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1. Introduction

It this paper we study the following Logistic equation with instantaneous and delay
effects

%—i = % +ulz, f)alz) — ble)ulz, t) — e(z)ulz, t —7)], @ x[0,00)
Blu}(x, ) =0, o0 x [0,00)  (1.1)
ulz.t) = nlz, t), £ x [—7,0]

where n € C([—7,0), H}[0,w]), r = 0 is constani. The functions alz), b(x), c(x) are
positive and Holder continuous on 71. The boundary condition is given by Bu = u or

Bu = % + v(z)u where v € C1T2(8Q), v(z) = 0 on J1 and % denotes the outward
r

normal derivative on 9t

The problem (1.1) describes the evolution of population u subject to diffusion,
having delay effects in the growth rate. The related problems when a, b, ¢ are constants
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or related ordinary differential equation have been treated extensively [1-5, and their
references).
It is well known that the steady-state problem
Fu
7oz ula(z) — b{x)u —e(z)u) =0, e
T
Bu=1{0, =zedi

(1) if Ay = 1, it has only the trivial solution 0 which is globally asymptotically
stable with respect to every nonnegative initial function,

(2) if Ay < 1, it has a unique positive solution U{x) which is globally asymptotically
stable with respect to every nonnegative, nontrivial initial function,

where Ay is the smallest eigenvalue of the eigenvalue problem

¢
E;;g+fha{:.-:]lqé=[]: zefl. Bd=0, e di} (1.2}

Obviously, U(x) is also a stationary solution of (1.1). However, as a solution of the
delay equation (1.1), the stability of [7{z) is different.

The content of this paper is organized as follows. In Section 2 we show that when
blx) > e(z), for any T > 0, the stationary solution I(x) is globally asymptotically
stable. In Section 3, for small  and for any blz), e(z). it is given that U/{#) is linearized
stable. Section 4 is devoted to the study of Hopf bifurcation from 7 (z) as T varies when
hlz) < r?{;.':j.

2. Globally Asymptotic Stability of Ulz) when b(z) > e(z)

el 2 .
Theorem 2.1 Let L = max % and 7> 0. If \y <land L < 1, then U () s
el
globally asymptotically stable in (1.1) with respect to every nonnegative inifial function
nx,t) with n{z,0) = 0.

Proof It is obvious that ¢(z) < Lb(z) on 12. Hence

ofz) £ T (ba) +c(a)), b(z) > Frr(b@) +e(@), on @ (2)

Let 7" be the nonnegative solution of the following parabolic problem

ab*e vgire
- = I = bz)U%), G x|0.
5 52 Utafz) = b(z)U*), @ x[0,00)
BEF~ =0, at x [0, ca)

U(2,0) = n(z,0), 0
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Define the function U as U(x,t) = niz,t) on 0 » [—7,0] and [ = U* on & % (0,00).
Then (U, 0) is a pair of upper and lower solutions of (1.1). Therefore, by the existence-
comparison theorem [6, 7] there exists a unique solution w of (1.1} with 0 = v = ['* on
Q = [-7,00)

From the nonnegativity of u, we have

i
L+1

o 31* < ula(z) — b(z)u) £ ulalz) -

s (b(x) +c{x}}u), % [0, 0)

By a basic comparison argument for parabolic equations
u(z, t) < (L+ DUz, 1), 0 » [0, 00}

where [7{x.t) is the solution of the parabolic problem

- 2‘ -
0 _ 2V _ tr(ata) - (bia) + c=))0), @ x [0,00)
ot dxf
B'il_-.-'r = 1 aﬂ % ED- {x:}
U{.‘!t,ﬂ} = 'T.|'|:='T1 U] f

Therefore

Tim [uf-,t) = (L+ U] = LIEE:(L + V[T, 5 = U()] =0, in () (2.2)

f—rn

On the other hand, for each e > 0, there exists a T, > 0 such that when [z, t)] &
Q% (Ty,00), ulz.t) S (L+ 1+ e)U(z). Hence

du  Ou

—

i sufa(z) — blz)u — (L+1+ e)elz)U ()]

=ufa(z) — bz)u — mc(::;]!’;"{m} —(L+1+e—a)c(z)U(z)]
L{b(zx) + c(z))
L+1

lju[a{xj — bz — aclz)U(z) - (L+1+e- o) U{-“L']]

where @ is determined later. Then, by the same comparison argument, we have ulz, t) =
Uiz, t) on £ % [T:, oc), where U/, is the solution of the parabolic problem

ﬂU] SEUL "
at  dzo Urfa(z) — blz)Uh - aclz)U(z)

C(L+l4e—a) ‘T‘[biz}:f'ﬁ"‘:”mmn, G T (23

BUJ_ = ﬂ, il x I:;TE{}C.}

with
Uz, T:) = ulz, Il € £
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If there exists 0 < o < 1 such that

i

i L—|—|—]!,|:L+1+E_m}=l

which is equivalent to oo = 1 = L2 — Lz = 0, then al/(x) is the positive stationary
solution of (2.3) which is globally asymptotically stable. The arbitrariness of ¢ implies
that for L < 1

y%M{f}—{l—iﬂh{)Edﬁﬁﬁdgﬂu{l—LﬁUﬂﬂ=D1 in C(02) (2.4)

Hence, it is known from (2.2) and (2.4) that

lim[u(-,#) = (1 + L)U( ()] <0 < limfu(-,2) - (1 - EHU (-1, in C(07) [2.5)

{0 t—0

Assume by induction that for some integer k&

f— )

limlu(, ¢} — (1 + LNy <0< _1[u{ t)— (1 - L’l‘][i{ 1, in C(52). (2.6)
—0
Then for any £ > 0, there exists a T, > 0 such that

i 329y
f}? — E;; < ufa(z) — b(z)u — (1 - LF — g)e(z)U{z)], Ox (T, o)

Henee for any 5 > 1

TR LT ) R . ik | e ben
B~ 5 <e{of8) M) (1- —5 = Ju~bia) —t = (1= L* — e)e(x)U ()
biz) + efx) | B g
{1.!.{:&[:1‘} = (1 = 3 )“
s
- Wz)——u— (1 - I - e)e()U(c)]

Then by the comparison argument we have u(x, t) < Ug(z,t) on O x [Te, oc) where U
s the solution of the parabolic problem

al, U, biz) + e(x) [l e
gt B, EDE['I':'T]_ P (1_ g )Uﬁ

1 - L% —¢

= f}{w] 3

Uz = (1= L¥ = e)e(z)U(z)], @ x (T2, )

BUEZE]: aﬂ:‘{[ E:u':":']

with
Us(z, 1) = u(z,T;), z€Q
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If there exists (3 > 1 such that

ﬁ I—Lk—E i g
LH(l . J+(1-LF-e) =1

which is equivalent to & = 1+ Lkt 4 Le, then U (x) is the positive stationary solution
of (2.7) which is globally asymptotically stable. Therefore, from the arbitrariness of £,

we have

Tiglu(- ) — (1+ U] <JmlUa(8) = @+ LU

=0 in C(82) (2.8)
Apain for any £ > 0, there exists a 7: > 0 such that

; 2
% — % E’{.':-[ﬂ',l::ﬂ} — blx)u — efz)1+ LA 4 ) U (z)]

>ufa({z) = blx)u — e(z)dU (z) — (L + prtl o e - S)elz)U(z]]

sz—mmhdﬂwmr?“+f1ﬁP”xwm+dmwuw

0t % (T., o) (2.9)

Then by the comparison argument we have u(z.t) = Uslz. {) on (1 % [Te.oc) where Uy
s the solution of the parabolic problem

'5"[-'1-3 E.TEU.S i ) )
& ozl = Us [ﬂil::ﬂ]- — blz)Us — e(z)dU(z)

L+ LEEl 4 = §)
L+1
Bl; =0, a0 x [T:,o0)

)bz} + ela)U (@), % (T, 00)

(2.10}
with Ualz, Te) = ulz, Te) in L. If there exists 0 < & < 1 such that

L(1+ L¥*! 4 £ - d)
L+1

4+ =1

which is equivalent to & =1- L¥+2 _ Le, then 80 () is the positive stationary solution
of (2.10) which is globally asymptotically stable. Since £ is arbitrarily small, we have

limu(-, £) — (1 = L¥2)U()] 2 lim{Us(8) = (1 = LA ()

£ =il

=0, in C()
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—

The induction argument as above shows that the relation(2.6) holds for any positive
even integer £, Letting & — oc in (2.6) yields

lim [u(-,#) = U(-)] =0, uniformly on £

E— o

Then Theorem 2.1 is proven.

3. The Linearized Stability of U(z) when 7 Is Small

In this section, we assume that the boundary condition is Dirichlet boundary con-
dition. That is, we consider

du :

—_— = ——— N — 2 p— 1.8 | :l 1

Tl wla(z) — dWzju — elz)u.], 0 x [0, 00)

o=, a0 x [0, oc) (3.1)
u(x, ) =nlz,tl, £ % |—7.0]

[t is easily seen that the linearized equation of (3.1) at U(z) is

v 8V X . g

57 = gz lalz) = (2b(z) + e(e))U(D)]V - elz)U(2)Ve, 2 x [0, o)

V=0, ! o0 x [0,2¢)  (3.2)
Viz.t) =z, 1), {dx [-7,0]

where ¢ € C([—7,0], L*(Q)) = C.
It we introduce the operator 4 : D{A) = X defined by

2

A + [a{z) — (2b(x) + elx) U ()]

g2

with domain D(4) = HE, and set V(§) = V(- £), ¥(t) = (-, %), then (3.2) can be

rewritten as

JE"] — AV(t) = cUV(t—7), t>0
Vit =(t), te[-10, ¢vel (3.3)

with A an infinitesimal generator of a compact Cp-semigroup [4]. The study of the
stability of I/ therefore leads to the study of the eigenvalue problem
(5

dx?

+ [a(z) = (2b(x) + c(z)(1 + e—*-*}}w{m}jy =My,” 0#£ye HE (3.4)

or the study of the point spectrum o{A,), where A, is the infinitesimal generator of
the semigroup induced by the solutions of (3.3) with

-fq?'ﬁ&:?fi’
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A)={peCnC :y(0) € Hy, (0) = Ap(0) — cU(=7)}

On the other hand, we consider the eigenvalue problem

2 s
(;g "'“{m:' — 2(blz) + clz))U (= ])y =Xy, Osye H: (3.5)

which corresponds with the equation (1.1) without delay.
We can get the following result through the comparison of the (3.4) with (3.5].
Theorem 3.1 Let Ay < 1. Then for all 7 € [0,7%), U{z) is locally asymptotically

stable, where T* satisfies 7° max(e(z)U(x)) = L.
ZEs
Proof First, note that all the eipenvalues of (3.5) are negative by Theorem 2.1,

Moreover, zero is eigenvalue of (3.4) if and only if it is an eigenvalue of (3.5). Since
the eizenvalue of 4, depends continuously on 7, it follows that the only way in which
stability can change is having some complex eigenvalues crossing the imaginary axis
on the complex plane as 7 is increased. It is thus sufficient to prove that, under the
hypothesis of the theorem, all nonreal eigenvalues have negative real parts.

Assume that A is a complex eigenvalue of (3.4) with eigenfunction y. Then A is also
an eigenvalue with eigenfunction §. Combining the two equations for () and (X, %)
gives

(7 = &) [ @)U (a)lyldz = (3~ X JAURE

Normalizing the eigenfunction y such that f ly|“dx = 1 and separating A into real and
0

imaginary parts, A = o+ i, give
—e "7 gin| ﬁ?}f e(x) U ?,rlzd:c = A

From this relation it follows that

" lsmﬁTU () U () |y2dz < 7* max |e(z)U(z)] = 1 (3.6)

Tl

as long as 3 # 0. Therefore (3.6) yields o < 0 and the result follows.

4. Hopf Bifurcation from U(z) when b(z) < ¢(z)

In the rest of this work v:re set,

k= j;zﬂimjdzr and a{z) = %

then alz) = kai(x), _[ ai{:r:}ci:r: = 1. Under this notation, (1.1) is equivalent to
0

j 2
% Dy % + w(kay(z) = b(z)u — elz)ur), 2% [0,00)
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w=10, [0, 00) (4.1)
H{I:-t] =3 ﬂ(myt]: £1x [_Trﬂ]

where we still denote a)(z) by a(z) for convenience.
For the form of the equation (4.1), the eigenvalue problem corresponding to (1.2)
becomes
agqﬁ . ¥
£ + Alk)ka(z)g =0, infl, Bg=0, on I
We assume k; > 0 is such that A (k) = 1 and ¢ is the corresponding positive eigzen-
function with [|¢1||;z = 1. Then it follows that the equation (4.1) has a unique positive

stationary solution Up if & > &y and has only zero solution if & < k.
4.1. Eigenvalue Problems

Since the eigenvalues of A, depend continuously on 7, those values of 7 for which
7(A;) contain a pure imaginary eigenvalue will play a key role in the analysis of the

stability and bifurcation of periodic solutions. Furthermore, it is obvious that A, has
an maginary eigenvalue A = iy (v £ 0) for some 7 = 0 if and only if

o

{ dx?

+ kalx) — 2b(z)U(z) — efz)Up(z)(1 + ™) = w}y = () {4.2)

is solvable for some value of ¥ > 0, # € [0, 27). If we find a pair of (-y, &) such that (4.2)

lias a solution ¢ £ 0, then

) + 2t
T;I'II_= M 'i"1=|::|1_].,2._"'
..nr.

will possibly be the candidate at which the stability changes and the Hopf bifurcation
occurs. So an interesting question is: how many pairs of {,8) € B™ x [0, 27} are there
such that (4.2) is solvable?

We will show thai for each & such that 0 < k& — &y < 1, there is a unique pair (v, #)
which solves (4.2). For this purpose, we first prove two lemmas which will be used to
conclude our assertion.

Set a linearized operator D : HZ(2) — L*(£1) by

&2

Dhy= (E + ﬁ:lm{m})y
Then it is clear that. denoting by N(B3) and R(B} the null space and the range ol 5
L) = N(D) & R(D)

where N(D) = span {¢;} and

R(D) = {y € L) : (42,9} = | h1()ia)dz =0)]
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By projecting the positive equilibrium U, into N{D) and R{D) we can give an expres-
sion for U as follows.

Lemma 4.1 There are &' > k) and e continuously differentioble mapping k —
(Er.a) from [k, k%] to HE N R(D) % RY such that

Up = ek — ki)l + (k= k)], ke [k, 57

. {ﬂ'qﬁlz ¢1:"
b+ et di)

¥y

and £) € Hg 13 the unigue solution of the equation
DE+dila—on(b+e)dr] =0, {$1.§ =0
Proof Define a mapping f: Hj x R* — L* x R by
F(€ k) = (DE+ (g1 + (k — k1)E][a — (b + )ales + (k = k1)E)]. ($1.£))
Bv the definition of &, we have that
Flér.on. k1) = (D& + dile —an(b + e}, {d1.£}) =0

anl

Die oy FlE1, 01, k) (€, @) = (D€ = (b4 2)ai. (41, 6))

From the fact that dim N(D) = 1 and (b+c)¢iER(D), it clearly follows that Die oy Fl&
cvp. k) 15 bijective from Hﬁ x 2 = L? x R. Therefore, it follows from the implicit
finction theorem that there exists & > & and continuously differentiable mapping
k= (&, o) € HE x Y for k € [k, k"] such that

f':‘f-t::ﬁi".k} Eﬂa Jtle['ii-|'a"“m]
An easy caleulation shows that Wy = ap(k — k)¢ + (& — k1)£] solves the equation

R
o

The uniqueness of the solution of this equation ensures that

4 Tl — BT = ) =0

Up = We = ok — k)¢ + [k~ k18], kelk, k] (4.3)

18

Lemma 4.2 If (7,68, 7y) solves the cquation (4.2) with 0 £ y € H?, then

uniformly bounded for k € (k1, k"], and vy, v} = sin@{clry, v}.
Proof TFrom the hypothesis we have

e
k=R

<@+[kn—2bﬂ’ — cUk(1 + e )y — iyy,y) = 0
amg k o y r:'lly:-y Tl
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The identification of imaginary part of the above relation and Lemma 4.1 vield that

T{E‘H y} - SiﬂS{EUjﬂi‘j: y} o Eingc{kik - '&1]{{:('?51 + I:'Ei‘ e 'ﬂi:ljéﬁijs 'U:]

Therefore
vl _lewsindf{e(é1 + (& — k1)&)y, u)
k— K ||,.-"||Eq
{lﬂﬂm&i{ lel)|[T + (& = K} 1€ 2]

=

The boundedness of follows from the continuity of & — (&, | HE» exy ),

= Ky
Now for k € (i, k"], suppose (v, 6, y) is a solution of (4.2) with 0 # y € HZ. If we

ignore a scalar factor, y can be represented as

y=08¢ + (k—kz, {d1,2=0, §>0
llwllzs = 5% + (k — k:)?||2]% = 1 (4.4)

Substituting (4.3), (4.4) and v = (k — k))& into (4.2), noting that D¢, = 0, we obtain
the equivalent system to (4.2),

gilz, 3, h,0. k) =Dz + [a—ih — (26 4+ c{1 + ™))
% o + (b — k)& (B + (k — ky)z] =0
g2(2) = Re (¢, 2z} =0 (4.9)
g3(z) =lm (g1, 2) =0
ga(2. 0, k) = (85 = 1) + (k- k1]2||3||%2 =
Theorem 4.1  Letc{z) > blz), z € Q). If0 < k* —ky < 1, then there is a Wi e

continuously differentiable mapping & — (2, B, b, 0) from [ky, k%] to HE = R® such
that

m=O+mtis, Bi=1  hy=oy/(cgl o1)2 — (b7, g1

= (B,
6y = cos™ ( - rii,ii}} Z.7)

and (zg, B, hi, Or) solves the system (4.5) for k € [ky, k°], where &1 is as in Lemma 4.1
and 01,1y is a unigue solution of the following equations respectively

Dn—(b+ ﬂﬂﬂﬁﬂlj{hqﬁ‘f =0, (H,nr=0
Di - (h —esinbiongy)dy =0, (¢1,0) =0

Moreover, if k € (k1 k*), and (25, 5%, h*, 8%) solves the system {(4.5) with k* > 0, and
0% € [0,2r), then
(25, 8% 1¥,8%) = (2, B, e, B
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Proof Define G: Hj x #*x R — L% x R? by G = (g1, 92,93, 94). Then it follows
from the definition of z,, £, m and [; that '

gilz1, B, b, th k) = Dz + (@ —ihy — (b4 cloydy — (b+ ce M )a gyl =0
It is also trivial that
gilz1) =0, i=2,3 and ga(z1. 51, k1) =0

That 15
Gz, i b, 81, k) =0

Next, let T = (T1.Te, Ts, T4) : HE x B* — L? x R? be defined by
T = Diz g p,eG 21, B b, 01, k1)
with this definition we can verify that

Tz, 8, h0) =Dz +[a—th—(2b+e(l + e Yoy di]d B — idih + ie” " e g0
To(z) = Re{®1,z). Ti(z) =Im{¢1,2), TulF) =20

Noting that both ¢ and edh? do not belong to R(D), we are able to show that T 15
one-to-one and HE x R* — Lz x B, Hence our first conclusion follows from the implicit
function theorem. To obtain the second conclusion, by virtue of the uniqueness of the
implicit function theorem, it is sufficient to show that

(2%, 6% h*,8%) = (21, B, 1. 01)

as k — &y in the norm Df"_:H,E:,E x 23, :
First, Lemma 4.1, Lemma 4.2 and the last equation of (4.5} imply that {HE,;-,HHS},

{5} are bounded and
18541 + (k — k1)z*]lpa = 1, for k € [ki,&"] (4.6)
Therefore, there is A > 0 such that

sup [la = ih* — (2b+ (1 + e Var(dr + (k — k)é)ll < M (4.7)
.‘i.‘E[.‘.']_,.I'-:‘]

Since the operator D : Hf x R(D) — R(D) has a bounded inverse, it follows that
= 4 ,D_l[.:}. —ih* = (2b+ ¢l + E_éﬂk]]ﬂﬁ;{fﬁ’l + (k- kl}&k][ﬁk"ﬁl + (k — 'i‘:ljzk] =U
from (4.6) and (4.7), we have

|25l g2 < MID7
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Hence, {(z, 3%, h®, 6%) : k € [k, k*]} is precompact in L2 x R?, Let {25, 8% A g%}
be any convergent subsequence such that

(25, Brn, o, 9%) — (21, BL RY,6Y), kn = kpasn— 00

W cliii ERaE {31?;311;11?51} = (21,B1,h1,61). To see this, we take the limit in
G(zkn1.ﬁ'k1tjf¢_k“?|ﬂk“,kﬂ}l =} as n — oo to obtain

D2l + o —ih! — (2b+c(l + e Na1dr]B ¢ = 0

4.8
(.28 =0, ,8'—1=0 (4.8)

Obviously, 3! = 3; = 1. Taking the L2-inner product of first equation of (4.8) with ¢,
and noting that

{ﬂ¢1 ' ‘;'!‘:'ll.:l

¥y = - m——

(b + clei, du)

wo arrive at
—ihY 4 oy sin B ed? 1) — o ((b 4 ceos @’ Vi, i) =0

which leads to 8 = ¢, h! = hy. Therefore, from (4.8) and the uniqueness of the
solution in HE, we have ' = z;.

We have shown that (2% 8% 8%, 0%) = (21,051, b1 81), as k = &y, with the conver-
sence being in L? x B, However, recalling the definition of gy in (4.5) and the fact
that D~ R(.D) = Hi N R{D] is a continuous linear operator, we get the convergence
in Hi » R*. The proof of Theorem 4.1 is completed.

From Theorem 4.1, we immediately have the following conclusion

Corollary 4.1 If0 < k" — k| < 1, then for each k € (k, k"), the eigenvalue
problem (4.2) withy >0, 7 > 0, 0 € [0,27) and 0 # y € Hf has a solution (v, 0,y), or
equivalently, iy € ol A;) if and only if

q == b=k Wi Femr=s m, ppeilp o
Tk
and y = cyg, yx = Sudr + (k— K1)z, Here ¢ is any nonzero constant, and zi, B, hy, Oy
are defined as in Theoremn 4.1,
Let D* denote the adjoint operator of D, since D is a Fredholm operator, we have

D*¢t =0, N(D") =span {¢i}, imN(D") =1, with {$1.¢;} =1

Moreaver, the adjoint eigenvalue problem corresponding to the eigenvalue problem {4.2)

15 o |
{% + [kalz) — 2blz)Ug(x) = c(z)Uk(x)(1 + ) + iﬁf}y‘ = () (4.9)

By using the same method as above we can get
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Theorem 4.2 There is a k* with 0 < & =k <01 such that, for each k € (k1, k"),
(k. P, yr) 18 @ solution of the eigenvalue problem (4.9), where i, By are defined as in
Theorem 4.1, and yf can also be represented as

'!;'I = fj:iqﬁ? + “ﬁ = kljzﬁtf with .L'?E — 1, as k=R

and ($7,22) =0, 2} € R(D*).
4.2, Smhilit;} and Hopf Bifurcation from Uy

New, we turn to the study of the stability of U}, with &k € (kp, k'] fixed, and the
delay 7 treated as a bifurcation parameter. Ta deseribe the stability of 7, it is enough
to investigate how the eigenvalue A = a7 varies as the delay t passes through 7, .
n=0,1,2,-. For this purpose, we first show that

Lemma 4.3 [f0 < k* — k) < 1, then for each k € (ki,%*]

Sp. = {(1 = 16" el i) 0, n=0,1.2,-- (4.10)
Proof From Lemma 4.1, Theorem 4.1. Corollary 4.1 and Theorem 4.2, we have
k= Brdr + Ok — ky), v = Bidl + Ok = K1)
Up = ok = ki) + O((k = k1Y), 7ra = %ﬁ
and B, — 4 € E;ffj,_ Ry =+ hy >0, 8, — 1, B — 1. o —r ¢ as k= k. Let

b = Arg{ye. Yp)y —TEHET

flhen
g, yodle™ = (g yh) = (P81 =1, ask =k

Henee t, — 0 as k — k. Furthermore, we have

— i) T T x _ .
{e c “.:klnym;k} (e M) (oo B + Ok — k)], Bie + Ok — Ka))

—{e" M ayed?, ¢7)

=(costh — isinﬁﬂﬁrl{c@fhi ¢1), as k= ki (4.11})

Therefore, it follows from (4.11) that for n = 0,1,2,--,as k= Ky

. _I ¥ - b I'I::r 1 Enﬂ —l-'ll T E
Im (e~ {(1 — 7, €% Uk )yk ¥i)) = = L— m (e~ ) Uy, yih
(k — k)b
g + 2nm ! :
o oy sinfy (e, ) # 0

5]

andsofor 0 < k—ky < 1and all 7, n =0,1,2,--+, We have S¢. # 0.
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Lemma 4.4 Foreachk € (k1. k'] (0 <k* -k < 1) and n =0, 1 2eem homdry
s a simple eigenvalue.
Proof First, it follows from Corollary 4.1 that

dim 'NEA"_F::E i EIT‘E:} = l'. NI:"‘I-T_:FH ar l!-'f.:r.‘f;] — EIJ.'-?III (E:Tkﬂyk]

Now suppose
Y € D(Aq)ND(AL ), (4s, —im)’¥=0

it follows that
(Ar,, — i) € N(Ar, — i) = span (¢™%y,)

Hence there is a constant e; such that

(Ar,, — )t = 1™y,
i
P(0) = imp(8) + cre™%y, 8 e [-7,.0)
$(0) = %ﬂ{ﬁ) + [ka(x) — (2b(z) + e(2)) Uk (2)]9(0) — e(z)Uk(z )b (=75, )
(4.12)
The first equation of (4.12) gives
Y(0) = iph(0) + cage,  B(8) = ((0) + c1Byg)e ™’ (4.13)

Substituting (4.13) into (4.12) we have

{% + [ka(z) = (2b(z) + c{:z}]{,rﬂx}]}q;.u{ﬂ} — imp(0) = e(z) U () e Pgp(0)

=c[1 - Tﬁmﬁ_m";ﬂ':iwk{j:}]yk

and therefore
oy _
0 =($(0), {55 + kale) = (2b(z) + c(2))Ui(s) = e(@)Un(2)e® + i i

a° i ; : 4
=<{@ + kalz) — (2b{z) + c(z))Uk(z) — c(z)Uy(z)e % — 1”{5:}'*#([3'),3#;:}
=c1{[1 — T, e Uk (z)e(z) ] ye, y1)

As a consequence of Lemma 4.1, we see that ¢, = 0. So (Ar,  —iy)i = 0 and
e N((Arg, — iv:). By induction we have

N{{Aq—;m _iﬂf.i:]jj = N("!lfg-n _i'r:"]::l:- j= 112:-"':'”-': ﬂrlsza"'
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Therefore, A = iy is a simple eigenvalue of A, forn=0,1,2,---.

Since A = iy is a simple eigenvalue of A, _, by using the implicit function theorem
it is not difficult to show that there is a neighborhood O, x Gy x Hy, C R x U x H?
of (74, .14, ) and a continuously differential function (A, y) : Ok, — C, *x Hi, such
that for each 7 € Oy, the only eigenvalue of A, in Cy, is A(7), and

ATka) = 1 ¥(Th,) = Wk
{% o [kﬂ- o [:Elb 4 If,':][-'r o~ ﬂE-'}LfT}fU it A(T]]}F{T} — |:|,_ T = {:}ﬁ:n

Differentiating the above equality with respect to 7 at 7 = 7, we have

_-ﬂ? ; 7 r —ilf . dy::"rkﬂ]l . . s
{5'.1:2 J:—[ﬁ.&—?b[!k—ﬁﬂk[l—l-ﬁ ] —iﬁ;l} e "'J'I:'ﬁ:n]f-’ kel
- A
4 (-1 + e kel =) —

Taking the L*-inner product of the above equality with y”, we obtain

dA(mi,)  limee e el vk)
dr  {(1= 7k, e el )y, yi)
l ! —a, L & + . T L
=15 |¢,:[’=‘-’:f;.-~‘3 o 't*:'{ﬁU;:?;;c:T;;;}liyk1y;;}'l — iy T HeUkwn v ]
kn (4.14)
Lemma 4.5 For each k€ (kL k) (0 < k™ =k < 1)
d A T
H_Eﬂl.}[}? ﬂ-={},1,2-_”'
T
Proof Let {; be defined as in Lemma 4.3, then
{y-‘:ryﬁ’:} T HTJ'F::-y;HE_itk
So from [4.14)
dA (T 1 - B i
Re Ei:’”} ST lzRE{”i'E Oetted feliye, yi | (Ve i)l (4.15)

Moreaver

de Bt (U, yi)

—ie~ {0t (e Brg? + O(k — k), Bid + Ok — k)

k—ik
—ie™ " (ear 1, 67) |
=(sin @ + icos & e (cd?, 1) (4.16)
- dA(Tk, )
It follows from (4.15) and (4.16) that f 0 < k - ky <1, then Re——= > (.

dT
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From Corollary 4.1 and Lemma 4.5 we immediately have

Theorem 4.3 Let b(z) < c(z) in Q. For each fired b, 0 < &k — k, < I, the
infinitesimal generator A, has ezactly 2(n + 1) eigenvalues with positive real part if
T € (ks Thn ], = 0,1,2,---, and all eigenvalues of A, have negative real part if
0 << g,

Theorem 4.4  Let b{x) < cfx) in . The positive equilibrium Uy, is locally asymp-
totically stable if 0 < 7 < 7, and unstable if v > 71, ond T, max |e(z)U(z)] = 1.

L
As application of the general Hopl bifurcation theorem [8], we have the final con-

clusion,

Theorem 4.5  Let b(z) < c(z) in . For each fired k € (K, kYY), o Hopf bifurcation
will occur as the delay T increasingly passes through each points 7., n = 0,1,2.---.
Specifically, for each T, there is a 8, > 0 such that for each T € (Th. s Th, + 0p, ) the

equation (4.1) has o periodic solution Uy, , near Uy with period = —. Furthermore,
: Y
U7 18 locally asympiotically stable, and U, 18 unstable forn > 1.
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