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Abstract Classical solutions of hyperbolic systems, generally, collapse in finite
time, even for small and smooth initial data. Here, we consider a type of these svstems
and prove a blow up result.
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1. Introduction

In this work, we are concerned with the Cauchy problem for one-dimensional first
order guasilinear hyperbolic systems. In fact this problem has been discussed by many
authors and several results concerning existence and formation of singularities have
been established. Here, we consider a strictly hyperbolic system of the form:

{ ui(z,t) = alu(z, 1), v(z,))va (=, )

fdiot]
vz, t) = blulz, £), vir, vz, 1)

where a subscript denotes a partial derivative to the relevant variable; € K, and £ > 0.

In is indeed well known that, generally, classical solutions for such systems break
down in finite time, even for smooth and small initial data. Lax [1] and MacCamy and
Mizel [2] studied the system, for @ depending on v only and b = 1, and showed that
the solutions blow up in a finite time, even if the initial data are smooth and small.
Note in this particular case, the system is reduced to the nonlinear wave equation. For
@ and b depending on v only (or w only), similar results were established, for systems
with dissipation, by Slemrod [3], Kosinskii [4] and Messaoudi [5].

It is interesting to mention that global existence for the system considered in [6]
has been established by Nishida [6]. Also, Aregba and Hanouzet [7] and Tartar [8] have
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considered a class of semilinear hyperbolic system and proved some global existence
and blow-up results.

[n this paper, we study the system (1.1) together with initial data and show that a
result similar to the one in [1], [2] can be obtained. The proof will be based on the use
of characteristics and the theory of linear first-order partial differential equations.

2. Local Existence

We consider the following problem

u(z, b} = alulz, t), v(x, £) vz (x, 1) (2.1)
(e, t) = blu(z, £), v(z, ))ug(r,t), zeR,t>0 . (2.2)
Ei-l:.’t.‘-:{]} = TLQ[KJ),U(ZI.‘-._ﬂ} e T"D[:EJ:' reR {EJJ

Proposition 2.1  Assume that o and b are C? strictly positive functions and let
g and vy in H2(R) be given. Then the problem (2.1)(2.3) has a unigue local solution
(1. v), on o mazimal time interval [0,T), satisfying

u,v € C([0,T), H*(R)) n C*([0,T), H'(R)) (2.4)

This result can be proved by either using a classical energy argument [0] or the
nonlinear semigroup theory [10].

Remark 2.1 A similar result can also be established for @ and b strictly neeative.

Remark 2.2 u. v are in C'(R x [0, 7)) by the Sobolev embedding theorem.

Remark 2.3 A local existence result is also available for higher-dimensional hy-
perbolic systems {See [9, 10]).

Remark 2.4 If a and b are smooth enough and ug and vy are in H*(R), then the
solution

b
w,v € [ CH[0,T), H*(R)) (2.5)

=1
3. Formation of Singularities

In this section, we state and prove our main result. We first begin with a lemnma
that gives uniform bounds on the solution.

Lemma 3.1 Assume thot a and b are as in the proposition 2.1. Then for any
€ > 0, there exists § > 0 such that for any ug, vy in H*(R) satisfying

lua(z)] < 4, |w(z)| <6, zeR (3.1}
the solution satisfies

u(z,t)| <, fo(z,B)|<e, zeR, te[T) (3.2)
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Proof We introduce the quantities
1) )
iz )= ulz, £) —I—f cl(ulz, t), £)dE
[

_ LT o S
s(z,8) 1= u(z, 1) - [] ' Blulz, 8), )de (3.3)

where o and 3 are the solutions of the linear problems:

{ ey (y, 2) — ply, 2y, 2) = (uly, 2)): - oy, 2)
i (3.4)
M= sy, 0)
and
{ Byly, 2} + ply, 2)3: = =(ply, 2)): - By, 2)
(3.5)
Aly, 0 = ‘
Ay, 0) 0
where
by, S
iy, z) = \ ﬂlﬁ; i , (3.6)

These are linear first order partial differential equations. The solution can be obtained
by using the method of characteristics (See e.g. [11, 12]). Since

= Efr'] =) IBTJ}

w0, 0)

one can choose A > 0 such that

N = alyz) <9
{ ly (3.8)
o & it ﬁ{y 3] i:'- T2
for any (y. z} satisfving
[yl <A Jzl <A (3.9)
We also introduce the differential operators:
& &
O 1= — — plu,v)—
3] s,
,.D e A H'“:I
= o+l v) (3.10)
where
plu, v) = +fablu, v) (3.11)

and compute

o
hr =ry — pry = (1 '|‘f Hy[i‘i,ﬁ:ld(f)u; -+ YU
0
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= P(l + f; ity 4, E}'fﬂf) Uy — pPOev; (3.12)

By using (1.1) and the fact that o satisfies

1
l+f cty(u, E)dE = pe
0
we arrive atb
thr = alpig — pug + vy — ppug) = apluy — avg) + el — bug) =0 (3.13)

Also, by using the fact that 3 satisfies

1~ [ By (u,)d¢ = uf

similar computations vield

Dys =) (3.14)

We thus conclude, from (3.13) and (3.14), that » and s remain constant along backward
and forward characteristics respectively. Consequently; as long as a smooth solution
continnues to exist, r and & satisfy

max [r(z, t}| = max|ro(z}|, max|s(z.t)] = max |sg(z)] (3.15]
We then exploit (3.3), (3.9), and (3.15) to estimate « and v as follows

lrallee + [l5allae

[olx, )] <

27
2¥1F Tillee + 12 lls
u(z. )] < (271 + v)lirolle + 12llsollx (3.16)
27
whenever (w, v) satisfies
u(z, )l S A Jolz f)] < A (3.17]

We choose 4 > 00 small enough so that

|:r':|||-ﬁ:: : ||~3D||-:&:} : A [Eﬂﬁ | H""'f"]||""IZI||-c_‘:s.'.: | ”TE’”*SUHW : A
< Er i 2
o min (E._ E)’ 2 < min (E., 2) (3.18)
and set
Ty = sup{7 : |[u{z, )| < A, |v{r,t)| <X t€[0,7)} (3.19)

A P
We have two cases. Either T = T which implies that (3.17) — hence (3.2) — holds for
allt € [0, T), or Ty < 7" in this case we have

|u(z, t)] < % t € [0,Tp) (3.20)
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by virtue of (3.18). The continuity of u and v then yields the existence of T7 such that
To<Th =T and
fu(z,8)] € A Jo(z, )] < X, € [0,T1) (3.21)

This contradicts the maximality of Tp. Therefore Ty = T, hence (3.2) holds for all £ in
[0, T), for the above choice of §. This r:;:::mpletes the proofl of the lemma 3.1.

Remark 3.1 The functions a, & need not be positive on B?. The lemma can be
established even for a, b satisfying a(0,0)5(0,0) = 0.

In order to state and prove our main theorem, we set

(ably  (ab)y
B T lah

Theorem 3.1  Assume that o and b are as in the proposition 2.1. Assume further
that

Plu,v) = (3.22]

P(0,0) # 0 (3.23)

Then there exist initial data ug, vo in H2(R) for which the solution of (2.1)-(2.3) blows
up in fintle time.

Remark 3.2  We note that (3.23) is exactly the genuine nonlinearity condition
for hvperbolic systems (See e.g. [13]) and it is redueced to o'(0) # 0 for the systemns
studied in [1-3]. |

Proof We suppose that P(0,0) > 0. Similar proof can be established for P{0. 0} <
(. We take an z-partial derivative of (3.13) to have

(Oyr)y = Tat = Pras — TupPz =0 (3.24)
which, in turn, implies
'atf.""ﬂ:' =Tgpr = T':EPH"—"J:: + Pyliz) {3.25)
By using
@ Ore+ as:
Up = ¢ — + ————
|!J E-I:Iiﬁh
Ore — sy
UYp = ———
Doy
and substituting in (3.25), we obtain
a i
Fh E‘l‘uﬂz?? P E_ﬁ'v
:5‘”-:,: -z o T -+ Eﬁ Tade [:3'25]

We then set
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and use (3.26), to get

: 1
W ZPI’MQ;'-": -+ E‘G ug"‘ma&.ﬂ’

i} i1
= I"r/g R 3 pa Lo
== g / 5 A i e
355 Qﬂlﬂl,-'ﬂ W* 4+ # 2,5 Vapdgp + 2.'13 Tz [Puﬂ.;u G .'i’a;lf:":'ﬂ]

(3.27)
We estimate the last term in (3.27) as follows

.I':"naf.ﬂ T+ .Iﬂ;'v'lir:':'.','LI :ﬂ':'u{u.f. g .":’“.'.u} e Prj'{';'—:'l‘. = .':J'?JEII
=pulavy — puz) + pu(bue — pv2) = apylvg — ptig) — ppa(vs = jouy)

= = plpty — "'-"I}(.'S'HH.E = Pu) B —pﬂ—; (Pu\/g_ .ﬂu) (3.28]

By substituting in (3.27] we obtain

Plu, )

2 Ll r "
v (3.29)

W =

Therctore (3.29) shows that B (hence r;) blows up in a finite time, if we choose initial
data small enough in L®° norm, with derivatives satisfying

b, vo)uy + /altg, vo)bu. vglug > 0 (3.30)

Remark 3.3 The same result holds for

blatg, oY — 1/ a(un, v )b(u. vl > 0 (3.31)

In this case consider the evolution of &, on the forward characteristics.

Remark 3.4  Note that the blow up oceurs even for initial data with small
gradient satisfying (3.30) or (3.31).
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