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1. Introduction

This paper concerns the study of the existence of time periodic classical solutions
to boundary value problem for one dimensional viscoelastic equation

uylz,t) = %c iz ) 0igm el teR (1.1)
w(0,2) =u(l,£) =0 (1.2}

where the constitutive relation is given by

= pluy(z, t)) /m T)g(uz(z, t — 7))dr (1.3)
and p(£) is a linear function
p(€) = c*¢ (1.4)

In the past twenty }'LFLI‘% there were a lot of works on the initial- boundary value
problems of Equation (1.1), (1.3) (See, for instance, [1] and [2] for the existence of global
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classical solutions for small data; [3] for the existence of global weak solutions for large
data). Nevertheless, there were only a few works dea;ling with periodic solutions to the
boundary problem (1.1)—(1.3).

In the special case p(£) = g(£) and

P (&) —a(0)g'(€) > 0 (1.5)

where @(0) = f & a(t)dt, Freireisl [4] proved the existence of periodic weak solutions to
the problem {1?1]—(1.3]. Condition (1.5) implies that the material is viscoelastic solid.
In linear viscoelasticity, we showed that for viscoelastic solid, the problem (1.1)-(1.3)
has a T-periodic solution for any T-periodic function f(z,t); and for a viscoelastic
liquid like material, the problem admits.a T-periodic solution for a T-periodic function
flz.t) if and only if

fﬂ " e tdt =0 (1.6)
(See [5]). '

In the present paper, we discuss the semilinear case where the material is viscoelastic
solid, i.e. p(£) has the form (1.4) and

¢ — a(0)g'(£) >0 (1.7)

In [6], Hrusa showed the global existence of classical solution to the initial-boundary
value problemn with large data and gave an estimation of the solution to the problem
with kernel a(t) = exp(—Af). Under some assumptions, we prove the existence of

T-periodic classical solution to the problem (1.1)—(1.4) with a more general kernel a(t).

2. Main Results

Throughout this paper, we assume that ¢ and the kernel a satisfy the following

hypotheses:
(Hi) g€ C'R)
with

g(0) =0 (2.1)

and there exist positive constants A and i such that
< a(0)q'(€) <~ A (2.2)

(Hz) a € L'(0,00) N C™([0,00)), a(t) # 0 and there exists a positive constant &,
such that b(t) = e®*a(t) is completely monotone (See, for example, [7]), that is

(=179 >0, j=1,2,---




s
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Remark It is easy to see that the kernel of the form
N
at) =3 ke kLA >0 (2.3)
i=1

satisfies the assumption (Hs). Such kernels are commonly used in rheology.

Let T > 0 and let B be a Banach space. A measurable function v : R — B is
called T-periodic if u(f + T) = u(t) for almost all t € R. By CH(R; B), LE(R; B)
and Hi(R; B) we denote the subspaces of C*(R; B), LP(R; B} and Sobolev space
Hi.

Our main results may be stated as
Theorem A Lei the assumptions (H, }and (Hy) hold. Then for any

(R; B), respectively, of all T-periodic functions.

f € Cp(R;L(0,1)) with f, € LE(R: L2(0,1)) (2.4)
the problem (1.1)~(1.4) admits a T-periodic solution

w€ CFHR; L30,1)), k=0,1,2 (2.5)

3. Proof of Main Theorem

Let {w*(x)} be a basis of H}(0,1), which is orthonormal in L#(0,1). In fact, we
have w*{z) = /2 sin{kwrx). We construct Galerkin’s approximations of the T-periodic
solution to the problem (1.1)—( 1.4) of the form

W ) = Zy;-(i:lw’:{:r:} (3.1)
i=1
from the system
1 . 1 1 poo
f ﬂﬁwh{i"}ﬁ!-rﬁ:-l-cgf ulwt (z)dz —f f a(Tlglui(z, t — 7))wk(z)drdr
0 0 0 Jo

1
t-/u fw"“[:n]dx, k=10m (3.2)

The relation (3.2) is a system of semilinear integrodifferential equations in the fol-

lowing form i
#(t) + By - [ﬂ a(7)a(y(t — 7))dr = E(2) (3.3)

where y = (y1, -, y)T, P = (Bua), @ = (G1,---,5)T

1
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1
Gly) = fu g(ul)whdz (3.4)
7it) =/ﬂ1fwkd5:} PR

For the system (3.3}, we have

Lemma 3.1 Assume that hypotheses (Hy) and (Ha) hold. Then for each f &
Cr(R; R"), the system (3.3) admits o T-periodic solution y € C4(R; R™).

Proof The system (3.3) can be written in the following form

7 +8) + [ e(mhiy(0),y(t - ))dr =E()  (35)

where
gly) = Py — a(0)d(y), (3.6)
h(y,z) = d(y) - d(z) (3.7)

Then Lemma 3.1 follows from Theorem A4 in [8].
Lemma 3.2 Under the assumptions of Lemma 3.1, the following estimate holds

i‘u'?[ J”Jﬂm 1) + llez (-, f}”rimu = Gf (- ”L 20, 11"]'lH (3.8)

Hereafter, U denotes various positive constants independent of n.

For proving the lemma, see Lemma 3.3 in [9].

Now we estimate the second order derivatives of «™. At first, we assume that the
solution y € C3(R;R™). Multiplying (3.5) by &%, § € (0,dy) and differentiating the

resulting equation, we have

t
G+ By —T0) = s Ay 0) + [ aji - e Ely(shds  (39)

where a; = e™alt). Let rs(t ') be the resolvent kernel associated with af(f), i.e.

as(0)rs(t) + z—brg% - '[_tm as(t — s)rs(s)ds =0 (3.10)

Then (3.9) can be transformed in the form

4 (&5 + By — (1)

a(0)e {
e’ qly(t)) = =
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=n

Integrating by parts, we can write the above equation as
e’ (y") + a(0)rs(0)§ + Py + a(0)r5 (0)Py — a(0)d(y(2)))

+ a(0) f_ ; ri(t — s)e” (¥ (s) + Py(s))ds + e’ (§ + Py) = £y (1)
(3.12)

where
() = (a(0)rs(0) + 8)e®F(2) + ™ (1) + a(0) f L ri(t — 8)ef(s)ds (3.13)

Taking the scalar product of (3.12) with e% (5 + (a(0)r;(0) — £)¥), we obtain

ji( Ef“( 312 + 5 5Py ¥ + (a(0 Jw{m~e}3‘r-:;r+Ea{ﬂﬁra{ﬂ}iutfﬂmtﬂl—EJE?IE?

aa ' . a# T |
+ 20t (El}rl‘i ¥ E.‘PF ¥+ mlfﬂ}ﬁ{}'}}' 2 ;""")

=~ a(0) 5 (" (rs(0)Py ~ &(y)) - 3) + 3By
+22(0)8e” (r;(0)Py — dly)) - ¥ — 6e'Py - §
+ (a(0)75(0) — €)8e** - y + (a(0)r5(0) — £)da(0)rs(0)e |32
— (a(0)rs(0) — €)de®" (¥ + Py) - ¥ — a(0)rs(0)(a(0)rs(0) — £)e2 Py . i
+a(0)(a(0)rs(0) — €)e*&(y) - ¥ — a(0)r5(0)e® 5 - (F + (a(0)rs(0) — £)¥)
— a(0)e® f_ ; r§ (£~ s)e”y(s)ds - (7 + (a(0)rs(0) — £)5)

(05 [ 14t~ ) g()ds - (§F + (@(0)rs(0) - e)9)
+ e%((a(0)rs(0) + 6)e®E(2) + e7tF(t)
+ a(0) f_ r5(t — 9)eF(s)ds) - (7 + (a(0)rs(0) — £)3) (3.14)

Lemma 3.3 Assume that (Hy) holds. Then for § € (0,8)], we have (1) rs(t) €

C=[0, 0a); (ii) f |r5(2)|dt and f |rs (£)|dt are convergent and bounded independent
ofd € (0,8

The proof of Lemma 3.3 can be found in [10].

1
It is easy to verify that rg(0) = rg,(0) > 0. Taking € < L—}al:[ljr,g[[]], we can get

%L’iﬂ? + (a(0)r5(0) — )y - ¥ + %ﬂ{ﬂ}rﬁmj{ﬂ{ﬂ}rﬁm] - )|y 2 3_}..::1{:';12 +¥[%  (3.15)

ua(0)

where @ i8 a positive constant. Taking & < -
! P EE = 2a(0)

, we have from assumption (2.2) that

5 e ag =l e ek
ely|* — ePy - ¥ +a{01£{3']}' ¥ = alelF* + Py - ) (3.16)
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for certain positive constant ao.
Integrating (3.14) with respect to ¢ from ¢ to t+ T, and using (3.15), (3.16), Lemma
3.2 and 3.3, we can obtain that

eﬂ*ﬁ*{e*ﬁ“"— 1) (lesgs (5 8) 12 20,1y + 2 (5 ) 3 o,0))

.9 2 n 2
[ P ) a0 + I o))
(28 2 n 2
50{5]; (gl 3]'||L= (0,1) T [[aag (- 3]'”;;'{0,1} + [|uzs (- 3}||L2|:ﬂ,1;.}d3

t+T
B(8)e**(e*T - 1) f _ |:||f::-,s:|niz.:n.u+||fzt-,sﬁ||iz.:u,l}}ds} (3.17)

where B(d) is a constant depending on 4. Here, we omit the details of estimating the
terms in the right side of (3.14). For example

By y1<e Y [ whuldousi
kl=1

Lo Z f whw'deyin < A fluly (5 ) 2ol (D20,
k=1 ;

Taking the scalar product of (3.12) with ﬁ'ﬁ-tij}", we have

d 1=
Lﬂ( “‘(Pr ¥+ “IP}'IE = =P }f))
+ a{0)rs(0)e** Py - ¥ + a(0)rs(0)e* [Py |

+a(0)By () [ rile = By (s)ds — aO)By - G()

= t o3 2
+ ﬂfﬂ}ﬁatP}"fﬂ . f it — S}Eﬁsj}{ﬁjdﬁ -+ JEEEL{P}' ¥+ |P}r|2]

=Py - fi(t) (3.18)

Lemma 3.4 Let a(t) satisfy assumptions (Hy). Then it holds thot

fH_T (Tﬁ(ﬂ]ﬂihlf’}f{sjlg + fﬁ ri(s — T}EJTﬁF{T}dT . céﬁf‘y(s}) ds
L -0

t+T" e
f e*%%|Py(s)?ds (3.19)
i

= %5(0)

For the proof of Lemma 3.4, see [10].
By the assumption (2.2), we have

e = s T =
[ By dls)ds < L [T By(s)Pas, (3.20)
¢ a(0) Ji




|
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for some () < p < 1.
Applying Lemma 3.4, estimation (3.20) and noting that

Py(t)? =l (- 320y (3.21)

we get from (3.18) that

",

| T . :
28 ¢ 28T 2 . 7
e (e’ _l}lluzf{"t}llfa?{n,lb+fr 53“”“3:(':S]lil:,i{u,lj‘iﬁ e
~r 28fy 24T 2
<C{e® (e — DIl D)I7200,0 + 162, i ony)

P L P 2 ng N2 3

El e (Jlugi(-, 5}||f,ﬂ[|},11|+”“t {'1-5:|||_Er1{|:|l,1]|} 4
o 24 it 2

+6 [ e uR (e )lagonyde

, 1
+ B(d)e (2T — 1) fﬂ (17 Gy 20,1 + I1Fe(cs 813 20,0) ) ds}
(3.22)

Combining (3.17) with (3.22) and taking § small enough, we have
Lemma 3.5 Under the hypotheses of the theorem, the following. estimate holds
ey 0y + I DB oty + NG BB
-
= Sfu (1 sMZ2g0,1y + NFeles )1 2001 )l (3.23)
In fact, we have proved the estimate (3.23) for y € C3(R; R™). Applying differences
instead of derivatives, we can show the lemma for y € C4(R; R"™).

Proof of Theorem = By Lemma 3.5, there exists a subsequence of u®, denoted
still by u®, such that

u —u in Cp(R; H'(0,1)) (3.24)
ul - w  in Cp(R; L4(0,1)) (3.25)
ul, S ug, in LR(R; L*(0,1)) (3.26)
uly S ugn  in LR(R; L3(0, 1)) (3.27)
up—uy  in L¥(R; L2(0,1)) (3.28)

as n — co. If follows from (3.24) and (3.25) that u is a T-periodic weak solution in the

SETse

T pl T 41
[ﬂ fﬂ ugpe(a, t)dwdt + f f Czﬂmﬂm{ﬂ:f et
o Jo
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= /: fﬂl fnmu{'r}q[um[i..t - 7))z, t)drdzdt
:-/:1 /: folz, thdxdt, Yo e LEI{U,T;H&E“, 1)) (3.29)

(See [9]). And (3.26)-(3.28) imply that the solution u is classical. Therefore, u solves
the following initial-boundary value problem

t 0
Uit = CoUgy — ﬁ a(t = 7)g{u.(x, 7))dr + f_m a(t — T)glu.(z, 7))dr + f(z, 1)

(3.30)
u(0, ) = u(1,) = 0 (3.31)
u(z,0) € Hy(0,1) N H*(0,1), w(z,0) € H}(0,1) (3.32)

Then (2.5) follows from Theorem 2.1 in [5].
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