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1. Introduction

The Landau-Lifshitz {LL) system which describes the evolution of spin fields In con-
tinnum ferromegnets bears a fundamental role in the understanding of nonequilibrium
magnetism, just as the Navier-Stokes equation does in that of fluid dynamics, The LL
system for a spin chain with an easy plane

Uy = U X U 2 % S

has been studied by the inverse scattering method in [1-3] where u = (u', u?, v*) is the
spin vector, J = diag {J;, Jo, Ja} with Jp < Jp < J3 and “x” denotes the vector cross
product in 7°. More general LL system of the following form

ut:uKFﬁﬁ“—AHK(uKFEﬂ:I

was also studied in [4] where Fog = VPu — 2A(u - n)n + pB, n = (0,0,1), A is the
anisotropy paramenter (4 > (), easy plane; A < (), easy axis), p is the gyromagnetic
ration in Bohr magnetons, A is the Gilbert damping constant and B is the external
magnetic field.
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A lot of works contributed to the study of solutions to the Landau-Lifshitz systems
Uy = =t X (X Au) + asu ¥ Ay

of 1I- or 2-dimensional spin chain motion have been made by mathematicians.

In 1993, Guo and Hong [3] established the global existence and partial regularity
theorems concerning the weak solutions from a 2-dimensional Riemannian manifold
(without boundary) into the unit sphere $2 with standard metric and revealed the
links between the solutions and the harmonic maps. They found that the solutions
have the same partial regularity as that of the harmonic map heat flow [6]. Also
for m. = 2, the uniqueness of weak solution to the initial problem safisfying energy
inequality can be found in [7]. The conclusions of [5] were extended to a class of
generalized Landau-lifshitz system in [8].

The existence and partial regularity results for the weak solution of the nonho-
mogeneous initial-boundary value problem with m = 2 (without applied fields) were
established in [9] in which the authors introduced a method much different from before
which originates from the study of Ginzburg-Landau functional [10].

In this paper, we let 2 C B® (n = 1,2) be a bounded smooth domain and consider
the following nonhomogeneous initial-boundary value problem

= —u X (uwxAu)+uxAutux Huz,t), nilx A (1.1}
wanxr, = ¥(z),  ulguxp=oy = wlz), |elz)] =1 (1.2)

which is a natural general form including both “easy plane” and the external field.
Because of the action of the external field H, one can not expect to get the smooth-
ness away from a set consisting of only finitely many points as for the case H = 0. We
can only get the smoothness away from at most countably many lines in & x [0, o).
Our main results are Theorem 4.1 (existence and partial regularity) and Theorem
5.2 (smooth solution of 1-D problem). In this paper we denote 2(t) = @ x {t}, & =
01 % (0,t), B(z) the disk centered at x with radius r.

2. A Penalty Problem and Weak Solution to (2.1)-(1.2)

Since |w(z)| = 1 on 2, it is easy to verify that |u(z,t)] = 1 and it follows from [5]
that u is a solution of {1.1)-(1.2) if and only if u is a solution in the classical sense of
the following system

1 1 1 1
Eut—iuxu¢=&u+u|?u|g+§uKH—EHK[MHH]

Theretore, it is natural to consider the following equation

%-u; — éu ¥ oagy = Au A u|Vul® +ux Flu,z, 1) (2.1)
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and its corresponding penalty eguation

1 1 1
it = gt X up = N+ Eul[l — |wf?) + u x Fuw, z,t) (2.2)
subject to the initial-boundary condition (1.2).

For the nonhomogeneous term f(p,x, ) in (2.1), we assume

(F1) There exists a nonnegative function g(z,t) € L™(f! »x Ry ) such that
\fip,x,t)| < glz, ), for (pa,t) € {R*:|p| <1} x 0 x Rs

(F2) (i) Ffip,-, ) is Holder continuous of index o uniformly in p € LR nb I}
9
(ii) |%I:p: 2. 8)| < h(z,t), for (pa,t) € (B*: |p| < 1} x © x Ry where A1)

is a nonnegative function in L™( x (0,T)) for any given 0 < T < +oc.
The aim of this section is to prove the following theorem. In the sequel, we denote
by i and 7 the unit outer normal vector and unit tangential vector to 962 We also put

Cr = max glx,1).
LR
Theorem 2.1  For any given e > 0, the problem (2.2)-(1.2) admits a global smooth

solution w € CRTeIHa2(01) (WD < oc) satisfying
lul <1 (2.3)

and there are constants C) > 0 independent of £ and Cq > 0 such thal

T 2
[ 5 <a (2.4)
a Jan | Ov
||ﬂ;lp1:§-l|:u,j,:| <G {25]

Proof It follows from standard Galerkin’s method that there exists a global weak
solution u to (2.2)—(1.2). Therefore the proof left over is to verify its smoothness.
Note the following version of (2.2). This can be finished by proving (2.5) and applying
Schauder estimate as well as the boot-strap method since we have the condition {Fg).

wp = GFu)Au + G{u}ém{l — |u®) + Glu)w x Flu,z,t) (2.2)

where ,
A 1+ (uh)? wle? —uf wlud 4+ o?
T3 al? wle? +u 14 (w®)?  wl® — ol
+ |
wld —w? wlud+u! 1+ (u?)?

Glu) =

After proving (2.3), we see that the equation (2.2)" is strongly parabolic since

(GeT = Tl + (w7 Ve RS
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Test (2.2) by ¢ = u — min{l, |u|}— and note |u{x, 0} = 1, |u(x,f)] = 1 on 9 to

1 1
—af GlZ [T e +f Tul*(1 - |u|) €0
g0 ) 2t |u|) o |7l )

This implies (2.3).
It remains to prove (2.4) and (2.5). First of all, testing (2.2) by wu,, we get

1 2, d Loz, L 2,2 _f _
A +mfﬂ[2ivu., + 27 =P = [ il x £z,
L[ [l [ [BI9u  o(1 ul?Y]
200 Jn T

1 o o)
=—[|vcp|-+[ [u.;cuxfm,m (2.6)
2 Jo JO S0

give

Hence

[t then follows from Holder inequality and {F;) that

4ffu + r?m[ IVul? + - {1—|u|2]]
_2f|%| —ff|fut$|2 /|v<,a|9 /]g.r:.:zacf

(2.7)

where O is independent of .
Let v = (v, v2) be a smooth vector field defined on € such that v = v on 2.
Multiply (2.2) by v - Vu and note that

fhu 2
[ﬂiu[’u-?u] :[}ﬂ a0 /-Lu:,: v Vi),

It follows from (2.7) that

2 2
f (v V), =f >t (V1,5 + Vottgye) + f Ur, Vg, © VU
Rt o 2

2

= ./;:: Zui (D105, + Valigaz, ) + O(1)

1 .I'3

=§-/ z |1'.-t:|-L @ +'1.F:rz'l'"3 |I'.I'J:| }-1:.-, m{l}l
=1 1=1

=§/ﬂﬁ|?u|2+ﬂ[1]

and then

5t 5'1'; an i 3
L&u[v-"?u] _L[aﬁ|ﬂyé |T.f'u.| + O(1
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On the other hand, we have
1 9 - Iz - A = :
E—gfﬂﬂ'[l ~ u|")} (v - Vu) = Ejg“ — |w]*)*div (v) = O(1)

We finally obtain

T duiz 1 1 ¢T O 12 o
[ L0533 L0515

T 1 1

= [ [ (Gue= guxw=ux flua )@ Ve +O)
i ! =

—0(1)

a ]
(2.4) follows since i B ﬂﬁ on JL1.
dr  dr 1
In order to prove (2.5), we derive a Bochner-type inequality. Let 4 = E]?ulﬁ, it

follows from (2.2) that

1 2 2, 2 2
s = Ad+ Dl + SV

Lejul. 1
+ =Vu-V(ux w)+ Vu- Viex fluz,6) (2.8)

=24
g% 2

and then

L 2
SA - Ad+ |D%u|? < 2e72A + %w- Viuxu)+ Vu Viex fluz,1))  (2.9)

Let P = B,(ug) % [to, g + r°] € Q. Take a standard cut-off function £ = £(x) €
C5°(Bar(g)) such that 0 < £ < land{ =1in Be{zg). Multiply (2.9) by £2 and
integrate it over I by part to give '

DR <t [ @ElAte+r) - Aol + [, 486

+ 272 AL2 - é? (%) (X ) = V - (£2Vu) (u % flu, a}]

gc[.qucrf e |&u|E£E+G’f hm%cf \F (7, 8)?
0 P 2 1P, F. P:

f:'r 'gmf_gu]

Hence, it follows from this inequality and (2.7) that
] |D%ul?t < C
P

This implies that (2.5) holds on P,

Next we give estimate near the boundary. Let zg € df1. Without loss of generality .
we assume that &€ near zg is fat, i.e., &N Ba(zg) = {(z1,72),22 > 0} N Bar(xo). |
Choase the cut-off function £(z) as above. We have

p S _l@z 2 =2 4p2
_Lrlﬂﬂlé{xliﬂr[_wta-l-m£+zs Af
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2L %iz?ﬁ cV(ux wy) + EVu - V(u x .f':“:Lﬂ}]

The fourth term on the right-hand side of the above inequality can be treated as before
since wg|an = 0, the last term can be rewritten as
tgbr? po s
2
I (W x £,2,1)
to aa %,

I F -"_F

. {;_fgf-’u:l I:L', 42 f[ﬂ:i.‘,f.]jl

and then can be also treated as before in view of (2.4).
The second term equals to

s He? aA
[ e
B : f_‘ﬁ'g,-[mn}f‘l{i:-::ﬂ}}{ffu:in—ir‘z: axﬁ dﬂ:}_l
however
dA .
/ 2':_ = _Ef '1"':1:2{‘52"'!’11].’.':; o EE:I:LTJ'I;QH:'
L Baplap)n{ms=0) = [tg.to+r2] ~ OT2 Bar(zo ) {ma=0} x[tp, tn+r7]

Hence, from (2.4) we obtain jA £2|D%u)? < ¢, and (2.5) follows.
P

Note that O in (2.5) may depend on ¢ at this moment.
Lemma 2.2 For any given ' > 0, there erists o weak solution v € V of (2.1)
(1.2} where

V=Jdu: 0 x[0.7] = §%u is measurable and

T ; .
f f |ue | dzdt + esasup] [Vu(-, 1) [“dr < oo}
0 L 0

Dt T

and the following identity holds

1: /T 5 1 a1 G E
—-/. f |ee |* + ~f |Vu|? = _—f |V | + f / gl % flu,z.t) (2.10)
2o Jo 2 JoqT) Ay 0 Jn

Proof The existence of weak solution in V' follows from (2.7), (F;) and (F3).
Moreover, testing (2.1) by u; and integrating by parts, we can get (2.10).

Lemma 2.3 Lef u; be the solutions of (2.2)-(1.2). Then we have a subsequence
denoted by u. such that

e, ¢ — up strongly in L20,T; LHQ) (2.11})
Ve, (- £} = Vul-, 1) strongly in L2(0), %t > 0 (2.12)

where © 15 o weak solution of (2.1)-(1.2).
Proof Since we have from (2.7) that there is some sequence of u., denoted by
.., such that

u., — u strongly in L2(0,T; L?0))

f_
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Uz, ¢ — ug weakly in L2(0,T; L*(£2))
Vi, — Vi weakly * in L(0,T; L))

let we, = t,, —u we obtain from these relations and (2.6}, (2.10) that as g, — 0

[ [+ [ 19w P = [ ] + i
f 190 + Ve 7] =2 [ [ et =2 [ T, -
-:.:*:Jf f|u¢|2+2f Vul? - 2[ fu_sﬂfui zf Vite, - Vau
+9 ]E; /ﬂ [t e (tte, X fltte,, 2,8)) — el x Flu, 2, 1))]
=9 [UT/;_E{H:—uEnr,:Iu;-i-ELTM'[?“_?“EH]
4 3 fﬂ"' [ﬂ [t (e X Fltter @ 8)) = (e X Flu, 2, ))]
—o(1)+2 2 [ Benclite, x £(uegs,8)) = el x £(w,2,1))

Therefore, (2.11) and (2.12) can be proved if we have

fo ['UF.;.E{H'E.: * -fl::u'Er:;:lm? £)) — g % f{ﬂ-.'rf]]} = a(1) (2.13)
[ 0

Now we prove (2.13). In fact, the left-hand side of (2.13) equals to
]ﬂ' i jg'ztfuf | = ) (e, % Flue,,z,8)) + f i f wifite, X Fluey, @ 8) —ux flu,o, )]
f / e g — w Mite, ¥ (Flue, 2. t) = Flu,z, 1))
% [D fﬂtugnt — ) (e, — u) % Fw,7,8)]
T
4 [ ] (et = wlu x flu,2,0)

f f?;t e, —u) ¥ flue,,z,t)

-|—jl; Lut[ux{_fl:ugmzz:.,ﬂl—fi?hizfm

=7I1+Iﬂ+fa+fq‘|‘..[5

For I,. we have from (2.7) and (F3) that

i 1;2
1 <) Z ez dlliman{ [ [ tuent? + 10} [ [ e - l?)
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=o(1)
since we have u., — u strongly in L¥(Qr). The estimates for thie other terms can be

done in the similar manner.

3. Estimates Uniformly in &

Lemma 2.1 For any given T > 0, there is a constant © > 0 independent of £
and T such that for the solution, u., of (2.2)-(1.2) obtained in Theorem 2.1, we have

sup Ve (-, 8| ooy < Ce™' (3.1)
te0,T] :

Proof In view of (Fy), this Lemma'is a consequence of the following claim.
Claim Let G{s) be a smooth matrix in s € R and u € o1 72(00), for any
T < oo, solves the following strongly parabolic system

= Glu)hu 4+ fu) on §2 x (0, o)
wiz,0)=0onf, u=0 ond

Then we have for some C > () independent of T that

2 - 7 : - oy
ﬁﬁ?ﬁfillﬁﬂ{w O3 oray < ClIFllz=(nx(o,conllullLoenx(o.00n + letll oo s pcy) (#)

In fact. this claim is a parabolic version of Lemma A.l and Lemma A.2 of [11].
Therefore, it can be proved similarly to [11]. Now we give a sketch for the interior
estimnate and omit the estimate near the boundary.

Assume for simplicity that 0 € £ and set d =dist(D, 0). We shall prove (+) at
T =10, t =ty where g € [0,T].

Let 0 < A < d be a parameter to be determined later. It is clear that the function
vy, 7) = uliy, by + A27) defined on By x [0,1] (By = B(0, 1)) solves

ur = G{)Av + N f 0y, to + A7) on By x [0,1]

where f(-,-) = f(u(,-)). Then we have from the standard parabolic estimates (See
[12]) that

(Wo(0, )| < TN F (A to + X270 ooy xiopy + IR llegmixppp)s ¥ =721
In particular we get
A Vu(0, to)] € COPF Nl Lo (xfoen)) T 8l Loo(axio,oe)) (*)1
I£ d > ([[ullgoe /11 fll oo )12, we take A = (llullzo= /Il fl|zoe)'/? in (#); and obtain

Vu(0, t0)] < 2C | f Il llull oz (#)2
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1 d < (Jlulles/ [ fll =) /2, we take A= d in (+); and get

; 1
700, to) < Cl(llullzo=llfllzeo) 2 + Sllull =) (+)3
In {#)2 and ()3, € is independent of ', Combining (%) with (=)a, we have for
it < T
Vaulz, O < C(lullz |l + —g—seluliio)
' . dist?(z, 912) ’

This implies that (*) holds on K x [0, T for any compact subset K of £L.
Similarly, we can prove (#) near the boundary. This finishes the proof of Lemma

e,
Lemma 3.2 There erists constant Ag > 0, po > 0 independent of € and ¢ such
that if
1
=/ (-l <w (3.2)
i3

provided that 1/e = g, 0 < A £ 1, then

lthe] = =, ¥z e fINE (3.3

P f =

where B is any sphere in R? with radius [.

Proof In view of Lemma 3.1, the proof is just the same as that of Theorem IIL.3
in [L0].

According to Lemma IV.1 of [10], we have, at this time, a family of disks [B{z;, Aog) }ier
such that =; € 0. Bl e/ N Blzj, e/d) =¢ (i #4) and Q C i1 By, Ape). We
call Bz Apz) “good disk™ i

1

=z

[1 = |u5|2:|2 < g
QB (i, 20¢)

Otherwise, we call it “bad disk™. Denote
J ={j € I, B(z;, Ao#) is bad disk}

Then we can prove the following version of Lemma IV.2 of [10].
Lemma 3.3 There exists a positive integer N independent of ¢ and t such that
Cord J < N and

! |
[uel = 5 on 4 Ujes Bla;, AoE) (3.4}
Morcover, we can choose (See [Section IV.2, 10]) J' : J' € J and A = Ag such that

i — z5] = 8he, i#4 LIES
UjesBlzj, hog) C UjenBlzs, Ae) (3.5)
leee| = % on % Use e Blx;, Ag)
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[n the following of this section, we want to derive some estimates uniformly in £ for the
solution . of (2.2)-(1.2).

Lemma 3.4 letzge(, P, = B (zy) % [to,to +r%). If lue| = ap > 0 on F., then
there exists a constant C > 0 independent of & such thot

f D2’ < C
P

r

Proof The proof can be done by modifying the proof of (2.5). We only pive the

interior estimate for simplicity.
1
In fact, since |u:] > ap > 0on B, for 4 = A, = §|?u5|?: U = g, we have from

(2.8) and (2.2) that on P., there holds

T 2 g A
Eﬁl_t - AA 4+ | D*ul” ':_:H['L-Lg — 1 Xy — 28 — 2u x fiu,z,1)]
&

+ é—vu Vluw ) + V- Viw x flu,z,t)

Therefore

1 L Lig g s, A° 2
54— AA+ 2D ga(|u!| —.—I!—_EI?+|f{u,_m,i‘.];J

- %‘G’u -Vilw xwy) + Vi Ve x flu,z, )

. 1 :
<e(l 4+ A% + |u]?) + E"Tf'u VM ) + Vu - Vw x flu,z, 1))
with ¢ independent of £. Let £ be as before. Since the last two terms can be handled as

before, it suflices to estimate the term f |Vu|*¢?(x). Since W1 (€}) can be embedded
P,
inta L2(€}) and

(f‘a’-’z) ‘ffi’f Tqﬁ-l+m’sl} Yo e WhH{Q)

we have by taking ¢ = £|Vu|?
. to+r? S
f D%l < C +C f ffl‘?ulm‘*ul] < ::;mcf |vﬂ|ﬁf €2\ D|?
F. P,

Note also that we have from (2.6) :::I.‘_”l‘f |Vu|? < 1/8 if r is small enough. The

conclusion follows on Br. Near the bDllIldﬂ,I}' we have the same estimate.

Lemma 3.5 Let |u:| > g > 0 on Qr s = By(p) % [ty — s, 80 + s]. Then for any
G > 2, there is ¢ constant Cy > 0 independent of ¢ such that
4 O (3.6)

||H&||51fj"{t:2”-z,3,az} P
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Proof First of all, we have from Lemma 3.4 that ||[Vuc|lpoq, ) £ Cy. Moreover
1
we have for U = ':—2[1 — |ue|?) that
%5911:,, ~ AT 4+ 2030 < 2|Vu|* in Qg (3.7)

Take the cut-off function £(z) € C&(Br(xa)), £ = 1 in B, alza), n{t) € C([fo —
stg4s]),n=1in[to—s/2,80 +5/2), |[VE| < Cfr, Im| £ C/s, 02£=1, 0= = L.
Multiply (3.7) by £2(z)n*(£) %9~ and integrate it over (Jr; to give

E'J."

= | et - [ etvrianteed [ e
29 Jg, @ Qr.s
< | J;“ETFI?H-EIE“I’”‘“:--"/ SIS
l-:ll:".i Q"Q-—.s‘

1.8

%sg{q— 1) ] Eq7 VL + 205 f &2 e

= A P Cr.s

<0 f 27209 4 €, f €202V

=
f 02| VE T
il e

2
+ —f im0 +
i ==
Setting o = r:rﬁ in the above inequality, we hawve

: it Lt g? ;
@[ epwcc| epvue | Vel + = | el
; Q-".a '[';'I‘.S - |‘]I' o l ':!'r'..': q I:E':l'_.w

Hence

1 1
al | PUt < O, + CE [ ( 07 4 -45*?)
Qr.s I!'-'.di'v-"ll'l.'i'::;I o 8

Fixing r, s and taking £ small enough such that

Cet oL G4

72 1% TS
we obtain %
ﬂ-‘ﬁf 2P0 < Oy + 2L e
f;};rls 2 Qr.a'l'n_'ﬂf_."ﬂ,gfi
It follows from hole-filling method that
f V< C, Yg>2 (3.8)
Priasfz2

It is concluded from (3.8) and L7 theory of parabolic systems that (3.6) holds.
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Corollary 3.6 [Under the assumnption of Lemma 3.5, we have for any + (0, 1)

IVuellpoeig, 4 < € (3.9)
”?"-E”.::'l1'-*:r-i1-i—frj,“1[.;:urls} =l (3.10]

with C independent of &,
Proof (3.9) can be proved by virtue of Lemma 3.5 and boot-strap method and
(3.10) follows from Lemma 3.5 and Krylov estimates,

4. The Partial Regularity

In this section, let 2 C B? haa bounded smooth domain, we shall prove one of our
main results as follows.

Theorem 4.1  There exist () < N <y < and u:.s.j; €N, j= | G
L2, N; < N, such that, Yy € (0,1), we have for some sequence {us, I that

Ug, —+ U i E’ltjﬂr"“-l-ﬂ'm[{ﬁ * m,'mjl'".ﬁ-}

where 4 = L, U}E] I:{ﬂ}} X [Ti.0¢)), u is a solution of (2.1)~(1.2). Moreover. u is aiso
in Cloe™ (@ x [0, 00)\4). |
According to Section 3, it suffices to give M0/ 2 ogtimates vy & (0.11) uni-
formly in e for u, on the compact subset of (12 x [0, o)\ 4).
Lemma 4.2 There exists T, = 0 independent of & such that
|tue| = o §3 % [EI,_iﬂ'_"]] (4.1)

Proof ¥r; € 00, let £ be the standard cui-off function on Bap(xg) such that
1 % 3
N=€<1,£=10on Br(zo), |VE| < = Test (2.2) by £2u, to give for anv 3 > ()

i l! g 2 l 1 2 1 ) 2y 0
- Uet|™ + s0p | = V| + — 1 — |u.
Ef'?' fﬂé i uz:r]zt [? ﬁ{f:‘j{ | 4e2 Q{T]£ (1= Juel) }

<3 [Vl 8 [ [ s n [ [ 1verivu
+Ca [ [ €14 (e,

Taking # = 1/4 in above inequality, we have from (F 1) that

1/'L[ 21 12 l 2 gl 2 242
- Uet|” + sup |- Vue|* + — 1 = |uf”
Lo Jot el mp [5 [ &1Vudt+ e

<5 Lever+c [ Jy VeI +.C [ [ €1,
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<3 [ @196l + 7 [ IV + CRY (42)

where O = {J‘C{ff, Fixing R =Ry =0, i = T > 0 in {(4.2) such that

i -
~f Vel® < uo/8, CRET+ ? < o8
2 EERD
we deduce
1 242 o
SUp = (L= [ue|)” = po
D<e<Ty = BHH (zo)
It follows from this and Lemma 3.2 that
1 "
ltg| = 3 on Bp,(zo) % [0,T1]
This implies the desived resull.
Now we define T} > T3 by
Ty = inf{T|T = 0, there is g € (! such that 11H135]F|T£E{EQ,T}| =0} (4.3}

From the definition of T we know that there is no bad disk on ey if0o <t <1
and for any 0 < T < Ty there holds |luelcier oz @xpry = .

Denote the bad disks on Q(T}) by {B(xf, As) x {Tit}, i =1, .+, Ny, where N <N
and NV is determined by Lemma 3.3. Passing to a subsequence, we assume

$E;;E e ﬂ;’: j= ]-:u"-:llﬁ"'r].'. *h‘r] 5 P,':‘“ ﬂ'l:i #ﬂ-:‘:-_ E% k

At this time, on any compact subset of 0 x [0, T3]} Uﬁll ({al} x {T1}), we have
lue | = 1/2 if n is Jarge enough. Therefore the conclusion of Corollary 3.6 holds on
such compact subset.

Mow we work starting from ¢ = T, We first prove

Lemma 4.3  For the function U defined in (3.7) we have

¥ e L@ x [0, A\ UL, ({a]} x {T1})) (4.4)

Proof The interior estimates and the estimates near the boundary are done in
" the following one step. Denote

K = Bar(z0) % [0,T1) C 2 x [0, tn]\u (e} x (1)), zeQ
= (Bar(zg) N ) x [0, T1]‘1U 1 ({5} < {Th}), @0 € O

Again, denoting by £ the standard cut-off function of Bar(zo), we get

E“——I‘Li"lf} — 22 A(EW) + ET < 46|V, [ - 4e2VE - VU — 262 TAL (4.5)
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=

[t follows from above that, on the compact subset K and K, the right-hand side of

(4.5) is bounded uniformly in n. Then Lemma 4.3 follows from the maximum principle
(See also the proof of Step A5 of [11]).

Lemma 4.4 There erists T > 1) independent of en such fhat on any compact
subset M of @ x [Ty, To]\ UM, ({a}} x [T1, Ta))

1

e | > 3 on M (4.6)

Prﬂuf For any zp € 0\ LJ 2y {aj}, take R > 0 so small that Byp(zg) doesn't
contain {1'. (L<35<MN) Let {{x be the cut-off function of Bagp(zy) and define

L o omsegn il 2 212
= = o T 1 — 34
ELHWI%LH jul?)

it follows from simnple computations that, for ¢ = T3,

Eg(ue, (3,1)) <Eelue, (z,70)) +r::f f|vg|?|ruﬁ|2+c CIR(t - T)

1 1 . .
< EVae, 4 o | E2(1 — [, |2)?
2 Bag(za)x{T1} e Baglzo)={Ty} |:

)
+ if / | Ve, |* + CRE(t — T})
B JrJ Bapize)

Hence we have from this inequality, (2.7), Lemma 2.3 and Lemma 4.3 that

Clt-T)
Rz

Eeluc, (r,t)) < o(1) + CR? + + CR*(t —T})

Now. the desired conclusion follows from Lemma 3.2 if one fixed R = Ry, t =Ty > T}

such that

C(T - 1) fi)

of1) + CRj + 7 +CRY(T =Th) S 7

As before, we define Ty = 17 by

Ty =inf{T|T > Ti there is zp € 024 L.F‘h"l {a;j} such that
“?Liélf [t (g, T)| = 0} (4.7)

Denote the bad disks on §¥(Ts) by B{zf,Ae), k = 1,- gl N ,!"_-}g < N. Passing to
fulthel subsequence, still denoted by wu.,_, we assume Tt — uf ST Ng No
with af different from cach other. On the compact subset of {1 x T3, Tr.-]",lf j=1 {aj} =
[T, T5) U2 {a}} x {T3}), repeating the above proof, we obtain
Lemma 4.5 For any v € (0,1) and any compact subset M of

0 x [Ty, D]\ (U 1{'531} x [T, To] UUE {af} x {T3})
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we have for some constant C > 0 independent on n that

|22, ||4:.-1+-r.[1:—-ruz[.w] <0

Summing up, we have proved Theorem 4.1 by virtue of Lemma 4.5 and Schauder

method.
Remark It is clear that the energy E.(u.(z,-}) needn’t be nonincreasing, There-
fore, we can not get the smoothness away from finitely many points as in [13].

5. Smooth Solution of 1-Dimensional Problem

According to the above discussion, in order to get a global smooth solution. it
suffices to prove that for any T > 0 there holds |u:| > 1/2 on 0 x [0, T] when ¢ is sinall
enoungh. !

Lemma 5.1 Let @ C R! be o bounded open set. Then for any 0 < T < oc we
have

lue| =1 as =10 (5.1)
uniformly in (z,t) € & = [0, T].

Proof It suffices to prove (5.1) on K = [0.T), ¥K CC @ since the proof near the

boundary is similar to the above. Note that %t = 0

1 1 242 e 2
5 [a-mprsc= [ ve

Let xg € K and denote o (t) = |u:(zg. 2)|. It follows from (3.1) that in B(xg. p) where
p < d =disk (K, 911)

£
s (8] < e(t) + =

Hence. on 3z, p) there holds

20 i 2
(1~ el 2 (1~ e 2 (1 - e(8) — S)

where we have assumed Cpfe €1 — a.. We conclude that

s 2 ; -

p(1 - - 2£) < f (1 - Juel)? < Ce?
£ B{70.0)

£l — a;)

e < d, we finally get

Taking p =

(1 — 1"|:,:-:I"3 < BOCye

with €' independent of £ and ¢, i.e., @:(f] = 1 uniformly on [0,7]. Lemma 5.1 follows.
In one word, we have proved
Theorem 5.2 Let @ © R! be o bounded open set. Then for any given T > 0,
there exists at least one solution u € C*H1+2/2(T 5 [0, T]) for the problem (2.1)-(1.2).
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