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Abstract. In this paper, we propose a condition that can guarantee the lower bound
property of the discrete eigenvalue produced by the finite element method for the
Stokes operator. We check and prove this condition for four nonconforming meth-
ods and one conforming method. Hence they produce eigenvalues which are smaller
than their exact counterparts.
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1 Introduction

We are interested in the lower bound property of the eigenvalue by the (conforming and
nonconforming) finite element method for the Stokes operator. We propose a condition
that can guarantee theoretically the lower bound property of the discrete eigenvalue
for both conforming and nonconforming methods. We check and prove this condition
for the nonconforming rotated Q; element [20], the enriched nonconforming rotated Q;
element [16], the Crouzeix-Raviart element [9] and the enriched Crouzeix-Raviart ele-
ment [11] and the conforming P> — P element.

The lower bound property of the eigenvalue by nonconforming methods of the Stokes
eigenvalue problem was first analyzed in [17]. We here give a new error estimate for
eigenvalues and eigenfunctions and slightly different analysis for the lower bound prop-
erty. For the conforming element, we present the first analysis of the lower bound prop-
erty of the discrete eigenvalue.
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The analysis herein will use some identity for the error of the eigenvalue. Such type
of an identity was first analyzed in a remarkable paper Armentano and Duran [1] for
the nonconforming linear element of the Laplace operator. The idea was independently
extended to the Wilson element in Zhang et al. [25] and to the enriched nonconforming
rotated Q; element in Li [14]. In those papers, canonical interpolation operators of these
nonconforming elements were performed. For the nonconforming linear element of the
Laplace operator, there is some special projection property for the canonical interpolation
operator, namely, the interpolation is identical to the Galerkin projection. However, for
the general case, one has not such a special projection property for the canonical interpo-
lation operator, see Zhang, Yang et al. [25] and Li [14]. Therefore, that term will not be
zero any more. From arguments in [1, 14, 25], it is straightforward to see that a similar
identity holds for any function (not necessary the canonical interpolation) in the noncon-
forming finite element space, we refer interested readers to, Yang et al. [23] and Hu et
al. [11] for more details. This idea was extended to the Stokes operator in Lin et al. [17],
which will be used in the present paper.

We end this section by introducing necessary notation. We use the standard gradient

operator:
or or
Vr= v ay)

Given any 2D vector function = (11,1»), its divergence reads divip:=9y; /0x+9p, /dy.
The spaces H} (Q) and L3(Q)) are defined as usual,

Hj(Q):={ve H'(Q), v=00n0Q},
13(0)={qe1?(), /de:o}.

Suppose that Q) is covered exactly by a shape-regular triangulation 7;, consisting of tri-
angles in 2D, see [8]. Let &, be the set of all edges in 7, £,(Q) the set of interior edges
and £(K) the set of edges of any given element K in Tj; hx = |K|'/2, the size of the el-
ement K € T, where |K]| is the area of element K. wg is the union of elements K’ € T,
that share an edge with K and wg is the union of elements that share a common edge E.
Given any edge E € £(Q)) with the length I we assign one fixed unit normal vg:=(v1,v2)
and tangential vector 7g := (—1,,v1). For E on the boundary we choose vg =v the unit
outward normal to (). Once vg and 1 have been fixed on E, in relation to vg one defines
the elements K_ €7;, and K, € Tj,, with E=K, NK_. Given E € £(Q)) and some R“-valued
function v defined in Q), with d=1,2, we denote by [v]:=(v|k, )|c— (v|x )| the jump of v
across E where v|g denote the restriction of v on K.

The paper is organized as follows. In the following section, we shall present the
Stokes eigenvalue problem and its finite element methods in an abstract setting. In Sec-
tion 3, based on two conditions on the discrete spaces, we analyze error estimates for
both discrete eigenvalues and eigenfunctions. In Section 4, under one more condition,
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we prove an abstract result that eigenvalues produced by finite element methods are
smaller than exact ones. In Sections 5 and 6, we check these conditions for four noncon-
forming element methods and one conforming methods. In the last section, we present
some numerical example for the P, — Py element of the Stokes eigenvalue problem.

2 The Stokes eigenvalue problem and FEMs

The Stokes eigenvalue problem is defined as follows: find (A, u,p) e RxVxQ:=Rx
(H{(©)))? x L3(Q) such that

a(u,v)+b(v,p)+b(u,q) =A(1,0)12 (), (2.1a)
[u][12(qy=1 forany (v,q) €V xQ, (2.1b)

where the bilinear forms a(u,v) and b(v,q) are defined as, respectively,
a(u,0):=(Vu,Vo)2q) and b(v,9):=—(divo,q)2(q)- (2.2)
The kernel space of the divergence operator reads
Vo:={veV, b(v,q)=0 forany geQ}. (2.3)
Let (A, u,p) be the solution of the problem (2.1), we have u € Vj and
a(u,0) =A(u,v)2(qy) forany veVj. (2.4)
Then, we have that the eigenvalue problem (2.1) has a sequence of eigenvalues
0<A <A <Az < oo,
and corresponding eigenfunctions
(u1,p1), (u2,p2), (u3,p3), -+, (2.5)
which can be chosen to satisfy
(ui,uj)Lz(Q):(Sij, i,j=1,2,---. (2.6)

We define
Ej:=span{uy,uy,---,up}. (2.7)

Then, eigenvalues and eigenfunctions satisfy the following well-known minimum-
maximum principle:
a(v,v) a(u,u)

A= min max -——— =max ————. (2.8)
dim Vi =k, V, CVy veVy (U,U)LZ(Q) ueEy <u,u)L2(Q)
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We shall be interested in approximating the eigenvalue problem (2.1) by finite element
methods. Let Q, C Q and V}, be some (conforming and nonconforming) discrete spaces
associated to 7j. It is assumed that integral means of jumps of discrete functions vanish:

(A1) For all v, €V}, it holds
/ [o3]ds=0 for E€&,. (2.9)
E

Moreover, let a,: (V+V},) x (V+V,) =R and by,: Q x (V+V},) = R be some extensions of a
and b in the sense that aj, |y xv=a and by, | g <y =b. Furthermore, we let V;, and div;, denote
the discrete gradient operator and the discrete divergence operator, which are defined in
the elementwise way.

The discrete eigenvalue problem reads: find (Aj,up,pn) € RxV,xQp such that
[[unllr2(0) =1 and

ay (uh,vh) -I-bh(vh,ph) +bh(1/lh,6]h) :Ah (uh,vh)Lz(Q) for all (Uh,qh) (S Vh X Qh (210)

We define the semi-norm over V;,+V by || ||,:=a(-,-)!/2. It follows from Condition (A1)
that || - ||, is a norm over the discrete velocity space V}, under consideration. Moreover, we
assume:

(A2) There exists a (Fortin interpolation) operator Ilr: V — V, with
by(v—IlIrv,q)=0forallge Q, and |IIfo|,<S|v||v forall veV. (2.11)

Throughout the paper, an inequality A < B replaces A < CB with some multiplicative
mesh-size independent constant C > 0 that depends only on the domain (), the shape
(e.g., through the aspect ratio) of elements and possible some norm of eigenfunctions u.
Finally, A~ B abbreviates A SB S A.

We define the kernel space of the discrete divergence operator by

VO,h = {Uh eV, bh(vh,qh) =0 for any gp < Qh} (2.12)
Let (Ap,up, py) be the solution of the problem (2.1), we have u;, € V) ;, and
ah(uh,vh) :/\h(uh,vh)LZ(Q) for any v, € V. (2.13)

Let N:=dimV,;. Under Conditions (A1) and (A2), the discrete problem (2.10) admits a
sequence of discrete eigenvalues

O0<A <Ay <--<Anp
and corresponding eigenfunctions

(ul,h/pl,h)/ (uZ,hIMZ,h)/' e I<uN,h/PN,h)'
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In the case where (V},,Qy) is a conforming approximation in the sense V), C Vp, it imme-
diately follows from the minimum-maximum principle (2.8) that

/\kSAk,hl k:1/2/"'/N/

which indicates that Ay is an approximation above Ay.
We define the discrete counterpart of E, by
Egp:=span{uyp,tpp, U (2.14)

Then, we have the following discrete minimum-maximum principle:

a,\o,0 ap\(u,u
App= min max _a(©o) = max L’) (2.15)
dimvk,h:krvk,hcVO/hUGVk,h (U,Z)) LZ(Q) uEEk/h <u,u)L2(Q)

3 Error estimates of eigenvalues and eigenfunctions

In this section, we shall analyze errors of discrete eigenvalues and eigenfunctions by
nonconforming methods. For simplicity of presentation, we only consider the case where
A¢ is an eigenvalue of multiplicity 1. We follow the idea of [11] and give abstract error
estimates, which will be specified for a fixed discrete method.

In order to analyze the error, we define the quasi-Ritz-projection Pju, € V), by, for an
eigenfunction uy €V,

ah(P[lug,vh) :Ag(ug,vh)Lz(Q) for any v, € VO,h~ (3.1)

Under conditions (A1) and (A2), the Strang Lemma for nonconforming finite element
methods [5,8,21] and the mixed finite element theory [6], prove

Lemma 3.1. Suppose (Ag,uy,py) be the solution of problem (2.1) and define the stress oy=Vuy+
peid with the identity matrix id. It holds that

uy—Pluyll, < inf luy—ovyl|,+ inf —
[|ug— Py, eHthheVMH ¢ =0l qhthHPe anll 2

oy, V0 —Ay(up,v
+ sup (7, Vion) 120 — Ae(te,on) 1200

U}IGV(),}I ||Uh Hh

(3.2)
To get the error estimate in the L?> norm, we need the following dual problem: find
(wg,r4) €V x Q such that
a(wg,0)+b(v,r4)+b(ws,q) = (ug—Pyuy,v) 12 forany (v,q) €V xQ. (3.3)
Then we have the following decomposition:

00— Pruucl[Z2 0y = l1ee — Pyuael|72( 0y —an (wa, e — Paeg) — by (g — Priag, 1)
+ay(wa,ue— Pyug) +by (ug—Pyig,1q). (34)
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The first term on the right-hand side of (3.4) is a consistency error, which can be expressed
as
2
[0 —Pyuell 2y — @ (Wa e — Pytae) — by (g — Pyuug,ra)
2
=llue—Prutellz2 (o) — (0a, Vi (e — Pouie) ) 12y

where 0;=Vw;+r4id. Since b(w,,9)=0 for any g€ Q, it follows from (3.1) that the second
term on the right-hand side of (3.4) can be rewritten as, for any v, € Vy;, and q;, € Qy,

an(wa,ug—Pyuy) =ap(wa—vp, 10— Phug) — by (v —wa, pe—qn)
+ay (ug,vh —wd) -I-bh(vh —wd,pg) —)\g(ug,vh —wd)Lz(Q).

For the third term on the right-hand side of (3.4), it holds that
by (1 —Pjug,rq) = by (ug— Pyug,rg—sy,) forany s, € Q.
Let HE : Vo — Vo, be defined by
ay (H,?w,vh) =ay(w,vy) forany V.

A summation of these identities, together with the Cauchy-Schwarz inequality, proves
that

Lemma 3.2. Suppose (Ag,ug,py) be the solution of problem (2.1). It holds that
lue—Preellf2
<(J|lwg =TS wy|+ inf ||rg— ug—Pluy||+ inf —
S([wwg =115 wa | ththH d—nllr2cq)) (llee— Pl thGQhHPe anlliz )
+ | (ug = Phuug,ug = Phuag) 12(0) — (04, Vi (g = Prtig) ) 120y |
+ (00, Vi (wa =TI w4) ) 12(00) — Ao (s, wa =TI wa) 120y |- (3.5)

In the sequel, we shall use Pju, €V} ), to estimate the L? norm of the error 1, —u on- We
have the following decomposition:

N
P[lug:Z(P[lug,ujlh)uj,h. (36)

j=1
For the projection operator P;, we have the following important property

(/\]',h —/\g) (P;lug,uj’h)Lz(Q) = /\g ((ug - P;lug),uj,h) 12(Q)° (37)
In fact, we have

Aj,h (P;/Zug,uj’h)Lz(Q) = ah(uj,h,P[lug) = Ag(ug,uj’h)Lz(Q). (38)
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Suppose that A, # A; if £#j. Then there exists a separation constant d, with

Ay ,
— - <d, foran £, 3.9
‘/\]’,h_/\é‘_ Y4 YJ# ( )
provided that the meshsize & is small enough.

Theorem 3.1. Let uy and uyj, be eigenfunctions of (2.1) and (2.10), respectively. Suppose that
(A1) and (A2) hold. Then,

(e =g 12(0) <2(1+do) || (e —Praee) |12 (3.10)

Proof. This lemma can be proved by following the same line of Theorem 3.2 in [11]. For
readers’ convenience, we give details. We denote the key coefficient (Pyug,up)2(q) by
B¢ The rest can be bounded as follows:

I(Prtte—Betien) H%Z(Q) = Z(P;l”b”j,h)%zm) <df Z((“z _P]//luf)luj,h)%Z(Q)
j#t j#
Sd%”(“é_l)}/zué)uizm)- (3.11)
This leads to

(e = Berte ) 120y < (e = Pruae) || 120 + | (Prtee — Bette) 1120
S<1+dg)H(ug—P;/lug)HLz(Q), (3.12a)

el 2y = (e —Bertep) 20y < IBettell 2 ()
<uell 2y + 1 (e = Berep) 2 () (3.12b)

Since both u, and u,, are unit vectors, we can choose them such that g, > 0. Hence we
have [B,—1| <||(u¢—Beuep)l 12()- Thus, we obtain

[ (e —wep)ll 2y <I(ue—Berwen) 12 +1Be—Ulluenlliz2a)
<2|| (e —Beuen)ll2 ) <2(1+do)|| (ue— Prute) | 12(0r)- (3.13)

This completes the proof. O
To analyze the error of the eigenvalue, we define (iiy;,fyn) €V X Q by
a(ﬁglh,v) +b(ﬁg/h,q) +b(0,ﬁg/h) = )\g,h(ug,h,v)Lz(Q) for any (U,q) eV xQ. (3.14)

Since (1, pey) is the finite element approximation of (i, fr ;) € V x Q, a similar argu-
ment of (3.2) and (3.5) proves
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Lemma 3.3. Let the stress oy, = Vily,+ Py pid. It holds that

e —venlln+1Pen—pvenllizo)

< inf |ligp—oplln+ inf [|fe,—
NUhEVO,hH eh—0nlln thQhHPe,h anll 2

(Ten, Vion) i2(0) = Aen(tenon) 12(0)

+ sup

(3.15)
UhEVO,h ||vhHh

In order to estimate the L? error, let (4,74) be the solution of the following dual
problem: find (@,,7;) € V x Q such that

a(@4,0) +b(v,7q) +b(®a,q) = (dgp—ten,0) 12 forany (v,9) €V xQ. (3.16)
Lemma 3.4. Let 5;=uVw,;+7;id. It holds that
Hﬁé,h—ué,hH%Z(Q)
Saen—venlln+1Ben—penliz) (H%-Hf%ﬂh-l-q;g& 17a —anll12(0))

+ | (o p = s tien—ton) 12y — (a, Vi (Gon—tuen) ) r2 (o |
+ [ (O, Vi (@a =TI @a) ) r2(0) — Aoy (1 @a—T1 D) 12y |- (3.17)

Proof. A similar argument of (3.5) shows the desired result. O

Theorem 3.2. It holds that

(Aep=Ael Slien—uenllr2iq)- (3.18)

Proof. 1t follows from (2.1) and (3.14) that

(e —1en) o) 2(0)
:Azuf,h(“z,h/w)y(n) — (ug ) 12(0)

(Agn—Ae) (Wen the) 120
Ag '

Thus we have _
Ae((fgn =) ue) 12(00)

(e pthe) 12(00)

Aop—Ae= (3.19)
It follows from (3.10) that there exists some positive constant C such that

C < (ugnte)12()-

This completes the proof. O
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Theorem 3.3. It holds that

Up—1u < inf |luy—ovy|l;+ inf —
[|ue e,hHthhevoth ¢ =0l qhthHPe anllr2 )

oy, V0 —Ay(up,v
+ sup (70, Viow) 12(0) = Me(te,0n) 12 (00
UhEVO,h thHh

1
11 (e —uen) |2 () + Ao —Ael2. (3.20)

Proof. We can use the following formulation:

ap (e —tgp, g —tg))
=a(ug,ug)+ap(wep,en) —2ay (e, v)y)
=Ml (o=t 1) |20y F Ao —Ae+203 (e —1ue, pe—an)
+ 2 (g g —1g) = 2by (s —the, pr) —2an (g, g — 1), (3.21)

for any g5, € Qj,. Then the desired result follows. O

Under Condition (A2), the discrete inf-sup condition holds uniformly, see [6], namely,

b
91l 120y < sup DulOnn) g, any q; € Qp. (3.22)
v, EV), thHh

Then the mixed theory of [6] states that

vhig‘ﬁo/h llw—oy |1 ,Swilrg‘f/h |lw—op|l; forany weV, (3.23)

such an inequality is frequently used in the error estimate. Finally, it follows from the
discrete inf-sup condition that

Theorem 3.4. It holds that

(00, Vuon) 12() = Ae (e, on) 12 (02
- < inf — + su
lpe=penllizo) qhthHm anllr2 () vhegh EADD
+Aen = Aol Fllue—uopll 2y + llue—weplln, (3.24)

provided that ||vp|| 12 S ||on || for any 0£ vy, € V.

4 Lower bounds for eigenvalues: an abstract theory

This section proposes a condition on the finite element method and proves that it is suf-
ficient to guarantee the method to yield lower bounds for eigenvalues of the operators.
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Lemma 4.1. Let (A,u,p) and (Ay,up, py) be solutions of problems (2.1) and (2.10), respectively.
For any vy, € Vy,, we have the following identity:

A =A==z = Anll (00 =) 1 T2 ) +An (1on 120y = 1172 0))
+2ay, (u—ovp,up) —2by (04, pp)- (4.1)

Proof. Such an identity can be actually established by following the idea of [1,11,14,23-
25], see [17] for the detailed proof. O

The sufficient condition that guarantees the lower bound property of the discrete
eigenvalue can be expressed as

(A3) Let (u,p) and (uy,py) be eigenfunctions of problems (2.1) and (2.10), respectively.
We assume that there exists an interpolation IT,u € Vj ;, with the following properties:

ap(u—TITu,u,) =0, (4.2a)
R N P (4.2b)
| ([Tt 0) |25 g SHEH 1408, 42

when u € VyN (Hk“ (Q))? with 0<s<1, k>1 and two constants 0 < As and 0 < AS.
From the abstract error estimate (3.10) we have

H(u_uh)Hiz(Q)th(k+sfl)+AS. (43)

Hence the triangle inequality and (A3) show that the second and third terms on the right-
hand side of (4.1) are of higher order than the first term. Finally, the last two terms

ay (M —Hhu,uh) = bh (Hhu,ph) =0.
This actually proves the following theorem:

Theorem 4.1. Let (A, u,p) and (Ay,uy, py) be solutions of problems (2.1) and (2.10), respectively.
Assume that (u,p) € VN € (H*3(Q))2x QNH*15(Q) and that K%Y < ||u—uy,||;, with
0<s <1. If the three assumptions (A1)-(A3) hold, then

A=A, (4.4)
provided that h is small enough.

From the error analysis in the previous section, we can find that the error ||u—uy]|,
usually consists of three parts: the approximation error of the velocity space Vj, the ap-
proximation error of the pressure space Qj and the consistency error of the velocity space
V.. Note that the convergence rate of ||(u—IT,u)||;, is only dependent on the approxima-
tion property of the velocity space Vj,. Hence it follows from the condition (A3) and
Theorem 4.1 that the lower bound property of the discrete eigenvalue will be guaranteed
for the following two cases:
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e The local approximation property of the discrete velocity space is better than the
global continuity property for nonconforming finite element methods;

e The approximation property of the discrete velocity space is better than the ap-
proximation property of the discrete pressure space for both the conforming finite
element method and the nonconforming finite element method.

The above remark partially explains the lower bound property of the eigenvalues by
the Bernadi-Raugel element, which was first reported in [15].

5 Lower order nonconforming finite elements

In this section, we shall present some nonconforming schemes with Conditions (A1)-
(A3). In all methods under consideration, we take Q) as the piecewise constant space
with respect to the triangulation 7. Furthermore, for all of these spaces V},, the conditions
(A1) and (A2) follows immediately from their own definitions.

5.1 The nonconforming rotated Q; element

This is a rectangular element. Denote by Qrg(K) the nonconforming rotated Q; element
space on the element K € 7, which reads [20]

Qro(K) .= Py(K) +span{x? —x3}, (5.1)

with the space P; (K) of polynomials of degree <1 over the element K. For any ve H'(K),
we define the following edge functional

]:E(U)::%/Evds (5.2)

with E C K and the diameter /g of the edge E. The nonconforming rotated Q; element
space V}, is then defined by

Vii={ve (L*(Q))?, v|x € (Qro(K))? for each K € Tj,, v continuous with respect
to F for all internal edges E and Fg(v) =0 for all f on 0Q}.

For the nonconforming rotated Q; element, we define the interpolation operator IT,:V —
Vh by

/Hhvds:/ vds foranyveV, E€E), . (5.3)
E E

Since
/ (u—TI,u)ds=0
E

for any edge E of K, the Poincare inequality states



12 J.Huand Y. Q. Huang / Adv. Appl. Math. Mech., 5 (2013), pp. 1-18

Lemma 5.1. (see [1]) It holds that
[l =T 2y SHS s k) (54)

for any u € (H'**(K))? with 0<s <1 and K€ Tj.

Lemma 5.2. For the nonconforming rotated Q1 element, it holds the condition (A3) when u €
VN(HYS(Q))? with 0<s< 1.

Proof. Since Ajvy, =0 with the operator A, defined elementwise, we use the integration
by parts to prove that a,(u—IT,u,v,) =0 for any vy, € Vj,. Furthermore, IT,u € V), since
u € Vp. Then, the desired result follows immediately from Lemma 5.1. O

In the case the eigenfunction is singular in the sense that (u,p) € VN (H**(Q))?x QN
H*(Q) with 0<s <1, it is proved in [11] that /* < ||u—uy]|;,. Therefore, we have that the
result in Theorem 4.1 holds for this class of elements.

Remark 5.1. The extension of the analysis and results herein to the Crouzeix-Raviart
element [9] is straightforward.
5.2 The enriched nonconforming rotated Q; element

This is also a rectangular element. Denote by Qro(K) the enriched nonconforming ro-
tated Q; element space defined by [16]

Qeo(K) :=Qrq(K)+span{xf+13}. (5.5)
The enriched nonconforming rotated Q; element space Vj, is then defined by

Vii={ve (L*(Q))? v|k € (Qeo(K))? for each K € Ty, v continuous with respect
to Fr for all internal edges E and Fg(v) =0 for all E on BQ}.

For the enriched nonconforming rotated Q; element, we define the interpolation operator
I,: V=V, by

/Hhvds:/vds forany veV, E€&y, (5.6a)
E E
/Hhvdx:/vdx for any K€ 7. (5.6b)
K K

For this interpolation operator, we have
Lemma 5.3. (see [14]) It holds that
Hu—HhuHLz(K)§h2|ule(K) forany ue (H*(K))* and KET,, (5.7a)
([ — Tl 12k §h1+5’u|H”5(K) forany ue (H'**(K))?
with 0<s<1 and KeTj,. (5.7b)
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Proof. Since u—ITju has vanishing mean on each element K, it follows from the Poincare
inequality that
([ =TT u | 2 k) Sl V (e =TTu) | 12k -

Then the desired result follows from the usual interpolation theory and the interpolation
space theory for the singular case u € (H!™%(K))?2. O

Lemma 5.4. For the enriched nonconforming rotated Q1 element, it holds the condition (A3).

Proof. First one can prove that a; (u—uy,v,)=0 for any v, €V}, by following the line of [14].
Second we have that I'T,u € Vj, since u € Vp. Finally It follows from the definition of the
interpolation operator I, that

th”H%z(Q) - ||”||%2(Q)
=((TTu— u),Hhu-l—u)Lz(Q)
=((Ipu—u) Myu+u—Tlo(ITpu+u)) 12(q), (5.8)

where I is the piecewise constant projection operator. This completes the proof of (A3)
with k=1, As=1and AS=2s provided that (u,p) € VN(H'™5(Q))?x QNH*(Q) for some
0<s<L O

It is proved in [11] that h < ||u—uy ||, when (u,p) € VN (H?(Q))?x QNH(Q) and that
b < ||lu—uy ||, when (u,p) € VN(H(Q)) x QNH?(Q) with 0<s < 1. Thus, we have that
the result in Theorem 4.1 holds for this class of elements.

5.3 The enriched Crouzeix-Raviart element

This is a triangle element. Denote by Qrcr(K) the enriched Crouzeix-Raviart element
space defined by [11,17]

Qecr(K) := Py(K) +span{xf +x3}. (5.9)
The enriched Crouzeix-Raviart element space Vj, is then defined by

Vi:={ve (L*(Q))?, v|x € (Qecr(K))? for each K € Tj,, v continuous with respect
to F for all internal edges E and Fg(v) =0 for all edges E on 90 }. (5.10)

For the enriched Crouzeix-Raviart element, we define the interpolation operator IT,:V —
Vh by

/Hhvds :/ vds for any v €V for any edge E, (5.11a)

E E

/ Hhvdx:/ vdx for any K € Tj,. (5.11b)
K K

For this interpolation operator, a similar argument of Lemma 5.3 leads to:
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Lemma 5.5. It holds that

=TT 120y SH || i) for any u € (H*(K))? and KTy, (5.12a)
Hu_nhuHLz(K)§h1+s’u‘H1+5(K) forany u e (HHS(K))Z
with0<s<1and KT, (5.12b)

Lemma 5.6. For the enriched Crouzeix-Raviart element, it holds the condition (A3).

Proof. We first prove aj, (u—IT,u,uy,) =0. Let u = (u1,up). We only need to consider the
first component u; since the analysis holds for the second component u,. We define the

space
a1 +apnx
Ok : < 11+4M 1)

a1 +appxo
with free parameters a1, a21,412. From the definition of the operator I, we have
(V(ul—Hhul),zp)Lz(K):O for any IIJEQK. (5.13)
Indeed, we integrate by parts to get

(V<”1_Hh”1)/¢)L2(K)
:—(ul—Hhul,dinp)Lz(K)-i- E /E(ul—Hhul)zp-vEds.

ECOK
Since divyp and - vg (on each edge E) are constant, then (5.13) follows from (5.11). Since
ViuITyu |k € Qk, the identity (5.13) leads to
(ViITyur) |k :=Px(Vur|k) (5.14)
with the L? projection operator Pk from L?(K) onto Q. This proves

(Vi(uy =ITyuq), Vg ) =0

with 1, j, the first component of u;,.
It remains to show the estimate in (A3). Then, it follows from the definition of the
interpolation operator I1), that

T3 = el )
:((Hhu—u),l—lhu—i—u)LZ(Q)
:((Hhu—u),Hhu+u—Ho(Hhu+u))Lz(Q). (5.15)

This completes the proof of (A3) with k=1, As=1 and AS =2s provided that (u,p) €
VN(H™$(Q))?2x QNH*(Q) for some 0 <s<1. O

We establish in [11] that & < ||u—uy|; when (u,p) € VN(H?(Q))?x QNH!(Q) and that
B < |lu—up ||, when (u,p) € VA(H(Q)) x QNH*(Q) with 0 <s < 1. This implies that
we have that the result in Theorem 4.1 holds for this class of elements.
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6 The P, — P, element

This is a triangle element where Qj, is the piecewise constant space and the discrete ve-
locity space reads

Vi:={veV, |k € (P2(K))? for any KeT,}, (6.1)

where P, (K) is the space of polynomials of degree <2 over K. For this element, we have

q}igéhup_qh”Lz(Q)Sh’P’W (o forany PeH'(Q), (6.2)
in‘f/ ||V(u—vh)|\Lz(Q)§h1+5|u]Hz+s(Q) forany u€ VNH*™(Q), 0<s<1. (6.3)
vREV)

Let (A,u,p) and (Ay,up,pp) be solutions of the problems (2.1) and (2.10), respectively.
Assume that (u,p) € (H?>*%(Q))?x H(Q) with 0 <5 <1. Then, from the error analysis
in Section 3, we have

IV (u—w) || 20y + 1P = Pull2 ) Shul 2 ) + 1Pl 0))- (6.4)

Compared to the approximation property of the velocity space in (6.3), only sub-optimal
error estimates can be guaranteed theoretically for the velocity.
We have the following saturation condition

Lemma 6.1. It holds that
hIVPli2) SIlp—pullz), (6.5)
provided that h is small enough.

Proof. The result follows from the abstract theory Theorem A.1 in [11] by choosing the
canonical interpolation operator of (5.6) as the local interpolation operator of Theorem
A.11in [11], see [13] for more details. O

In the sequel, we shall prove the condition (A3) for this element. Let IT, denote the
projection operator from Vp— V; j, in the sense that

a(IT,u,v,) =a(u,vy) forany vy, € Vo). (6.6)
Then we have
IV (u—ITu) |2 < inf [[V(u—04)12(0)
‘UhEVO,h

: 1+
§v;2{/h\\v(“—vh)HL2(o)§h *|u| s ) (6.7)

To estimate the error in the L2 norm, we need the following dual problem: find (wg,p,) €
V x Q such that

a(wg,v)+b(v,pa) +b(wy,q) = (u—ILu,v) forany (v,q) €V xq. (6.8)
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Assume the domain () is convex, we have

lwall r2 )+ [1Pall i ) S 1l —TThu|[ 2 (- (6.9)
Then we have

[l =TT 72 ) <IIV (wa —TTwa) || 2o IV (4 =T4) || 2y
+V (u—TTju) HLZ(Q)thgéh Ipa—anll 2 (6.10)

We use the regularity of (wy,p;) and the approximation properties of V}, and Q) to obtain
Hu—HhuHLz(Q)§h2+5‘M’H2+s(Q). (611)

This proves the condition (A3) with k=s=1, As=s and AS=2.

7 Numerical results

In this section, we present some numerical results for the P, — P element; cf. [17] for the
numerical examples for nonconforming elements.

In the example, we take )=10,1]? and partition it into uniform triangles by first divid-
ing () into N x N sub-squares and then decomposing each sub-square into two triangles.
The first five discrete eigenvalues are listed in Table 1. In the second example, we take
Q=[-1,1]2/[0,1][—1,0]. The first five eigenvalues are reported in Table 2.

We observe that the discrete eigenvalues converge monotonically from below to the
exact ones when the meshsize is small enough.

Table 1: The discrete eigenvalues.

h 1/4 1/8 1/16 1/32 1/64
Ay 520198  52.0911 522610 52.3216  52.3390
Ay 877118 909887  91.7959  92.0366  92.1017
Az 945117 91.7991  91.9498 92.0721  92.1105
Agp 1281250 126.9650 127.6905 128.0574 128.1691
Asy 1475175 152.7796 153.5726 153.9652 154.0832

Table 2: The discrete eigenvalues.

h 1/4 1/8 1/16 1/32 1/64
Ay 325780 31.9251 32.0209 32.0952 32.1209
Ay 33.3472 361769 36.7291 36.9286 36.9917
Azp 425339 41.7788 41.8092 41.8988 41.9289
Ay  46.3741 484381 48.7087 48.8970 48.9595
Asp  51.6742  55.2502 55.1355 55.3184 55.3880
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