
L—ly{)’(t—to)zgz—egyé’(t—to)z for t near ty and t> fo. (2.5)

Again by the Mean-Value Theorem we have for each fixed x

)= )] =1 (uy(x) + (1= p)z(x))|[y(x) —z(x))|
<Cluy+(1—p)z—el5 !
=Clu(y—e)+(1—p)(z—e)| 7!

1

1 -1
= C(Z.‘/g) DT
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Therefore

t prs rw
y=z1< [ [ [ 1f)-f(z)ldxduds
to Jto Jto
L ot ps yw
gC(lyé’)A /// lx—to| 32|y —z|dxdwds
4 to Jto Jto
<c(1 ’)%1(1‘—1‘ )Z/t]s—t 72|y —z|ds
= Zyo 0 " 0 y .

It follows from (2.4) and (2.5) that the last integral is defined. Therefore we have for some
constant C

t
y=21<Clt—to)? [ Js—tolF~2ly—z|ds. 2.6)
to

Letting

t

w:/ \s—to\%’zly—z\dszo.

to

Then

w'= |t~ to| 2y 2|
and thus (2.6) becomes
w'[t—to|> 1 < C(t—to)w.
Consequently,
w’gC]t—to\%w§Cw for t near t.

Therefore,

t
/ (wefct)/ SO,

fo
which implies that w=0 on (to,t). Hence y=z on (to,t). A similar argument shows y=z
on (t, to).
Thus we have shown that the solution is unique if 1o =€ and either y{; =0 or yj =0 but
not both.

Remark: If yp =€ and yj =y =0, then there are nonlinearities f for which there is more than
one solution of (1.1)-(1.3). For example, if
1
f(y)=ly—elisgn(y—e)

then y=e¢ is a solution and
y:e—l—uAt%,

where

BA2A+1)(A+2) 71
m=| (A—1)? ]

7
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is also a solution.
Suppose now that there is a triple (yo,y(,vq ) with

Yo>0, |yo—el+|yol+lyo|>0 (2.7)

and suppose yo(t) is the solution of (1.1) with

vo(to)=yo, Yo(to)=yo, o (to)=yo- (2.8)

Let (yo,1,Y0,,/Y0,,) be a sequence that converges to (yo,y,yy ) and let y, be the solution of
(1.1) with
Yn(to) =Yon,  Yu(to) =Your  Yu(to) =Yo,-

By the existence proof all of the y,’s are defined on (ty—J,tp+J) for some § >0 which
is independent of n. On this set we have that |f(y,(t))| is bounded by a constant M so
that |y;)'| <M and so yu, |y;|, |y, |y. | are all bounded by a constant on [tg—6/2,tg+5/2].
By the Arzela-Ascoli theorem a subsequence (denoted by y,,) along with its first and
second derivatives converges uniformly to a function y with initial condition (2.8). From
Eg. (1.1) we see that y;;| converges uniformly to y"’ and y solves (1.1). With (2.7), by the
uniqueness part of the proof established earlier we must have y(t) =yo(t) and hence yy,
converges uniformly to yo. It then follows from this that i, converges uniformly to yo for
if not then there would be an # >0 and a sequence t,, € [to—06/2,tg+6/2] with t, — t*

such that
Y (b)) =0 (£°)| > 1> 0.

However, we could proceed through the same argument as above and find a subse-
quence yy, of y,, such that y,, converges uniformly to yo on [to—06/2,tg+6/2] contra-
dicting the above inequality. This completes the proof of the lemma. O

Lemma 2.2. Let y(t) be any solution of (1.1)-(1.2). Then there is a maximal open interval
(Th,Tz) with Ty < to < T, where y(t) is defined. In addition, if Ty > —oo then y is increasing near
Ty and

lim y(#)=0, (2.9)
l‘ﬂTlJr

and if T, < co then y is decreasing near T, and
lim y(#)=0. (2.10)

t—=T,

Proof. Let (Ty,Tz) with T < tg < T, be the maximal open interval where y(t) is defined
(and y(t) >0). We now let

c1= inf y(t) and = inf y(t).
1 (M]y<) 2 [tO/TZ)yU

Clearly, ¢ >0,c2 >0. If ¢z >0 then from the definition of f we see that y"/(t) is uniformly
bounded on [ty,T2). Thus if T, < oo then y, i/, and y” are also uniformly bounded on
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[t0,T2) and so the solution y could be extended to (T;,T>+6) for some ¢ > 0 contradicting
the definition of T,. Thus Tr =0 if ¢, >0. A similar argument shows that T =—co if ¢; >0.

So now suppose that c; =0. Then either there is a T < T, such that y(t) is decreasing
on (T,T;) or there is an increasing sequence of local minimums, my, of y converging to
T, such that y(my1) <y(my) and limy_ ., y(my) =0. However, if the latter is true then by
(1.7b) we would have

F(y(myi1)) = Ea(my1) < Ea(my) = F(y(my)).

But also for large k, y(m;) <€ and since F is decreasing for 0 <y < e we would have

F(y(me41)) = F(y(my))

a contradiction. Thus there is a T < T, such that y(t) is decreasing on (T,T>). Thus (2.10)
holds. Similarly, if ¢; =0 then there is T > T; such that y(t) is increasing on (T;,T) and
(2.9) holds. This completes the proof of the lemma. O

Lemma 2.3. If there is an m such that 0<y(m) <L, y'(m)=0, and y" (m) >0, then Ty = —o0,
y' <0and y" >0 for t <m, and
Jim y(t) =co. (2.11)

Proof. If y"(m) >0, then there exists 6 >0 such that y’ <0 on (m—4§,m). If y”'(m) =0, then
since iy (m) = f(y(m)) <0, it follows that there exists d >0 such that 4"/ >0 on (m—3J,m).
Since y'(m) =0 it then follows that y’ <0 on (m—4§,m). Thus we see that if y”'(m) >0 then
there exists a § >0 such that y/ <0 on (m—4,m).

Now suppose there exists an m* <m such that y'(m*) =0 and y’ <0 on (m*,m). Then
y(m*) >y(m) and since E; is decreasing we see that

F(y(m*)) = Ex(m") > Ea(m) = F(y(m)) > Fe. @12)

Now if y(m*) < L, then since F is strictly decreasing on (0,L.] we see that F(y(m*)) <
F(y(m)) which contradicts (2.12). On the other hand, if y(m*) > L., then we see that
F(y(m*)) < Fs which again contradicts (2.12). Thus, no such m* can exist and therefore y
is decreasing for t <m. Then from Lemma 2.2 it follows that T} = —oo.

Next, we show that y has no inflection points for t <m. First we show that if y has an
inflection point, p, then y(p) >¢€. So suppose there is a p <m with y’(p) =0and y’ >0 on
(p,m) and y(p) <e. Then on [p,m] we have by (1.7¢c)

1
I __ ¢l 2 :
Ez=—f"(y)(y' )" <0 since y<<1—|—}H_1)e on [p,m].

Also
Es(m)= E(y”<m))220
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SO 1
S’ =f(y)y'=0 on [pm].

Evaluating at p we obtain f(y(p))y’ (p) <0 and since i’ (p) <0 it follows then that f(y(p))>
0. Consequently, y(p) > €. Since we assumed y(p) < € we see that the only possibility is
y(p)=e€. However, if y(p) =€ then "/ <0 on (p,m) and since y”(p) =0 this implies y’' <0
on (p,m), which is a contradiction. Thus, y(p) > €. Since iy’ <0 for t <m it follows that
y"">0fort<psoif t<g<p then

y'(t)<y"(q) <O.

Integrating on (t,q) gives
v @)=y () <y"(@)g-1).
Thus,
V(@) =y (@) q=1)<y'(t)
and the left-hand side goes to +co as t — —oo contradicting with y’ <0 for t <m. Thus

y" >0 for t <m. Since we also have that y’ <0 for t <m we then see that (2.11) holds. This
completes the proof of the lemma. O

3 Existence of a solution with limy(t) =€

t—o0

We now fix e >0 and b >0. Let y;, be the solution of:

y"' ()= fe(y(1)), (3.1)
y(0)=Le, y'(0)=0, y"(0)=b, (3.2)

where L. is defined in the statement after (1.4b).
We denote the maximal open interval of existence of (3.1)-(3.2) as (Ty,T55). From
Lemma 2.3 it follows that T ,, = —co.

Lemma 3.1. If b=0, then T, ), < co.

Proof. We see that Eq,,(0) =0 and since E{’yb(t) <0 (by (1.7a)) and Ei,yb(o) <0 it follows
that
El,yb(t) <0 on (O/TZ,b)~

Hence .
0<5 (1) <(—elyy on (0,Tz).

Then since y;,(0) = Le <€, we see that y, <e and y;) <0 for t > 0. Since y;,(0) =0 it follows
then that y; <0 for t >0 and therefore yj, is decreasing and concave down on (0,Ty).
Hence y, must become zero at some finite value of t. Thus, T, ; < cc. This completes the
proof of the lemma. O
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Lemma 3.2. If b> 0 is sufficiently large, then T,}, = oo and yj(t) >0 for all t >0 (and hence
yp(t) >0 for all t € R by Lemma 2.3).

Proof. Since y,(0)=0and v, (0)=b>0, we see that y;, >0 on (0,0) for some 6 >0. Suppose
first that T, ;, < co. Then by Lemma 2.2, there is an M >0 such that y}, (M)=0 and y;, >0 on
(0,M). So we see that on (0,M) we have

yb(t) >]/b(0) =L,
and therefore
vy = fe(yp) > fe(Le).

Integrating on (0,t) gives
vy >b+fe(Le)t  on (0,M).

Integrating again on (0,t) gives
L
v, > bif—i—fe(Te)t‘2 on (0,M).

Taking the limit as t — M~ we get M >2b/|fe(L¢)|. Therefore we see that

¥, >0 for 0<t<

b
|[fe(Le)l

After another integration we see that

Yp >L€-i-21‘2 fe( ) on (0,M).

Evaluating this inequality and the y; inequality at t=b/|fc(Le)| we see that

v b

b
yb(!fe<Le)\>>L€+3!fe< e % () >

Therefore, we see that
Yp <L> >e¢ if bis chosen sufficiently large.
|fe(Le)l

Now since we already know that i, >0 on (0,M) so in particular this inequality is true
on the interval (b/|fe(Le)|,M), we see that

W=t =0 o (b

so that y} is increasing on this interval and since v}, (b/| fe (Le)|) >0, this implies y; (M) >0.
On the other hand, y; (M) =0 and y} >0 on (0,M) which implies y; (M) <0 and so we
obtain a contradiction. Thus we see that T, = o0
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So we now assume that T; , = oo but that y;, is not increasing for all t >0. So suppose
there is an M so that y, >0 on (0,M) and y, (M) =0. Then repeating the same argument
as at the beginning of the proof of this lemma, we will obtain again a contradiction. Thus
this completes the proof of the lemma. O

Now we define
S={b>0| T <oo}. (3.3)

It follows that S is nonempty (since 0 € S by Lemma 3.1) and bounded above (by Lemma
3.2). Thus we define
be =sup$S (3.4)

and note that b. > 0.
Lemma 3.3. y;,_(t) >0 for all t. (That is, T, = co and hence be >0 by Lemma 3.1).

Proof. Suppose not. Then T, < oo and so by Lemma 2.2 it follows that v, is decreasing
on (Tpp, —9,Ty . ) for some 6 >0 and

lim y,_(t)=0. (3.5)

=T,
Since Ey y,_ is decreasing (by (1.7b)) we have
Fe(Yp.) =YYy = Eoy, (£) <Eay, (0)=Fe(Le) for 0<t<Typ. (3.6)
Now it follows from (1.4a) and Lemma 2.2 that

lim Fe(yp, (t)) = +oo. (3.7)

Therefore since the right hand side of (3.6) is bounded (since ¢ is fixed), it follows that

Hm y;, (£)y, (t) =+co.

=T,

From this and Lemma 2.2 it follows that there exists a neighborhood of T, (T5,5. —
9, Ty p.) (Where we decrease the size of the J chosen at the beginning of the proof if neces-
sary), such that

0<yp(t)<e, v, (t)<0, y, (£)<0 forall te(Tpp —6,Top,)

Now by Lemma 2.1, it follows that

2 1
0<yb<€, y;<0, yg<0 on (Tz,bg__(S/TZ,bg__5>
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if b is sufficiently close to be. If we also require b > b, then T, = oo (by definition of b.)
and so y,(t) >0 for all t. Let us now denote (T, —36,A;) as the maximal interval for
which

0<yp<e, y,<0, y, <O. (3.8)

From (1.1) we see that y;” <0 on (T, — %5,Ab). Thus, 0<y, <e€, y; is decreasing, concave

down, and y} is decreasing on (T, — %5,A »). Now A, must be finite for if A, were infinite
then v, would be decreasing and concave down for ¢ large forcing y; to become zero in a
finite value of t contradicting the fact that y;, > 0 for all f (since b > b.). Thus, Ay is finite.
Thus, either

yp(Ap)=0 or y,(A)=0 or y,(A,)=0. (3.9)

However, since b > b, y, >0 for all ¢, the first condition is impossible. Also
2 / 2 " 2
vo(Ton.—50) <& vh(Ton=50) <0, v/ (Ton—30) <0,

and so from (3.8) we see that yj, is decreasing, concave down, and y; is decreasing on
(Top. —36,Ap). Thus

2
vy (Ap) <y (Tz,bs - —5> <0,

3
and 5
" " _~
Yo (Ap) <y (Tz,be 35) <0
which contradict (3.9). Thus the assumption that T ;, < oo must be false and so T, = co.
This completes the proof of the lemma. O

Lemma 3.4. yy,(t) has a first critical point, my ¢ >0, which is a local maximum, and y;, >0 on
(0,my ). Also,
Yo (M) >€,  y, (mye) <0, (3.10)

and
Fe(yp, (m1e)) <Fe(Le). (3.11)

Proof. 1f not then y, () >0 for all ¢ >0. We will now show that this implies y;, increases
without bound. If not then
lim Yo, (t) =B, <c0.

t—o0

In this case, we see that

lim W(t)— ’Be_eﬁ
t~>ooyb€ N 142
Be

sgn(Be—e) =Ce. (3.12)

If B¢ > € then i’ > Cc >0 for large t and integrating three times we see that this would
imply that y;,, would be increasing without bound contradicting the fact that

lim y, (#) = Be. (3.13)
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On the other hand if 0 < B <€ then y;” < C. <0 for large t and integrating twice we
see that this would imply that y;_is decreasing for large t contradicting the fact that we
are assuming that y, (t) >0 for all ¢ >0. Thus it must be Be =€ so that y;, >0and y, <€
for all t > 0.

Next since y; (0) =b >0, we see that y, must have a first inflection point pe >0 and
Y, >0on (0,pc). Then from (1.1) we see that y; is decreasing for ¢ >0 so it follows that
Y, <0 for t> pe, and it also follows that there is a ge > pe such that

yge <y§]’€(q€) <0 for t>ge.

Integrating on (ge,t) gives

Yo <Yp.(Ge) +Yp(ge) (t—qe)

which implies that y;, <0 for large enough ¢ which contradicts that y;, >0 for ¢ >0. Thus,
we see that if i, >0 for all £>0 then it must be the case that y;_ does not stay bounded
on [0,00).

In particular, then there is a ze > 0 with y;_(z¢) =€ and y,, is increasing for all ¢ > 0.
Thus from (1.1), v, 6’ >0 for t > z.. So there is a g¢ >z and a ¢ > 0 such that y;;; > ¢, for
t>qe hence

Vi () >yi (ge) +ee(t—ge)  for t>qe

and so we see that there is an 7. such that y; (t) >0 for t > re. Integrating again we see
that y;, (t) >0 for t >re and another integration gives that yy, (t) > € for t > re.

Now if b <b, and b is sufficiently close to be then by Lemma 2.1y, >¢,y;,>0and y; >0
for re <t <re+1. Then from (1.1) y;" >0 for r. <t <re+1. Therefore, y;, v}, and y; are
increasing and y;, > € for r. <t <r.+1 and so we see that these conditions continue to hold
for re <t < oo, but this contradicts the fact that for b <b,, 1, must have a zero. Thus we
finally see that y;_ cannot be increasing for all >0 and so we see that there exists m1 >0
such that

Yp.>0 on (0,mye) and y, (mye)=0.

From calculus, it also follows that y;’ (1m1,¢) <0.
We next claim that y;, (m,¢) > €. First we suppose that v, (111,¢) <e. Then

El/ybe (ml,e) <0 and Ei/ybg (mlle) <0

so that since Ey ,, is decreasing (by (1.7a)), we see that Eq , <0 for t >m . Thus

0< = (vp.)* <(yp.—€)yy. for t>mye

N[ =

and since y;,_(m1,¢) <€ we see that

W (t)<e for t>mi,. and 1y, () <0 for t>mye.
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Since y;, (1m1,¢) =0, this implies y;, () will become 0 at some finite value of f contradicting
Lemma 3.3. Thus we see that y,_(111,¢) > €.
Next we suppose that y;,_(111,¢) =€. In this case either

Yy (m1,e)=0 or y, (mye)<O0.

If y, (m1,e) <O theny,, <eon (1m1,¢,m1e+6) for some 6>0. Hence E; <0 on (1m1,¢,m1 ¢+
d) and by (1.7a) since Eq, (m1,c) =0 we see that Eyy, (t) <O for t >my.. Then as in
the previous paragraph this implies y;,_ (t) will become 0 at some finite value of ¢ again
contradicting Lemma 3.3.

Finally, we suppose that y;, (m1,c) =€ and y;, (m1¢) =0. Since yp, (t) <€ for 0<t <
mye, we have y;"(t) <0 for 0<t <mjy.. Thus, y, (t) is decreasing for 0 <t <1y . Since
Yy, (m1,6) =0 this implies y; >0 for 0<t<m; .. However, the mean value theorem implies
that there exists a ¢ with 0 <c <m; ¢ such that

0=y, (m1,e) =y, (0) =y (c)me

which contradicts with i >0 for 0 <t <.

Thus we demonstrate that y;,_(1m1,¢) > €.

Next we show that y; (1m1,¢) <0. From calculus it follows that y; (m1,) <0. so we
assume now by way of contradiction that yj (1m1,)=0. This implies that Ej y, (111,¢)=0.
Also, since yy, (m1,¢) >€ wesee that Ey | (1m1,¢) <0and since Ey,y,_is decreasing (by (1.7a))
we see that

1
5 (yge)2 —(Yp,— e)yg’6 =Eiy, <0 for t>my.

Thus there is a § > 0 such that Eyy, <0 for t >my+0. Thus for b < b, and b sufficiently
close to b we also have Eq;, <0 for t >my+9.
Also, perhaps by choosing a smaller ¢ if necessary, we see that

Yp.>0 on (0mye—0d] and y, >e on [mye—0,mye+0].

So by Lemma 2.1 and since b, >0, if b is sufficiently close to b then y; >0 on (0,11, —4]
and y, > € on [my—0J,my +0]. Now if we choose b > b, then by definition of b. we
see there exists an r, > mj ¢ +6 such that y,(r,) =0. Therefore by the intermediate value
theorem there is a z;, with mj ¢+ <z, <r}, such that y,(z,) =€. Hence

iy (2) = 5 h(2) >0,

On the other hand, we know from earlier that since z; >m1 ¢+ then Ey (zp) <0. Thus
we obtain a contradiction. Therefore it must be that y; (1) <0.
Finally, since E; , is decreasing (by (1.7b)) and Eé,yb (0) <0 we have

Ezy, (m1e) <Ezy, (0)

and hence (3.11) holds. This completes the proof of the lemma. O



48 J. A.Taia / J. Partial Diff. Eq., 23 (2010), pp. 33-67

Lemma 3.5. yy, (t) has a second critical point at ma e >0 which is a local minimum, and y, <0
on (mye,mye). Also,

Yo (M) <e and y, (moe)>0 (3.14)

and
Fe(yp. (m2e)) < Fe(Yp, (m16))- (3.15)
Proof. The proof of this lemma is nearly identical to the proof of Lemma 3.4 and we omit
it here. O

In order to simplify notation a bit we now write Ej,Eze, and Eje instead of Eqy, ,
Ezy,., and Esy, , respectively.
Continuing in this way we see that there is a sequence of extrema with

My e<Mpe<M3e<Myge<--"

such that the my . are local minima, the my,_; . are local maxima, y is monotone of
(Mpy,e,My11e), and since Ep ¢ is decreasing, we have

Fe (Y, (mis1,e)) <Fe(yp, (mie))-
Note that this implies
Yo (Moge) <yp, (Mogioe) <€ and € <yp (Maks1,e) <Y (Mar—1e)- (3.16)

We now let
Me= lim m,, ¢ (3.17)
n—oo

and note that M, <co.

Lemma 3.6. y;,_(t) oscillates infinitely often, and

|
©

lim y (t)=e, lim y{,g(t):O, lim yf,’g(t)
- Mo

— M t—Mg
Proof. We have 0=mqe <mje<mpe<mze<--- and

Fe(Le) > Fe(yp, (mae)) > Fe (Yo, (m2,e)) > Fe(yp, (m3,€)) > -+
Also, there exists z;  such that

0<21e <Mye<zoe<Mpe<z3e<-, Yp(Zne)=€, limz,c=M,.

n—oo

Next we observe that since y{,g (mx) =y, _(mg1) =0 the extrema of y{,g on (Mye,Mii1¢)
must occur at points p where y; (p) =0 so

—_

S Wb () =Ere(p) S Ere(0) = (e~ Le)be.
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Thus for every k>0

’y,be(t)lﬁ \/ 2(e—Le)be=Ke  on [mye,myiq el

Then since my . — M. as k— co we obtain

vh ()| <y/2(e—Le)be=Ke  on [0,M,]. (3.18)

Next, since E; . is decreasing, Eq¢(zxe) =3 [y, (zx¢)]* >0, and zj . — M we see that

Hm Eqc(t)=e1e>0. (3.19)
t—Mg

Integrating (1.7a) on (0,f) we obtain

B1e(t)= (e Lot~ [ (. ~€)fel,)

Using (3.19) and taking limits as t — M_ give

(e Lbe=eret [ —e)fels)

Thus we see that

/OME (yp. —€) fe(yp.) is finite. (3.20)

7 7

We have ;' >0 on (z1,6,m1¢) so that Yy, is increasing on (z1,6,m1¢). Also from Lemma 3.4
we know that i’ (m1,¢) <0 therefore it follows that y; <0 on (z1,¢,m1,¢). Therefore, yj, is
concave down on (z1 ¢, ¢) and so it follows that

m —€
ez Bz ) on (zyeme) (321)
€ €

Similarly, since y;, >0 on (z,Mm2,c) we see that

Yp (mo,e) —€
_€<€7
ybg o My e—22¢ (

Thus, it follows from (3.21) that

mye mye —c€ 1+%
[ e fa= [

Zl,e 21 yb
€

= : ybg(ml’e)_elﬁ%/ml/g(t—zle)”%dt
a Yb. (ml,e)lJr% mie—21,e Z1 e !

t—z2¢) on (zae,Mae). (3.22)

) (o) et
2A+1 ybg(ml,e)H%

(ml,e _Zl,e)-
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Also, by the mean value theorem and (3.18) we have

’.‘/bg (mye)—€l= ’.‘/bg (my,e) — VY. (z1,¢)|
=y (cre)l|(m1,e—2z1,e) | < Kemie —z1¢l.

Thus )
My A m —€ 2+X
[ =) = Vs () el 2 (3.23)
Z1,e (2A+1)K€ybe (ml,e) A
A similar inequality holds over (z,¢,M2¢) and thus
mo,e A b (M2e) —€ 2+
/ (vo. =€) fe(yp.) = o, () e
22, (2A+1)K€ybe (1712,6) A
Now using (3.16) we see that
mae A pe (M2, —€2+%
[ o —erfel) > elrad e
22, (2}\—1—1) eYb, (ml,e) A
Similarly we can show
e Alyp, (g ) —e[2F3
[ e ety > e ZE (3.24)
Zhe (2A+1)Keyp, (m1,e) 3
Next using (3.20) and the fact that (y,. —¢€) fe (5. ) >0 for all t we obtain
M,e
0> [ (v =€) el )t
mke
> Z/z ]/be fe Yo, )
ke
A i 1
2 Yo, (mye) —ePF 7.
(2A+1)Keyp, (my,e) k; ‘
Thus .
1
Y yp (mge) —€* 7 <o,
Consequently,
i [y, (1) —€[=0
and since my . — M, and the my . are extrema of y;,_ we see that
lim [y, (t) —€[=0. (3.25)

t— Mg
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Then by (1.1) we obtain

lim y;’(t)
t—M¢
We also know that E; . <0 (by (1.7b)) and by (1.7c) and (3.25) we know that E5 . <0 for ¢

close to M, so that

0. (3.26)

lim Ezle(t) =eye, lim E3I€(t) =e3. (3.27)
t—M¢ t—Me

Also since Ep ¢ (g ¢) >0 and Ez¢(my ) >0 and since my . — M, we see that
e2>0 and e3>0. (3.28)
From (3.18) and (3.25) it follows that

fe(ys,)yp.—0 as t— M.
Combining this with (3.27) we see that

1
Iim -

11N\2
tHMgZ(ybe) =8

Since y,_is bounded (by (3.18)) we see that the only possibility is that e . =0 thus

Jim _yj =0, (3.29)

Now using (3.19), (3.25), and (3.29) we see that

1
lim = (v}, )>= lim Ejc=eq,. (3.30)
toMz 27 E f— Mo

Since y;, is bounded (by (3.25)) we see that the only possibility is that e; e =0 and so

lim yge(t) =0. (3.31)
t—Mg
Using (3.25), (3.29), and (3.31) completes the proof of the lemma. O

One final note, if M, < oo then since

lim y, (t)=e¢, lim y, (£)=0, lim y; (t)=0,
t—Mg t—Mz ¢ t—Mz ¢

we see that we may extend y;,_(t) for t > M, by simply defining
Yp.(t)=€e for t>Me,.
Then whether M, < co or M, = co we see that

limy,_(t)=e.

t—o0
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4 Determination of lin%ybe (1)
€E—

Lemma 4.1. Let L. be defined by (1.5). Then

Le=Lie where 0<Ly<1. 4.1)
Proof. First we denote
© (f—1)1
1:/ (E=D% g 4.2)
1 45

Next, by definition we have

1
Y0|s—elx _
E(y) /e |s—e|rsgn(s—e) N

2
s1+3%

Making the change of variables s=et we obtain

Fe(y)=e 1 Fi(y/e). (4.3)

Hence, by (1.4b), (4.2), and (4.3) we see that

S

1
/ (=) dt=e 71
1

F1+3

Also, by the statement after (1.4b) and (4.3) we see that

11107 B
¢ A/g f1+3 dt=Fe(Le) =Feeo=€ 71

€

So we see from (4.2) and the above line that

o (+_1)\% 1 1\
/ Gk LIPSy Sy U LTS
1 t1+x % t1+x

which implies that L. /€ is independent of € since I does not depend on € (by (4.2)). Thus
Le/€=Lq. Also, from the statement after (1.4b) we see that 0< L. <€ and thus 0< L; <1.
This completes the proof of the lemma. O

Lemma 4.2. If
b> [3fZ (Le) (e~ Lo, (4.4)
then yy, () >0 for all t >0 (and thus b ¢ S (see (3.3))). Hence,

be < [Bf2(Le)(e—Le))3. (4.5)
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Proof. Since

yo(0)=Le, ¥,(0)=0, y;(0)=b>0,
it follows that y,(t) is initially increasing and so y;(t) > Le on (0,6) for some 6 > 0. So on
this interval we have

Yy > fe(Le).
Successively integrating on (0,t] we get
fe(L b2 Pfe(L
Yy >b+tfe(Le), yp,>bt+ % Yo >Le+7+%.

Next, we observe that

b
v, >0, v, >0 for 0<t<——r.

[fe(Le)l

From the inequality for y;, and (4.4) we see that

b b3
—— | >Lct+———>L.te—L.=¢.
yh(\fe(w) 3/f (L)

Then since b

yi(\f‘e&_e)r) >0 (i) >©

it follows from (1.1) that

b
/11
W () >°
This in fact implies hence y; >0 and v}/ >0 for all t>b/|fc (Le)| so that in fact y; (t) >0 for
all t> 0. This completes the proof of the lemma. O

Lemma 4.3.

Q

be <
€_€%+

3(1_L1)1+% ) %

2+3%

where Q= (
L,

o

Proof. We know that L = L€ by Lemma 4.1 so that

(1-Lyi 1

142 1+
€
Ly

[fe(Le)|=fe(Lre)| =

>

Substituting this equation and that L. = L€ into the consequence of Lemma 4.2 we see
that )
3(1-Ly)% 1 Q3
< ;(1—L1)€I 2
et

4
2 et

Taking cube roots we see that this completes the proof of the lemma. O

bg §3f62<L€)<€_L€) =
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Lemma 4.4. y;, — 0 and y, — 0 uniformly on compact subsets of [0,00).

Proof. Since E; . is decreasing by (1.7a), for t >0 we have by Lemma 4.3 that

1
5 W3.)* = (e — €y,
= Eye <Eq,e(0) = (e—Le)be <ebe < Qe3 (171, (4.6)

Also, since
¥,.(0)=0 and lim y;, (t)=0 (by Lemma 3.6)

t—Me¢

we see that the maximum of |y}, | occurs at some point p where y; (p) =0. Evaluating
(4.6) at p gives

1 2(1-1
5 o (p)? < Qe 7).
Thus o
v, ()] </2Qe301)  forall +>0.
Consequently,

|y3,, ()| =0 uniformly on [0,00).
Now letting P >0 and integrating on [0,P] we see that
|Yp. (£) —Le| <P/ 2Qe31-1)

and since L — 0 as € — 0 (by Lemma 4.1) we see that y,,_(t) — 0 uniformly on compact
subsets of [0,00). This completes the proof of the lemma. O

We now investigate the behavior of y,,_(t) as t — —co. From Lemma 2.3 we know that

vy (1) <0, y, (£)>0 for t<0 and Jim Y, (1) = 0.

Thus, for t sufficiently negative we have that

yp, () > (1+)\—1|-1>€

and thus by (1.7c) E3 . >0 if  is sufficiently negative. Thus, there exists fo, <0 such that
E3’€(t) S E3’€(t0’€) fOI' t< tole. Thus,

(Vh)* = fe (s, )b, S Eseltoe) for t<toe.

N —

Since y, <0 for t <0 and yj, > (1+%H)e>e for t <ty we see that

1
0< 5 (15, <Eseltoe), 0<—fe(yo)¥p, SEse(toe) for t<toc.
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Thus E3(t) >0 for t <t and since Es¢(t) is increasing for t < to it follows that
lim E3,€<t) =€3¢ >0.
t——o0

Since y;,’ = fe(yp,) >0 for t <tge, we see that ) is increasing for t < g and since we also

have y; >0 for t <0, it follows that

lim yj (t)=Ae>0.

t——o0
Combining this with the fact that E3 ¢ has a limit as t — —oo it follows that
Jim e (Ve )y, = Ge = 0.
Lemma 4.5.
Jim e (ye. )Yy, =O0.

Proof. Suppose that G, > 0. Then there exists a sufficiently negative t; . such that

G
—fe (Yo )Yy, = 76 for t<tje.

Therefore ;
1
t

fl,e , /€ Ge
/t —fe(Yo)yp ds= / - ds

so that

Ge
00> Feoo 2 Fe (Yo (1)) 2 —Fe(yp. (f1e) )+ Fe (W (1)) 2 5 (he—1)  for t<te.

However, as t — —oo the right hand side goes to co as t — —oco which is a contradiction
to the above inequality. Hence it must be that G =0. This completes the proof of the
lemma. O

Lemma 4.6.

m e _ 5
A e Ve

Proof. Since E7 . <0 and E1¢(0) = (e —Le)be >0, it follows that Ej >0 for £ <0. Since
Yy (1) <0 for t <0 and yp, (t) > € for t sufficiently negative we see that

_y/b ! Eie
e )= 59
(V]/be_e) (ybe—e)%

for t sufficiently negative. Thus the function within the bracket above is positive and
increasing for t sufficiently negative. Consequently,

Y
Iim ——=V.>0.
S e
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Also, since ,
0<Eje= 5 (y’be)z— (ys, —e)y’b’6 for t<0

and y;,_ (t) > €, for t sufficiently negative we have
/)2
(¥s,) >0y
Yo —€ :

Taking limits as t — —co we obtain V2 >2A.. Thus, if V. =0 then A.=0. If V. >0, then
since yp, (t) — oo as t— —oo then also —y;, — oo as t— —o0. Thus we may apply L’'Hopital’s
rule and obtain

()> i Yo,

€ firfloo ybe —€ t——00 y/be €
Thus in all cases we obtain V. =+/2A.. This completes the proof of the lemma. O
We now define 1
2A+1
we(t)= Ve (eﬁt) 4.7)
and observe that w, satisfies
t ' (t (s
Welt) _wule) @) Vo) o dgne, s
’t’ 2A+1 |5’ 2241 |t| 2AH ’5 2471
where s =5t £ Also, we see that w, satisfies
w1/}
W = ﬁsgn(we— 1) = f1(we), 4.9)
wWwe *
Le
we(0) = - = L; by Lemma 4.1,
wl.(0)=0, w”(0)=e3tb,.
We also define
- 1 -
Eie= 5 (wl)? = (we—1)w?, Epe=F(we)—wlw!, (4.10)
. 1
Ee= E(wé’)z—fl(we)wg (4.11)
Note that
w.—1 l+%
B = (e 1) = —(we— ) o) =~ (=1 <, @1)
A
€
Ey.=—(wl!)*<0, (4.13)
E5 =~ fi(we) (w)? (4.14)
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so that

~ 1 5 1
E;.<0 for O<we§1-|—/\—_|_1 and E;.>0 for w€21+—A+1_

In Lemma 4.3 we showed that €3+ be <Q, where Q is independent of €. Thus there
is a subsequence of the € (still denoted ¢€) such that

. 1.2
lime3 " 31b. =co >0
e—0

and for which w, converges uniformly on compact sets to wy and wy satisfies

"_ |w0_1|%

2 —sgn(wo—1) = fi(wo), (4.15a)
A

()
wo(0)=Ly, w((0)=0, wg(0)=co>0. (4.15b)

We note in fact that ¢g > 0 for if ¢o =0 then since wj’(0) < 0 we see that wy( is decreasing

near t=0 so that wjj <0 for >0 and f small. From (4.10) it follows that wy continues to be
concave down and decreasing so that wy becomes 0 at some finite value of ¢, say fy. Since
we — wo uniformly on compact sets and since w, >0 (since y;_ >0 by Lemma 3.3) then w,
must have a local minimum, ¢, near ty and we(te) < L. However, this implies from (4.13)

Fi(we(te)) =Epe(te) <E(0)=Fi(Ly).

On the other hand, since 0<we(t.)<Lj and F; is decreasing on (0,L;) we have F; (we(te))>
F1(L1) which is a contradiction. Thus ¢ > 0.

Lemma 4.7.

tgmmwé’(t) =0 for e>0.
Proof. From Lemma 2.3 it follows that y;, <0 and y; >0 for <0 and also that y, — o0 as
t — —oo. Hence from (4.7) we see that w’. < 0 and w!’ >0 for t <0 and also that we — oo as
t— —co. Thus, wy <0, wjj >0, and wy — oo as t — —oo.

Thus from (4.14) we see that Eé/e >0 for t sufficiently negative. Thus E; . defined by
(4.11) is increasing for t sufficiently negative and since — fi (w,)w/. > 0 for t sufficiently
negative we see that 0 < 1(w”)? and 0 < — f; (w.)w’. are both bounded above for t suffi-
ciently negative. Also, w!’' >0 for t sufficiently negative and since w/ >0 for ¢ sufficiently
negative, it follows that

lim w”(t)=H, forsome H,>0.

t— —o0
Assume now by the way of contradiction that H. > 0. Then it follows that

lim w.=—oc0

t— —o0
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/

and it follows then from L'Hopital’s rule that
L We(t) L we(t)  He o (wp)?
- S ML e (416
Integrating (4.9) for t sufficiently negative when w. >1 we obtain
t 1% t 1
w! —He= %dt:/ 11 ] (1—i> "dt.
. x -0 w;“f We
Using L'Hopital’s rule and (4.16) it follows that
i o= H =75 (77 417)
Also, we know from (4.12) that E;  defined by (4.10) satisfies
i lwe—1[1+3 1 1 1+}
Ei,e = — 1+2 _ —_ _l —_— w—
we we €
and so integrating on (¢,0) gives:
. 01 1 i+l
P (we= D! =Ere(0)+ [ —[1-—|"at.
towl We

El,e = E (we
We now first consider the case where 1 <A <2. The integral on the right converges as
t — —oo since lim;_, _ow,/t?=H./2 and A <2 (by (1.3)). Thus, E; ¢(t) — J for some J. as

(-

t— —oo and thus for t sufficiently negative
We

)2_(we_1)wé,_]e:_ 1
[oo wg

1
5 (we
Also, since we(0) =L; <1 and we — o0 as t — —oo it follows then that there exists a t1 ¢ <0
such that w,(# ) =1. Then we see since Ei/e <0 (by (4.12)) that
) 1 ! 2
Je > El,e(tl,e) = E (we<t1,€)) >0
Je>0. (4.18)
(4.19)

Thus
Moreover, by L'Hopital’s rule it follows that

21 2 \x

lim [¢|3 1(§(w’€ ) .

t——o0
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Combining (4.17) and (4.19) we obtain

tim ¢3! (2(wl)?—H )= -2 (2 420
Jim 1371 (3 (0 ~ Hewe= (Je= 6))__4—A2<E) (2.20)
It follows from (4.20) that
. 1
lim (—(wg)Z—Hewe— (]e—H€)> =0. (4.21)
t——o0 2
We also know that when w, > 1
() o
- 3
we—1 (we — 1) 2
and since ELG — Je as t — —oo we see that
lim | (we—1)}(——2e)| =
Jim | e} (-2 ) | =
and from the second result of (4.16) it follows that
/ !
im_[(- 22 ] - 2V2e.
t——o0 We— 1 Hg
Using (4.16) again and applying L’'Hopital’s rule we see that
V2 2Je.
lim | (—2_+/2H, } ¢ 422
i [2( i+ vam) | = 422)
Now let § > 0. Then for ¢ sufficiently negative we have by (4.22)
0<—w.< [\/2H€+ ( \me +5) ] Vwe—1.
HZ
Squaring both sides and simplifying we obtain
1 V2H, (w f] 1/,—V2] 2 (we—1
o7 sttt S (2 (2
H¢ : H¢
and then
1
E(w )" —Hewe —(Je — He)
V2He (we—1) 1 —V2]e 1/—v2Je —1
< e () 5 () T (4.23)
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Taking limits in (4.23) using (4.16) and (4.22) yields

HE
0< 2] +—596.

V2

This along with (4.18) gives

H?
0o<]. < 0.
f— ]6 — 2\/5
Finally, since 6 > 0 is arbitrary we see therefore that J. =0.
Therefore lim; . o E =0 butsince Ef . <0 and Ey ¢(t1,¢) >0 it follows that E; =0 on
(—o0,t1,¢). Thus

B |w€_1’1+%

1+%
we *

P
_El,e

0 on (—oo,tlle)

and thus w. =1 on (—oo,t; ) contradicting that

we H
t—1>r—noot_2€ - 76 >0
Hence it must be the case that H. =0 completing the proof of the lemma in the case where
1<A<2.
We now consider the case where A >2. We see from (4.16) and the equation after (4.17)
that if A >2 then
tEmOOELe =o00. (4.24)

Next, we see that

1 _
5 (wé)z —He(we—1) =Ey e+ (we—1) <w,e/ —He).

Using (4.17) w. — He > 0 for sufficiently negative ¢ and (4.24), we obtain

Jlim %(wé)z—He(we—l) = 0. (4.25)

Also from the equation after (4.21) we see that

/

! E
<_ ZZ€—1> B (weiel)%'

which gives

t——o0

lim [(w€ —1)

rIw
/~
|
S
g SH
—_
N——
-
0
I
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Also it follows from the second result of (4.16) that

/ !
im [B(—_Pe | =
tEl;noo |:t ( we—l) :| o
Then by L'Hopital’s rule we see that

lim

R {tz(m

For M >0 large and t sufficiently negative we see from (4.26) that

os—wég(\/zﬁ—%)@.

Squaring both sides and rewriting gives

n \/m)} (4.26)

1 I\2 wg - 1 MZ w€ - 1
Z _ 1< =M~/ et DIl (R
3 (We) ~He(we=1)< =M 2H€( £2 ) T ( 12 )

However, as t — —oo the left hand side goes to co by (4.25) and by (4.16) the right hand
side goes to —MHS/ 2/4/2<0. This is a contradiction. As a result, if A > 2, then it also

must have H, =0. This completes the proof of the lemma. O

Lemma 4.8. There are constants c; >0 and ¢, >0 with c1,c; independent of € and ¢ >0, ¢3¢ >0
with
limey e = hn%cz =0

e—0
such that )
— s
ybe(ﬂ) >c1 on (—00,—C1e); ybil >cp on (—o0,—Cp)
|s| 201 |s| 271

Proof. Recall that
Ep e = (Fi(we) —wew)' =—(w{)* <0,

Integrating on (£,0) and using (4.3) gives for <0

/fl(s)ds:FLoo:Fl(Ll)§F1(w€ ww—/ f1(s)ds—wlw!.
1

Thus -
/ fi(s)ds < —wlw!. (4.27)

We
Recall from the remark at the beginning of Lemma 4.7 that lim;_. _w. = o0 and along

with the fact that w.(0) =L; <1 we see that there exists t, . <0 such that we(t, ) =2. Thus
for t <t . we have

1
[ee] [ee] _ by 1
fl(s)ds:/ ST o> 1/ Logs= At (4.28)
We x

1
We 51+X A
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Thus from (4.27)-(4.28) we see that

>

1
/ /! -
—WWe 2 2—lw€ T when t<ty,.
A

Multiplying this by —w, >0 gives

_1
WWMZ%%WﬂQ

and integrating on (f,t¢) and using that w. <0 gives

372 ( 1-
— we
27 (A—1)

Now let t3 . <0 be such that we(t3¢) =3. Then for t < t3 swe have

>=

()= T2

) (4.29)

1 1
we 12171 > (1—(%)1_%)w27?

Thus, using this in (4.29) we obtain

tae  _op! t3,6 ! t3 2 3
1 ’ Ve ds> ’ We ds> w3 ds.
snio1\3 e 3(1=3%) t 1-1 1\ 3 to\23(A—1)
(1—(5)17) we (we A—217>

Therefore, we have

where

Thus for t <2t3,,

2/%11 C <7/ .
1\ 2A+1
> — =Cq. .
) >(3) " =a (4.30)

We A t3,e
- =G (1—‘7
‘t‘ A+T

Letting ¢1 .= e (2|t3,¢|) and using the rescaling mentioned in (4.7)-(4.8) we see that

Y (5) >c1 on (—oo,—Cqc). (4.31)

s|a

Also, since we — wp uniformly on compact sets and wy — co as t — —oo then t3. — t39
where t3 is finite and t39 < 0. Thus, lim¢_gc; e =0. Substituting (4.30) into (4.29) gives
for t <23,

(lealel ] 5" =21,
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Thus, for t <2t3,

w, B2 \h/i1 21t N3
- A1 > ( 1 ) ¢ T (A1) .
|t|2/\+1 2)\(}\—1)

The right-hand side of the above is larger than

1/ 3A7 \3i1a-1
R c3 A —
2(21(A—1)) !

when

(2A—1)(2A+1

2A-1)(2A+1) 1
t| >t =2 s0an - /TR

So letting ¢ ¢ = -t*, we see that ¢ c —0 as € —0 and using the rescaling from (4.7)-(4.8)
we see that )
~Yp, (s)

————2>C on (—00,—Cye).
s| 21
s

This completes the proof of the lemma. O

Lemma 4.9. There are constants c3 >0, ¢4 >0, and c5 > 0 with c3,c4,c5 independent of € and
C3/€ > O, C4€ > O, C5,€ > 0 with

limes e =limcy  =limces e =0
e—0 e—0 e—0

such that ’ ( )
s AN
ybe(m) <cs oon (—o0,—c3e), L <cy om (—o0,—che),
‘S’Tﬂ ’5‘2/\“
and

0<|s|51y) (s)<cs on (—o00,—cs.).

Proof. From Lemma 4.7 we know that lim;_, _w =0 and from Lemma 2.3 we know that
w” >0 when t <0. Thus, when t < t; . (defined in Lemma 4.8) we have

t t 1|z |
Oﬁw'e/(t):/ w!" and ds:/ %sgn(we—l)dsg/ ds.

1
we * wiﬂ
Then using (4.30) gives
M 1 t 3\
0<w!() < / 5| ds= — || T for t<2ts.

1+5 ) oo 1+5 ’

1 1
Letting c5 =1 /C%—H//\ we have

0< |t 1w/ (t)<cs for t<2tz.

(4.32)
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Letting cs5,. =€ 3t (2|ts|) and using the rescaling (4.7)-(4.8) gives
0< s ﬁ%y;’e (s)<cs on (—o9,c5.).

Also, as mentioned after Eq. (4.31), t3. — t30 and t3¢ is finite so that ¢5. — 0 as € — 0.
Dividing (4.32) by |¢| 211 and integrating the resulting inequality on (t,2t3¢) gives

2A+1 Al
wh(2t.e) —wi(t) Ses (S ) [H/A.
Therefore o (8) ' 2t5.) i1
w t3g +
0<— < - c for t<2t3,.
< =g oG B

Since w. — w{, uniformly on compact sets and t3 . — f3, where t3 is finite and 3 <0 as
mentioned after (4.31), we have w/(t3.) — w{(f30) which is finite so we see for € small
enough

2wy (2t 2A+1
0<— f?g— 0<A3'10)+C<A_1)EC4 (4.33)
|¢] 2051 |£3,0|21+1
for t <3t3 ¢,. Then by the rescaling mentioned in (4.7) we see that
—¥3,.(5)
0< ‘S’ijﬁ ey on (—oo,—cye), (4.34)

where ¢4 =€ 3t (3t3,,)—0 as e—0. Multiplying (4.33) by || 71 and integrating on (s,0)
gives

2A+1 31
() Swe(3t30)+ (5 ) ealt]
Consequently,
We We (3t3 0) 2 A+1 We (3t3 0) 2A+1
< : < T+ C4 =C3.
= s o ) St (G )=
Then by the rescaling mentioned in (4.7) we see that
yb <c3 on (—o0o,—c3¢),
’5‘ T
where c3 = e (3t3,¢,) — 0 as € — 0. This completes the proof of the lemma. O

It follows from Lemmas 4.8 and 4.9 that [y;|,|y;_|,|y; | are uniformly bounded on
compact subsets of (—00,0) and from (3.1) we see that ]y” '| is also uniformly bounded
on compact subsets of (—00,0). Consequently, ys., Yy}, and Y, converge uniformly on
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compact subsets of (—o0,0) to a function yp and from (3.1) we see that y

uniformly on compact sets and that yy satisfies:

Finally, we have the following result.

Lemma 4.10.

5 \#m
(2A+1) )>

yO:cAM%, where c)= (
BA(A—1)(A+2

Proof. 1t is straightforward to show that y given above is a solution of

1
"
Y _yl—&-%'
li t)=0, limy'(t)=0,
fimy()=0, limy'(®

and

0<|f|ZFy" (1) <C<oo for t<0.

65

be converges

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

Now we let v=1y—y. From the Mean-Value Theorem we see that for any fixed ¢ <0 there

is an 0 <y <1 such that

1 1
U/”:]/g,—]/”/: .
y(1)+% y1+%
(1+3)
o (W+(1—pj)yo)2+% o=yl==p(t)o,
where p(t) >0. Now we observe that
1 !
(E(U’)Z—vv”) = —vv" = p(t)v* >0.

It follows from Lemmas 4.8 and 4.9, and (4.36)-(4.37) and (4.39)-(4.41) that
lir(r)1 1(v’)z—vv” =0,
t—0~

so we see that
(v')2—vv" <0 for t<O.

N~



66 J. A.Taia / J. Partial Diff. Eq., 23 (2010), pp. 33-67

Thus it follows that vo” >0 for t <0. Then (v0')' =vv” +(v')? >0. Integrating on (t,0) and
using Lemmas 4.8 and 4.9, (4.36) and (4.39) give vv’ <0 for t <0. Suppose now that there
is a t) <0 for which v(tg) =0. Integrating on (to,t) gives v?(t) <0 and so we see that v=0
on (tp,0). Therefore either v >0 for t <0 or v <0 for t <0.

Suppose first that v >0 for t <0. Then we have

yozyEcAM% for t<0. (4.41)
Then by (4.37) and (4.39)
t1 1 —3\-3 1 /2A+1
"__ -A=2
yo_[w 1+%d5§ 1+%‘S’2/\+]_ </\+2)H ]'
Yo ) CA

Integrating on (,0) gives

0 1 ,2A+1 1 2041\ /2441y, 4o
< _
yo_/t c1+}</\—|—2)| s| 2+ ds 4] (A+2>(A—1)|t|w
A A

and integrating again on (t,0) and using the definition of ¢, given in Lemma 4.10 we see
that

Yo < C;; (%ﬁzl) (2AAj11> (2};1

Thus combining (4.41)-(4.42) we see that

)m%:cm%. (4.42)

yozc/\]t]% for t<0.

Similarly if v <0 for t <0 then we have
yogc;\]t]% for t<0.

Then as earlier we may go through a similar computation and show that
yozc;\|t|%+l for t<0

and finally obtain

0=ca|t 1 for t<0.
Y

This completes the proof of the lemma and the proof of the Main Theorem. O
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