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Abstract. In this paper, we propose a condition that can guarantee the lower bound
property of the discrete eigenvalue produced by the finite element method for the
Stokes operator. We check and prove this condition for four nonconforming meth-
ods and one conforming method. Hence they produce eigenvalues which are smaller
than their exact counterparts.
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1 Introduction

We are interested in the lower bound property of the eigenvalue by the (conforming and
nonconforming) finite element method for the Stokes operator. We propose a condition
that can guarantee theoretically the lower bound property of the discrete eigenvalue
for both conforming and nonconforming methods. We check and prove this condition
for the nonconforming rotated Q1 element [20], the enriched nonconforming rotated Q1

element [16], the Crouzeix-Raviart element [9] and the enriched Crouzeix-Raviart ele-
ment [11] and the conforming P2−P0 element.

The lower bound property of the eigenvalue by nonconforming methods of the Stokes
eigenvalue problem was first analyzed in [17]. We here give a new error estimate for
eigenvalues and eigenfunctions and slightly different analysis for the lower bound prop-
erty. For the conforming element, we present the first analysis of the lower bound prop-
erty of the discrete eigenvalue.
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The analysis herein will use some identity for the error of the eigenvalue. Such type
of an identity was first analyzed in a remarkable paper Armentano and Duran [1] for
the nonconforming linear element of the Laplace operator. The idea was independently
extended to the Wilson element in Zhang et al. [25] and to the enriched nonconforming
rotated Q1 element in Li [14]. In those papers, canonical interpolation operators of these
nonconforming elements were performed. For the nonconforming linear element of the
Laplace operator, there is some special projection property for the canonical interpolation
operator, namely, the interpolation is identical to the Galerkin projection. However, for
the general case, one has not such a special projection property for the canonical interpo-
lation operator, see Zhang, Yang et al. [25] and Li [14]. Therefore, that term will not be
zero any more. From arguments in [1, 14, 25], it is straightforward to see that a similar
identity holds for any function (not necessary the canonical interpolation) in the noncon-
forming finite element space, we refer interested readers to, Yang et al. [23] and Hu et
al. [11] for more details. This idea was extended to the Stokes operator in Lin et al. [17],
which will be used in the present paper.

We end this section by introducing necessary notation. We use the standard gradient
operator:

∇r :=
( ∂r

∂x
,
∂r

∂y

)

.

Given any 2D vector function ψ=(ψ1,ψ2), its divergence reads divψ :=∂ψ1/∂x+∂ψ2/∂y.
The spaces H1

0(Ω) and L2
0(Ω) are defined as usual,

H1
0(Ω) :=

{

v∈H1(Ω), v=0 on ∂Ω
}

,

L2
0(Ω) :=

{

q∈L2(Ω),
∫

Ω
dx=0

}

.

Suppose that Ω is covered exactly by a shape-regular triangulation Th consisting of tri-
angles in 2D, see [8]. Let Eh be the set of all edges in Th, Eh(Ω) the set of interior edges
and E(K) the set of edges of any given element K in Th; hK = |K|1/2, the size of the el-
ement K ∈ Th, where |K| is the area of element K. ωK is the union of elements K′ ∈ Th

that share an edge with K and ωE is the union of elements that share a common edge E.
Given any edge E∈E(Ω) with the length hE we assign one fixed unit normal νE :=(ν1,ν2)
and tangential vector τE := (−ν2,ν1). For E on the boundary we choose νE = ν the unit
outward normal to Ω. Once νE and τE have been fixed on E, in relation to νE one defines
the elements K−∈Th and K+∈Th, with E=K+∩K−. Given E∈E(Ω) and some R

d-valued
function v defined in Ω, with d=1,2, we denote by [v] :=(v|K+ )|e−(v|K−)|E the jump of v
across E where v|K denote the restriction of v on K.

The paper is organized as follows. In the following section, we shall present the
Stokes eigenvalue problem and its finite element methods in an abstract setting. In Sec-
tion 3, based on two conditions on the discrete spaces, we analyze error estimates for
both discrete eigenvalues and eigenfunctions. In Section 4, under one more condition,
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we prove an abstract result that eigenvalues produced by finite element methods are
smaller than exact ones. In Sections 5 and 6, we check these conditions for four noncon-
forming element methods and one conforming methods. In the last section, we present
some numerical example for the P2−P0 element of the Stokes eigenvalue problem.

2 The Stokes eigenvalue problem and FEMs

The Stokes eigenvalue problem is defined as follows: find (λ,u,p) ∈ R×V×Q := R×
(H1

0(Ω))2×L2
0(Ω) such that

a(u,v)+b(v,p)+b(u,q)=λ(u,v)L2 (Ω), (2.1a)

‖u‖L2(Ω)=1 for any (v,q)∈V×Q, (2.1b)

where the bilinear forms a(u,v) and b(v,q) are defined as, respectively,

a(u,v) :=(∇u,∇v)L2(Ω) and b(v,q) :=−(divv,q)L2(Ω). (2.2)

The kernel space of the divergence operator reads

V0 :=
{

v∈V, b(v,q)=0 for any q∈Q
}

. (2.3)

Let (λ,u,p) be the solution of the problem (2.1), we have u∈V0 and

a(u,v)=λ(u,v)L2(Ω) for any v∈V0. (2.4)

Then, we have that the eigenvalue problem (2.1) has a sequence of eigenvalues

0<λ1≤λ2≤λ3≤···ր+∞,

and corresponding eigenfunctions

(u1,p1),(u2,p2),(u3,p3),··· , (2.5)

which can be chosen to satisfy

(ui,uj)L2(Ω)=δij, i, j=1,2,··· . (2.6)

We define
Eℓ :=span{u1,u2,··· ,uℓ}. (2.7)

Then, eigenvalues and eigenfunctions satisfy the following well-known minimum-
maximum principle:

λk = min
dimVk=k,Vk⊂V0

max
v∈Vk

a(v,v)

(v,v)L2(Ω)
=max

u∈Ek

a(u,u)

(u,u)L2(Ω)
. (2.8)
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We shall be interested in approximating the eigenvalue problem (2.1) by finite element
methods. Let Qh ⊂Q and Vh be some (conforming and nonconforming) discrete spaces
associated to Th. It is assumed that integral means of jumps of discrete functions vanish:

(A1) For all vh ∈Vh it holds

∫

E
[vh]ds=0 for E∈Eh. (2.9)

Moreover, let ah :(V+Vh)×(V+Vh)→R and bh :Q×(V+Vh)→R be some extensions of a
and b in the sense that ah|V×V=a and bh|Q×V=b. Furthermore, we let ∇h and divh denote
the discrete gradient operator and the discrete divergence operator, which are defined in
the elementwise way.

The discrete eigenvalue problem reads: find (λh,uh,ph) ∈ R×Vh×Qh such that
‖uh‖L2(Ω)=1 and

ah(uh,vh)+bh(vh,ph)+bh(uh,qh)=λh(uh,vh)L2(Ω) for all (vh,qh)∈Vh×Qh. (2.10)

We define the semi-norm over Vh+V by ‖·‖h :=ah(·,·)
1/2. It follows from Condition (A1)

that ‖·‖h is a norm over the discrete velocity space Vh under consideration. Moreover, we
assume:

(A2) There exists a (Fortin interpolation) operator ΠF :V→Vh with

bh(v−ΠFv,q)=0 for all q∈Qh and ‖ΠFv‖h .‖v‖V for all v∈V. (2.11)

Throughout the paper, an inequality A . B replaces A ≤ CB with some multiplicative
mesh-size independent constant C > 0 that depends only on the domain Ω, the shape
(e.g., through the aspect ratio) of elements and possible some norm of eigenfunctions u.
Finally, A≈B abbreviates A.B.A.

We define the kernel space of the discrete divergence operator by

V0,h :={vh ∈Vh, bh(vh,qh)=0 for any qh ∈Qh}. (2.12)

Let (λh,uh,ph) be the solution of the problem (2.1), we have uh∈V0,h and

ah(uh,vh)=λh(uh,vh)L2(Ω) for any vh ∈V0,h. (2.13)

Let N :=dimV0,h. Under Conditions (A1) and (A2), the discrete problem (2.10) admits a
sequence of discrete eigenvalues

0<λ1,h ≤λ2,h ≤···≤λN,h,

and corresponding eigenfunctions

(u1,h,p1,h),(u2,h,u2,h),··· ,(uN,h,pN,h).
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In the case where (Vh,Qh) is a conforming approximation in the sense V0,h ⊂V0, it imme-
diately follows from the minimum-maximum principle (2.8) that

λk ≤λk,h, k=1,2,··· ,N,

which indicates that λk,h is an approximation above λk.
We define the discrete counterpart of Eℓ by

Eℓ,h :=span{u1,h,u2,h,··· ,uℓ,h}. (2.14)

Then, we have the following discrete minimum-maximum principle:

λk,h= min
dimVk,h=k,Vk,h⊂V0,h

max
v∈Vk,h

ah(v,v)

(v,v)L2(Ω)
= max

u∈Ek,h

ah(u,u)

(u,u)L2(Ω)
. (2.15)

3 Error estimates of eigenvalues and eigenfunctions

In this section, we shall analyze errors of discrete eigenvalues and eigenfunctions by
nonconforming methods. For simplicity of presentation, we only consider the case where
λℓ is an eigenvalue of multiplicity 1. We follow the idea of [11] and give abstract error
estimates, which will be specified for a fixed discrete method.

In order to analyze the error, we define the quasi-Ritz-projection P′
huℓ∈V0,h by, for an

eigenfunction uℓ∈V,

ah(P′
huℓ,vh)=λℓ(uℓ,vh)L2(Ω) for any vh ∈V0,h. (3.1)

Under conditions (A1) and (A2), the Strang Lemma for nonconforming finite element
methods [5, 8, 21] and the mixed finite element theory [6], prove

Lemma 3.1. Suppose (λℓ,uℓ,pℓ) be the solution of problem (2.1) and define the stress σℓ=∇uℓ+
pℓ id with the identity matrix id. It holds that

‖uℓ−P′
huℓ‖h. inf

vh∈V0,h

‖uℓ−vh‖h+ inf
qh∈Qh

‖pℓ−qh‖L2(Ω)

+ sup
vh∈V0,h

(σℓ,∇hvh)L2(Ω)−λℓ(uℓ,vh)L2(Ω)

‖vh‖h
. (3.2)

To get the error estimate in the L2 norm, we need the following dual problem: find
(wd,rd)∈V×Q such that

a(wd,v)+b(v,rd)+b(wd,q)=(uℓ−P′
huℓ,v)L2(Ω) for any (v,q)∈V×Q. (3.3)

Then we have the following decomposition:

‖uℓ−P′
huℓ‖

2
L2(Ω)=‖uℓ−P′

huℓ‖
2
L2(Ω)−ah(wd,uℓ−P′

huℓ)−bh(uℓ−P′
huℓ,rd)

+ah(wd,uℓ−P′
huℓ)+bh(uℓ−P′

huℓ,rd). (3.4)
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The first term on the right-hand side of (3.4) is a consistency error, which can be expressed
as

‖uℓ−P′
huℓ‖

2
L2(Ω)−ah(wd,uℓ−P′

huℓ)−bh(uℓ−P′
huℓ,rd)

=‖uℓ−P′
huℓ‖

2
L2(Ω)−(σd,∇h(uℓ−P′

huℓ))L2(Ω),

where σd=∇wd+rd id. Since b(wd,q)=0 for any q∈Q, it follows from (3.1) that the second
term on the right-hand side of (3.4) can be rewritten as, for any vh ∈V0,h and qh ∈Qh,

ah(wd,uℓ−P′
huℓ)=ah(wd−vh,uℓ−P′

huℓ)−bh(vh−wd,pℓ−qh)

+ah(uℓ,vh−wd)+bh(vh−wd,pℓ)−λℓ(uℓ,vh−wd)L2(Ω).

For the third term on the right–hand side of (3.4), it holds that

bh(uℓ−P′
huℓ,rd)=bh(uℓ−P′

huℓ,rd−sh) for any sh ∈Qh.

Let ΠG
h :V0→V0,h be defined by

ah(Π
G
h w,vh)= ah(w,vh) for any V0,h.

A summation of these identities, together with the Cauchy-Schwarz inequality, proves
that

Lemma 3.2. Suppose (λℓ,uℓ,pℓ) be the solution of problem (2.1). It holds that

‖uℓ−P′
huℓ‖

2
L2(Ω)

.
(

‖wd−ΠG
h wd‖h+ inf

qh∈Qh

‖rd−qh‖L2(Ω)

)(

‖uℓ−P′
huℓ‖h+ inf

qh∈Qh

‖pℓ−qh‖L2(Ω)

)

+
∣

∣(uℓ−P′
huℓ,uℓ−P′

huℓ)L2(Ω)−(σd,∇h(uℓ−P′
huℓ))L2(Ω)

∣

∣

+
∣

∣(σℓ,∇h(wd−ΠG
h wd))L2(Ω)−λℓ(uℓ,wd−ΠG

h wd)L2(Ω)

∣

∣. (3.5)

In the sequel, we shall use P′
huℓ∈V0,h to estimate the L2 norm of the error uℓ−uℓ,h. We

have the following decomposition:

P′
huℓ=

N

∑
j=1

(P′
huℓ,uj,h)uj,h. (3.6)

For the projection operator P′
h, we have the following important property

(λj,h−λℓ)(P′
huℓ,uj,h)L2(Ω)=λℓ

(

(uℓ−P′
huℓ),uj,h

)

L2(Ω)
. (3.7)

In fact, we have

λj,h(P′
huℓ,uj,h)L2(Ω)= ah(uj,h,P′

huℓ)=λℓ(uℓ,uj,h)L2(Ω). (3.8)
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Suppose that λℓ 6=λj if ℓ 6= j. Then there exists a separation constant dℓ with

λℓ

|λj,h−λℓ|
≤dℓ for any j 6= ℓ, (3.9)

provided that the meshsize h is small enough.

Theorem 3.1. Let uℓ and uℓ,h be eigenfunctions of (2.1) and (2.10), respectively. Suppose that
(A1) and (A2) hold. Then,

‖(uℓ−uℓ,h)‖L2(Ω)≤2(1+dℓ)‖(uℓ−P′
huℓ)‖L2(Ω). (3.10)

Proof. This lemma can be proved by following the same line of Theorem 3.2 in [11]. For
readers’ convenience, we give details. We denote the key coefficient (P′

huℓ,uℓ,h)L2(Ω) by
βℓ. The rest can be bounded as follows:

‖(P′
huℓ−βℓuℓ,h)‖

2
L2(Ω)=∑

j 6=ℓ

(P′
huℓ,uj,h)

2
L2(Ω)≤d2

ℓ ∑
j 6=ℓ

((uℓ−P′
huℓ),uj,h)

2
L2(Ω)

≤d2
ℓ
‖(uℓ−P′

huℓ)‖
2
L2(Ω). (3.11)

This leads to

‖(uℓ−βℓuℓ,h)‖L2(Ω)≤‖(uℓ−P′
huℓ)‖L2(Ω)+‖(P′

huℓ−βℓuℓ,h)‖L2(Ω)

≤ (1+dℓ)‖(uℓ−P′
huℓ)‖L2(Ω), (3.12a)

‖uℓ‖L2(Ω)−‖(uℓ−βℓuℓ,h)‖L2(Ω)≤‖βℓuℓ,h‖L2(Ω)

≤‖uℓ‖L2(Ω)+‖(uℓ−βℓuℓ,h)‖L2(Ω). (3.12b)

Since both uℓ and uℓ,h are unit vectors, we can choose them such that βℓ≥ 0. Hence we
have |βℓ−1|≤‖(uℓ−βℓuℓ,h)‖L2(Ω). Thus, we obtain

‖(uℓ−uℓ,h)‖L2(Ω)≤‖(uℓ−βℓuℓ,h)‖L2(Ω)+|βℓ−1|‖uℓ,h‖L2(Ω)

≤2‖(uℓ−βℓuℓ,h)‖L2(Ω)≤2(1+dℓ)‖(uℓ−P′
huℓ)‖L2(Ω). (3.13)

This completes the proof.

To analyze the error of the eigenvalue, we define (ũℓ,h, p̃ℓ,h)∈V×Q by

a(ũℓ,h,v)+b(ũℓ,h,q)+b(v, p̃ℓ,h)=λℓ,h(uℓ,h,v)L2(Ω) for any (v,q)∈V×Q. (3.14)

Since (uℓ,h,pℓ,h) is the finite element approximation of (ũℓ,h, p̃ℓ,h)∈V×Q, a similar argu-
ment of (3.2) and (3.5) proves
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Lemma 3.3. Let the stress σ̃ℓ,h=∇ũℓ,h+ p̃ℓ,h id. It holds that

‖ũℓ,h−uℓ,h‖h+‖p̃ℓ,h−pℓ,h‖L2(Ω)

. inf
vh∈V0,h

‖ũℓ,h−vh‖h+ inf
qh∈Qh

‖p̃ℓ,h−qh‖L2(Ω)

+ sup
vh∈V0,h

(σ̃ℓ,h,∇hvh)L2(Ω)−λℓ,h(uℓ,h,vh)L2(Ω)

‖vh‖h
. (3.15)

In order to estimate the L2 error, let (w̃d,r̃d) be the solution of the following dual
problem: find (w̃d,r̃d)∈V×Q such that

a(w̃d,v)+b(v,r̃d)+b(w̃d,q)=(ũℓ,h−uℓ,h,v)L2(Ω) for any (v,q)∈V×Q. (3.16)

Lemma 3.4. Let σ̃d =µ∇w̃d+ r̃d id. It holds that

‖ũℓ,h−uℓ,h‖
2
L2(Ω)

.
(

‖ũℓ,h−uℓ,h‖h+‖p̃ℓ,h−pℓ,h‖L2(Ω)

)(

‖w̃d−ΠG
h w̃d‖h+ inf

qh∈Qh

‖r̃d−qh‖L2(Ω)

)

+
∣

∣(ũℓ,h−uℓ,h,ũℓ,h−uℓ,h)L2(Ω)−(σ̃d,∇h(ũℓ,h−uℓ,h))L2(Ω)

∣

∣

+
∣

∣(σ̃ℓ,h,∇h(w̃d−ΠG
h w̃d))L2(Ω)−λℓ,h(uℓ,h,w̃d−ΠG

h w̃d)L2(Ω)

∣

∣. (3.17)

Proof. A similar argument of (3.5) shows the desired result.

Theorem 3.2. It holds that

|λℓ,h−λℓ|.‖ũℓ,h−uℓ,h‖L2(Ω). (3.18)

Proof. It follows from (2.1) and (3.14) that

((ũℓ,h−uℓ,h),uℓ)L2(Ω)

=λ−1
ℓ

λℓ,h(uℓ,h,uℓ)L2(Ω)−(uℓ,h,uℓ)L2(Ω)

=
(λℓ,h−λℓ)(uℓ,h,uℓ)L2(Ω)

λℓ

.

Thus we have

λℓ,h−λℓ=
λℓ((ũℓ,h−uℓ,h),uℓ)L2(Ω)

(uℓ,h,uℓ)L2(Ω)
. (3.19)

It follows from (3.10) that there exists some positive constant C such that

C≤ (uℓ,h,uℓ)L2(Ω).

This completes the proof.
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Theorem 3.3. It holds that

‖uℓ−uℓ,h‖h. inf
vh∈V0,h

‖uℓ−vh‖h+ inf
qh∈Qh

‖pℓ−qh‖L2(Ω)

+ sup
vh∈V0,h

(σℓ,∇hvh)L2(Ω)−λℓ(uℓ,vh)L2(Ω)

‖vh‖h

+‖(uℓ−uℓ,h)‖L2(Ω)+|λℓ,h−λℓ|
1
2 . (3.20)

Proof. We can use the following formulation:

ah(uℓ−uℓ,h,uℓ−uℓ,h)

=a(uℓ,uℓ)+ah(uℓ,h,uℓ,h)−2ah(uℓ,uℓ,h)

=λℓ‖(uℓ−uℓ,h)‖
2
L2(Ω)+λℓ,h−λℓ+2bh(uℓ,h−uℓ,pℓ−qh)

+2λℓ(uℓ,uℓ,h−uℓ)−2bh(uℓ,h−uℓ,pℓ)−2ah(uℓ,uℓ,h−uℓ), (3.21)

for any qh ∈Qh. Then the desired result follows.

Under Condition (A2), the discrete inf-sup condition holds uniformly, see [6], namely,

‖qh‖L2(Ω). sup
vh∈Vh

bh(vh,qh)

‖vh‖h
for any qh ∈Qh. (3.22)

Then the mixed theory of [6] states that

inf
vh∈V0,h

‖w−vh‖h. inf
vh∈Vh

‖w−vh‖h for any w∈V0, (3.23)

such an inequality is frequently used in the error estimate. Finally, it follows from the
discrete inf-sup condition that

Theorem 3.4. It holds that

‖pℓ−pℓ,h‖L2(Ω). inf
qh∈Qh

‖pℓ−qh‖L2(Ω)+ sup
vh∈Vh

(σℓ,∇hvh)L2(Ω)−λℓ(uℓ,vh)L2(Ω)

‖vh‖h

+|λℓ,h−λℓ|+‖uℓ−uℓ,h‖L2(Ω)+‖uℓ−uℓ,h‖h, (3.24)

provided that ‖vh‖L2(Ω).‖vh‖h for any 0 6=vh ∈Vh.

4 Lower bounds for eigenvalues: an abstract theory

This section proposes a condition on the finite element method and proves that it is suf-
ficient to guarantee the method to yield lower bounds for eigenvalues of the operators.



10 J. Hu and Y. Q. Huang / Adv. Appl. Math. Mech., 5 (2013), pp. 1-18

Lemma 4.1. Let (λ,u,p) and (λh,uh,ph) be solutions of problems (2.1) and (2.10), respectively.
For any vh ∈Vh, we have the following identity:

λ−λh =‖u−uh‖
2
h−λh‖(vh−uh)‖

2
L2(Ω)+λh(‖vh‖

2
L2(Ω)−‖u‖2

L2(Ω))

+2ah(u−vh,uh)−2bh(vh,ph). (4.1)

Proof. Such an identity can be actually established by following the idea of [1, 11, 14, 23–
25], see [17] for the detailed proof.

The sufficient condition that guarantees the lower bound property of the discrete
eigenvalue can be expressed as

(A3) Let (u,p) and (uh,ph) be eigenfunctions of problems (2.1) and (2.10), respectively.
We assume that there exists an interpolation Πhu∈V0,h with the following properties:

ah(u−Πhu,uh)=0, (4.2a)
∣

∣‖u‖2
L2(Ω)−‖Πhu‖2

L2(Ω)

∣

∣.h2(k+s−1)+△s, (4.2b)

‖(Πhu−u)‖2
L2(Ω).h2(k+s−1)+△S , (4.2c)

when u∈V0∩(Hk+s(Ω))2 with 0< s≤1, k≥1 and two constants 0<△s and 0<△S .
From the abstract error estimate (3.10) we have

‖(u−uh)‖
2
L2(Ω).h2(k+s−1)+△S. (4.3)

Hence the triangle inequality and (A3) show that the second and third terms on the right-
hand side of (4.1) are of higher order than the first term. Finally, the last two terms

ah(u−Πhu,uh)=bh(Πhu,ph)=0.

This actually proves the following theorem:

Theorem 4.1. Let (λ,u,p) and (λh,uh,ph) be solutions of problems (2.1) and (2.10), respectively.
Assume that (u,p)∈V∩∈ (Hk+s(Ω))2×Q∩Hk−1+s(Ω) and that h(k+s−1). ‖u−uh‖h with
0< s≤1. If the three assumptions (A1)-(A3) hold, then

λh ≤λ, (4.4)

provided that h is small enough.

From the error analysis in the previous section, we can find that the error ‖u−uh‖h

usually consists of three parts: the approximation error of the velocity space Vh, the ap-
proximation error of the pressure space Qh and the consistency error of the velocity space
Vh. Note that the convergence rate of ‖(u−Πhu)‖h is only dependent on the approxima-
tion property of the velocity space Vh. Hence it follows from the condition (A3) and
Theorem 4.1 that the lower bound property of the discrete eigenvalue will be guaranteed
for the following two cases:
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• The local approximation property of the discrete velocity space is better than the
global continuity property for nonconforming finite element methods;

• The approximation property of the discrete velocity space is better than the ap-
proximation property of the discrete pressure space for both the conforming finite
element method and the nonconforming finite element method.

The above remark partially explains the lower bound property of the eigenvalues by
the Bernadi-Raugel element, which was first reported in [15].

5 Lower order nonconforming finite elements

In this section, we shall present some nonconforming schemes with Conditions (A1)-
(A3). In all methods under consideration, we take Qh as the piecewise constant space
with respect to the triangulation Th. Furthermore, for all of these spaces Vh, the conditions
(A1) and (A2) follows immediately from their own definitions.

5.1 The nonconforming rotated Q1 element

This is a rectangular element. Denote by QRQ(K) the nonconforming rotated Q1 element
space on the element K∈Th which reads [20]

QRQ(K) :=P1(K)+span{x2
1−x2

2}, (5.1)

with the space P1(K) of polynomials of degree ≤1 over the element K. For any v∈H1(K),
we define the following edge functional

FE(v) :=
1

hE

∫

E
vds (5.2)

with E⊂ ∂K and the diameter hE of the edge E. The nonconforming rotated Q1 element
space Vh is then defined by

Vh :=
{

v∈ (L2(Ω))2, v|K ∈ (QRQ(K))2 for each K∈Th, v continuous with respect

to FE for all internal edges E and FE(v)=0 for all f on ∂Ω
}

.

For the nonconforming rotated Q1 element, we define the interpolation operator Πh :V→
Vh by

∫

E
Πhvds=

∫

E
vds for any v∈V, E∈Eh . (5.3)

Since
∫

E
(u−Πhu)ds=0

for any edge E of K, the Poincare inequality states
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Lemma 5.1. (see [1]) It holds that

‖u−Πhu‖L2(K).h1+s|u|H1+s(K) (5.4)

for any u∈ (H1+s(K))2 with 0< s<1 and K∈Th.

Lemma 5.2. For the nonconforming rotated Q1 element, it holds the condition (A3) when u∈
V∩(H1+s(Ω))2 with 0< s<1.

Proof. Since △hvh =0 with the operator △h defined elementwise, we use the integration
by parts to prove that ah(u−Πhu,vh)= 0 for any vh ∈Vh. Furthermore, Πhu∈V0,h since
u∈V0. Then, the desired result follows immediately from Lemma 5.1.

In the case the eigenfunction is singular in the sense that (u,p)∈V∩(H1+s(Ω))2×Q∩
Hs(Ω) with 0< s<1, it is proved in [11] that hs .‖u−uh‖h. Therefore, we have that the
result in Theorem 4.1 holds for this class of elements.

Remark 5.1. The extension of the analysis and results herein to the Crouzeix-Raviart
element [9] is straightforward.

5.2 The enriched nonconforming rotated Q1 element

This is also a rectangular element. Denote by QEQ(K) the enriched nonconforming ro-
tated Q1 element space defined by [16]

QEQ(K) :=QRQ(K)+span{x2
1+x2

2}. (5.5)

The enriched nonconforming rotated Q1 element space Vh is then defined by

Vh :=
{

v∈ (L2(Ω))2, v|K ∈ (QEQ(K))2 for each K∈Th,v continuous with respect

to FE for all internal edges E and FE(v)=0 for all E on ∂Ω
}

.

For the enriched nonconforming rotated Q1 element, we define the interpolation operator
Πh :V→Vh by

∫

E
Πhvds=

∫

E
vds for any v∈V, E∈Eh , (5.6a)

∫

K
Πhvdx=

∫

K
vdx for any K∈Th. (5.6b)

For this interpolation operator, we have

Lemma 5.3. (see [14]) It holds that

‖u−Πhu‖L2(K).h2|u|H2(K) for any u∈ (H2(K))2 and K∈Th, (5.7a)

‖u−Πhu‖L2(K).h1+s|u|H1+s(K) for any u∈ (H1+s(K))2

with 0< s<1 and K∈Th. (5.7b)



J. Hu and Y. Q. Huang / Adv. Appl. Math. Mech., 5 (2013), pp. 1-18 13

Proof. Since u−Πhu has vanishing mean on each element K, it follows from the Poincare
inequality that

‖u−Πhu‖L2(K).hK‖∇(u−Πhu)‖L2(K).

Then the desired result follows from the usual interpolation theory and the interpolation
space theory for the singular case u∈ (H1+s(K))2.

Lemma 5.4. For the enriched nonconforming rotated Q1 element, it holds the condition (A3).

Proof. First one can prove that ah(u−uh,vh)=0 for any vh∈Vh by following the line of [14].
Second we have that Πhu∈V0,h since u∈V0. Finally It follows from the definition of the
interpolation operator Πh that

‖Πhu‖2
L2(Ω)−‖u‖2

L2(Ω)

=((Πhu−u),Πhu+u)L2(Ω)

=((Πhu−u),Πhu+u−Π0(Πhu+u))L2(Ω), (5.8)

where Π0 is the piecewise constant projection operator. This completes the proof of (A3)

with k=1, △s=1 and △S=2s provided that (u,p)∈V∩(H1+s(Ω))2×Q∩Hs(Ω) for some
0< s≤1.

It is proved in [11] that h.‖u−uh‖h when (u,p)∈V∩(H2(Ω))2×Q∩H1(Ω) and that
hs.‖u−uh‖h when (u,p)∈V∩(H1+s(Ω))×Q∩Hs(Ω) with 0< s<1. Thus, we have that
the result in Theorem 4.1 holds for this class of elements.

5.3 The enriched Crouzeix-Raviart element

This is a triangle element. Denote by QECR(K) the enriched Crouzeix-Raviart element
space defined by [11, 17]

QECR(K) :=P1(K)+span{x2
1+x2

2}. (5.9)

The enriched Crouzeix-Raviart element space Vh is then defined by

Vh :=
{

v∈ (L2(Ω))2, v|K ∈ (QECR(K))2 for each K∈Th, v continuous with respect

to FE for all internal edges E and FE(v)=0 for all edges E on ∂Ω
}

. (5.10)

For the enriched Crouzeix-Raviart element, we define the interpolation operator Πh :V→
Vh by

∫

E
Πhvds=

∫

E
vds for any v∈V for any edge E, (5.11a)

∫

K
Πhvdx=

∫

K
vdx for any K∈Th. (5.11b)

For this interpolation operator, a similar argument of Lemma 5.3 leads to:
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Lemma 5.5. It holds that

‖u−Πhu‖L2(K).h2|u|H2(K) for any u∈ (H2(K))2 and K∈Th, (5.12a)

‖u−Πhu‖L2(K).h1+s|u|H1+s(K) for any u∈ (H1+s(K))2

with 0< s<1 and K∈Th. (5.12b)

Lemma 5.6. For the enriched Crouzeix-Raviart element, it holds the condition (A3).

Proof. We first prove ah(u−Πhu,uh) = 0. Let u= (u1,u2). We only need to consider the
first component u1 since the analysis holds for the second component u2. We define the
space

QK :=

(

a11+a12x1

a21+a12x2

)

with free parameters a11, a21,a12. From the definition of the operator Πh, we have

(∇(u1−Πhu1),ψ)L2(K)=0 for any ψ∈QK. (5.13)

Indeed, we integrate by parts to get
(

∇(u1−Πhu1),ψ
)

L2(K)

=−(u1−Πhu1,divψ)L2(K)+ ∑
E⊂∂K

∫

E
(u1−Πhu1)ψ·νEds.

Since divψ and ψ·νE (on each edge E) are constant, then (5.13) follows from (5.11). Since
∇hΠhu1|K ∈QK, the identity (5.13) leads to

(∇hΠhu1)|K :=PK(∇u1|K) (5.14)

with the L2 projection operator PK from L2(K) onto QK. This proves

(∇h(u1−Πhu1),∇hu1,h)=0

with u1,h the first component of uh.
It remains to show the estimate in (A3). Then, it follows from the definition of the

interpolation operator Πh that

‖Πhu‖2
L2(Ω)−‖u‖2

L2(Ω)

=((Πhu−u),Πhu+u)L2(Ω)

=((Πhu−u),Πhu+u−Π0(Πhu+u))L2(Ω). (5.15)

This completes the proof of (A3) with k= 1, △s= 1 and △S= 2s provided that (u,p)∈
V∩(H1+s(Ω))2×Q∩Hs(Ω) for some 0< s≤1.

We establish in [11] that h.‖u−uh‖h when (u,p)∈V∩(H2(Ω))2×Q∩H1(Ω) and that
hs . ‖u−uh‖h when (u,p)∈V∩(H1+s(Ω))×Q∩Hs(Ω) with 0< s< 1. This implies that
we have that the result in Theorem 4.1 holds for this class of elements.
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6 The P2−P0 element

This is a triangle element where Qh is the piecewise constant space and the discrete ve-
locity space reads

Vh :=
{

v∈V, v|K ∈ (P2(K))2 for any K∈Th

}

, (6.1)

where P2(K) is the space of polynomials of degree ≤2 over K. For this element, we have

inf
qh∈Qh

‖p−qh‖L2(Ω).h|p|H1(Ω) for any P∈H1(Ω), (6.2)

inf
vh∈Vh

‖∇(u−vh)‖L2(Ω).h1+s|u|H2+s(Ω) for any u∈V∩H2+s(Ω), 0<s≤1. (6.3)

Let (λ,u,p) and (λh,uh,ph) be solutions of the problems (2.1) and (2.10), respectively.
Assume that (u,p)∈ (H2+s(Ω))2×H1(Ω) with 0< s≤ 1. Then, from the error analysis
in Section 3, we have

‖∇(u−uh)‖L2(Ω)+‖p−ph‖L2(Ω).h(|u|H2(Ω)+|p|H1(Ω)). (6.4)

Compared to the approximation property of the velocity space in (6.3), only sub-optimal
error estimates can be guaranteed theoretically for the velocity.

We have the following saturation condition

Lemma 6.1. It holds that
h‖∇p‖L2 (Ω).‖p−ph‖L2(Ω), (6.5)

provided that h is small enough.

Proof. The result follows from the abstract theory Theorem A.1 in [11] by choosing the
canonical interpolation operator of (5.6) as the local interpolation operator of Theorem
A.1 in [11], see [13] for more details.

In the sequel, we shall prove the condition (A3) for this element. Let Πh denote the
projection operator from V0→V0,h in the sense that

a(Πhu,vh)= a(u,vh) for any vh ∈V0,h. (6.6)

Then we have

‖∇(u−Πhu)‖L2(Ω)≤ inf
vh∈V0,h

‖∇(u−vh)‖L2(Ω)

. inf
vh∈Vh

‖∇(u−vh)‖L2(Ω).h1+s|u|H2+s(Ω). (6.7)

To estimate the error in the L2 norm, we need the following dual problem: find (wd,pd)∈
V×Q such that

a(wd,v)+b(v,pd)+b(wd,q)=(u−Πhu,v) for any (v,q)∈V×q. (6.8)
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Assume the domain Ω is convex, we have

‖wd‖H2(Ω)+‖pd‖H1(Ω).‖u−Πhu‖L2(Ω). (6.9)

Then we have

‖u−Πhu‖2
L2(Ω)≤‖∇(wd−Πhwd)‖L2(Ω)‖∇(u−Πhu)‖L2(Ω)

+‖∇(u−Πhu)‖L2(Ω) inf
qh∈Qh

‖pd−qh‖L2(Ω). (6.10)

We use the regularity of (wd,pd) and the approximation properties of Vh and Qh to obtain

‖u−Πhu‖L2(Ω).h2+s|u|H2+s(Ω). (6.11)

This proves the condition (A3) with k= s=1, △s=s and △S=2.

7 Numerical results

In this section, we present some numerical results for the P2−P0 element; cf. [17] for the
numerical examples for nonconforming elements.

In the example, we take Ω=[0,1]2 and partition it into uniform triangles by first divid-
ing Ω into N×N sub-squares and then decomposing each sub-square into two triangles.
The first five discrete eigenvalues are listed in Table 1. In the second example, we take
Ω=[−1,1]2/[0,1][−1,0]. The first five eigenvalues are reported in Table 2.

We observe that the discrete eigenvalues converge monotonically from below to the
exact ones when the meshsize is small enough.

Table 1: The discrete eigenvalues.

h 1/4 1/8 1/16 1/32 1/64
λ1,h 52.0198 52.0911 52.2610 52.3216 52.3390
λ2,h 87.7118 90.9887 91.7959 92.0366 92.1017
λ3,h 94.5117 91.7991 91.9498 92.0721 92.1105
λ4,h 128.1250 126.9650 127.6905 128.0574 128.1691
λ5,h 147.5175 152.7796 153.5726 153.9652 154.0832

Table 2: The discrete eigenvalues.

h 1/4 1/8 1/16 1/32 1/64
λ1,h 32.5780 31.9251 32.0209 32.0952 32.1209
λ2,h 33.3472 36.1769 36.7291 36.9286 36.9917
λ3,h 42.5339 41.7788 41.8092 41.8988 41.9289
λ4,h 46.3741 48.4381 48.7087 48.8970 48.9595
λ5,h 51.6742 55.2502 55.1355 55.3184 55.3880
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