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Abstract. New numerical techniques are presented for the solution of the two-
dimensional time fractional evolution equation in the unit square. In these methods,
Galerkin finite element is used for the spatial discretization, and, for the time stepping,
new alternating direction implicit (ADI) method based on the backward Euler method
combined with the first order convolution quadrature approximating the integral term
are considered. The ADI Galerkin finite element method is proved to be convergent in
time and in the L2 norm in space. The convergence order is O (k| ln k|+ hr), where k is
the temporal grid size and h is spatial grid size in the x and y directions, respectively.
Numerical results are presented to support our theoretical analysis.

AMS subject classifications: 65M06, 65M12, 65M15, 65M60

Key words: Fractional evolution equation, alternating direction implicit method, Galerkin finite
element method, backward Euler.

1. Introduction

We study an alternating direction implicit (ADI) method for the numerical solution of
the fractional evolution equation

ut −
∫ t

0

β(t − s)∆u(x , y, s)ds = f (x , y, t), (x , y) ∈ Ω, t ∈ J , (1.1)

with boundary and initial conditions

u(x , y, t) = 0, (x , y) ∈ ∂Ω, t ∈ J , (1.2a)

u(x , y, 0) = u0(x , y), (x , y) ∈ Ω× ∂Ω, (1.2b)
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respectively, where ut = ∂ u/∂ t,∆ is the two-dimensional Laplacian, J = (0, T], Ω = R×R,
R = (0,1), ∂Ω is the boundary of the domain Ω, the kernel β(t) is assumed to be t−1/2,
u0(x , y) and f (x , y, t) are given functions.

This equation possesses the remarkable feature that it may be considered as an equa-
tion intermediate between the standard (parabolic) heat equation and the (hyperbolic)
wave equation. In fact, the integral operator I1/2 that maps each (locally integrable) func-
tion ϕ(t), t > 0, into the function

(I1/2ϕ)(t) =

∫ t

0

(t − s)−1/2ϕ(s)ds

is such that

(I1/2(I1/2ϕ))(t) = π

∫ t

0

ϕ(s)ds =: π(Iϕ)(t).

In recent decade years, more and more attentions have been placed on the develop-
ment and research of fractional differential and integral equations, because they can de-
scribe many phenomenons, physical and chemical process more accurately than classical
integer-order differential equations and have been widely used in many other fields, such
as viscoelasticity [1, 2], biological systems, finance [3], hydrology [4] and so on. There-
fore, it is important to find some efficient methods to solve fractional differential and inte-
gral equations. Many considerable works on the theoretical analysis [5–8] have been car-
ried on, but analytic solutions of most fractional differential equations cannot be obtained
explicitly. Many authors have resorted to numerical solution strategies based on conver-
gence and stability analysis [9–34]. For one-dimensional problems, Lopez-Marcos [10]
and Tang [12] analyzed finite difference schemes for a partial integro-differential equa-
tion. Lin and Xu [16] considered numerical approximations based on a finite difference
scheme in time and Legendre spectral methods in space. Li and Xu [17] extended their
previous work and proposed a spectral method in both temporal and spatial discretiza-
tions. Deng [18] developed the finite element method for the numerical solution of the
space-time fractional Fokker-Planck equation. Li and Xu [24] constructed and analyzed
stable and high order scheme to solve the integro-differential equation which is discretized
by the finite difference in time and by the finite element method in space.

For two-dimensional problems, Zhang et al. [31] presented the finite differ-
ence/element method for a two-dimensional modified fractional diffusion equation. They
used the second-order backward differentiation formula in time and the finite element
method in space. Ji and Tang [32] considered the Runge-Kutta and discontinuous Galerkin
(DG) methods for the fractional diffusion equations. Chen and Liu [34] proposed a second-
order accurate numerical method for the two-dimensional fractional advection-dispersion
equation. This method combined the alternating directions implicit approach with the un-
shifted Grünwald formula for the advection term, the right-shifted Grünwald formula for
the diffusion term, and a Richardson extrapolation to establish an unconditionally stable
second order accurate difference scheme.

The numerical solutions of the high-dimensional fractional evolution equations are
still a challenge. The purpose in this paper is to consider effective numerical methods
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for the high-dimensional fractional evolution equations. The ADI method can reduce a
multidimensional problem to sets of independent one-dimensional problems. Thus the
ADI method reduces computational complexities greatly. We propose and analyze an al-
ternating direction implicit Galerkin finite element method for the two-dimensional time
fractional evolution equation. The ADI Galerkin finite element method is proved to be
convergent in time and in the L2 norm in space.

Throughout, the functions u0(x , y) and f (x , y, t) are assumed to be appropriately
smooth such that the problem (1.1)-(1.2b) has sufficiently smooth solution in Ω̄×[0, T]. In
fact, we need that ut , ut t , ux y t , ux x t and uy y t are continuous in Ω̄×[0, T] in the following
analysis.

Remark 1.1. The solution of (1.1)-(1.2b) has the following regularities,

u ∈ C([0, T]; H2 ∩H1
0),

ut ∈ C([0, T]; L2)∩ L1([0, T]; H2 ∩H1
0),

ut t ∈ L1([0, T]; L2),

when u0(x , y) and f (x , y, t) are sufficiently smooth (see [11]).

Remark 1.2. It is shown that, for the solution of (1.1)-(1.2b) with f (x , y, t) = 0,

|u(·, t)|s+2θ ≤ c(α)t−(α+1)θ |u0|s, t > 0, 0≤ θ ≤ 1, 0< α < 1, (1.3a)

|Dm
t u(·, t)|s+2θ ≤ c(m,α)t−(α+1)θ−m|u0|s, t > 0, − 1≤ θ ≤ 1, 0< α < 1, (1.3b)

where the notations |v|s = ‖As/2v‖, s ∈ ℜ, A = −∆, ℜ = (−∞,+∞), and Dm
t u(·, t) is the

mth order derivatives in time (see [11]).

The remainder of the article is organized as follows. In Section 2, some notations and
auxiliary lemmas are presented. The numerical scheme is given in Section 3. Section 4
studies the error estimate of the ADI scheme. The numerical example is given in Section 5
to support our analysis. The final section contains some concluding remarks.

2. Notation and preliminary lemmas

We denote the L2(Ω) inner product and norm by

( f , g) =

∫

Ω

f (x , y)g(x , y)d xd y, ‖ f ‖2 = ( f , f ),

respectively. With s a nonnegative integer, let Hs(Ω) denote the Sobolev space with norm

‖v‖Hs =

�

∑

0≤α1+α2≤s










∂ α1+α2 v

∂ xα1∂ yα2










2
�1/2

.
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Further, for v : [0, T]→ Hs(Ω), define the norm ‖ · ‖Lp(Hs) by

‖v‖Lp(Hs) =

�
∫ T

0

‖v‖ps d t

�1/p

, ‖v‖L∞(Hs) = sup
0<t≤T

‖v‖s.

Throughout this paper, c will denote a generic positive constant which is independent of
the mesh spacing. Let Sh,r(Ω), r ≥ 2, denote a family of finite-dimensional subspaces of
H1

0(Ω) parameterized by h with the following properties:

Sh,r ∈ Z ∩H1
0(Ω), (2.1a)










∂ 2V

∂ x∂ y








 ≤ ch−2‖V‖, V ∈ Sh,r , (2.1b)

inf
χ∈Sh,r

� 2
∑

m=0

hm
∑

i, j=0,1,i+ j=m










∂ m(u−χ)
∂ x i∂ y j










�

≤ chs‖u‖Hs , (2.1c)

for u ∈ Hs(Ω)∩ Z ∩H1
0(Ω), 2≤ s ≤ r, where

Z =

�

u

�

�

� u,
∂ u

∂ x
,
∂ u

∂ y
,
∂ 2u

∂ x∂ y
∈ L2(Ω)

�

.

For a positive integer N , let k = T/N , tn = nk (0 < n < N). The time domain [0, T] is
covered by {tn|0≤ n≤ N}. Given grid function w = {wn|0≤ n≤ N}, denote

wn(·) = w(·, tn), ∂t w =
wn −wn−1

k
.

Following Sanz-Serna [9], we approximate the following integral operator I1/2 by means
of the convolution sum I

1/2
k

defined by

(I
1/2
k
ϕ)(tn) = (πk)1/2

n−1
∑

p=0

εpϕ(tn−p)≈
∫ tn

0

(tn − s)−1/2ϕ(s)ds, (2.2)

where

εp = (−1)p
�

−0.5
p

�

, p = 0,1,2, · · · . (2.3)

To analyze the L2 error estimate, we define the projection operator Rh as follows: for all
φ ∈ H1

0(Ω), let Rhφ ∈ Sh,r(Ω), such that

(∇(φ −Rhφ),∇vh) = 0, ∀vh ∈ Sh,r(Ω). (2.4)

Then the following projection estimates hold:



Alternating Direction Implicit Finite Element Method for the Time Fractional Evolution Equation 45

Lemma 2.1 (see [36]). If ∂ lφ/∂ t l ∈ Lp(H r), l = 0,1,2, p = 2,∞, then there exists a

constant c, independent of h, such that










∂ l(φ − Rhφ)

∂ t l










Lp(H j)
≤ chs− j









∂ lφ

∂ t l










Lp(Hs)
, (2.5)

where j = 0,1 and 1≤ s ≤ r.

For deriving the error estimate, we also need the following results.

Lemma 2.2. Let ϕ ∈ C(J ; L2), ϕt ∈ L(J ; L2), then there exists a positive constant c that only

depends on T such that

‖(I1/2
k
− I1/2)ϕ(tn)‖2

≤c

�

(k/n)‖ϕ(0)‖2+ k2

∫ tn

tn−1

‖ϕt(s)‖2ds+ k2| ln k|
∫ tn−1

0

‖ϕt(s)‖2ds

�

, (2.6)

for 1≤ n≤ N, N = [T/k].

Proof. Noting that Rk = I
1/2
k
− I1/2, from [19], we obtain

|(Rkϕ)(tn)| ≤ c(k/n)1/2|ϕ(0)|+ ck1/2

∫ tn

tn−1

|ϕt(s)|ds+ ck

∫ tn−1

0

(tn − s)−1/2|ϕt(s)|ds.

Using Hölder inequality, these follow that












k1/2

∫ tn

tn−1

|ϕt(s)|ds













2

= k

∫

Ω

�
∫ tn

tn−1

|ϕt(s)|ds

�2

d xd y ≤ k2

∫ tn

tn−1

‖ϕt(s)‖2ds,

and







k

∫ tn−1

0

(tn − s)−1/2|ϕt(s)|ds










2

=

∫

Ω

�

k

∫ tn−1

0

(tn− s)−1/2|ϕt(s)|ds

�2

d xd y

≤k2

∫ tn−1

0

(tn− s)−1ds

∫ tn−1

0

‖ϕt(s)‖2ds

≤k2| ln tn − ln(tn − tn−1)|
∫ tn−1

0

‖ϕt(s)‖2ds

≤k2| ln T − ln k|
∫ tn−1

0

‖ϕt(s)‖2ds

≤ck2| ln k|
∫ tn−1

0

‖ϕt(s)‖2ds.

So, with the above inequalities, we obtain the desired result (2.6). �
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Lemma 2.3 (see [10]). Let {a0, a1, · · · an, · · · } be a sequence of real numbers with the prop-

erties

an ≥ 0, an− an−1 ≤ 0, an+1 − 2an+ an−1 ≥ 0. (2.7)

Then for any positive integer M, and for each vector (V 1, V 2, · · · , V M ) with M real entries,

M
∑

n=1

�
n−1
∑

p=0

apV n−p
�

V n ≥ 0. (2.8)

Note that for the numbers εp, p = 0,1, · · · , introduced in (2.3), properties (2.7) hold,
and hence the associated quadratic form is nonnegative.

Lemma 2.4 (see [35]). Let D denote the operators ∂t , ∂ /∂ t or ∂ 2/∂ t2. Using the triangle

inequality and the inequality (2.1b) and (2.1c), it holds that










∂ 2(Dηn)

∂ x∂ y








 ≤ chr−2‖Du‖H r + ch−2‖Dηn‖. (2.9)

3. Construction of the ADI scheme

We consider first discretisation in space by the Galerkin finite-element method to (1.1)
as follows: find U ∈ Sh,r , such that for all vh ∈ Sh,r :

�∂ U

∂ t
, vh

�

+

∫ t

0

(t − s)−1/2(∇U(s),∇vh)ds = ( f , vh), ∀vh ∈ Sh,r , t ∈ (0, T], (3.1)

with U(0) = Rhu0. Then, using (2.2), we define the backward Euler method in time by

(∂t U
n, vh) + (πk)1/2

n−1
∑

p=0

εp(∇Un−p,∇vh) = ( f
n, vh), ∀vh ∈ Sh,r , n= 1,2, · · · , N , (3.2)

with the initial values U0 = Rhu0, and where f n = f (x , y, tn). With En = Un − Un−1, then
(3.2) may be written as

(En, vh) +
p
πk3/2ε0(∇En,∇vh) = F n, vh ∈ Sh,r , n= 1,2, · · · , N , (3.3)

where

F n = k( f n, vh)−
p
πk3/2

n−1
∑

p=1

εp(∇Un−p,∇vh)−
p
πk3/2ε0(∇Un−1,∇vh). (3.4)

If we add the term

πk3ε2
0

� ∂ 2En

∂ x∂ y
,
∂ 2vh

∂ x∂ y

�
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to the left-hand side of (3.3), we obtain the backward Euler ADI Galerkin finite method

(En, vh) +
p
πk3/2ε0(∇En,∇vh) +πk3ε2

0

� ∂ 2En

∂ x∂ y
,
∂ 2vh

∂ x∂ y

�

=F n, vh ∈ Sh,r , n= 1,2, · · · , N , (3.5)

with the initial values U0 = Rhu0.
We now rewrite (3.5) in a more familiar ADI form. To this end, suppose Sh,r = S x

h,r ⊗
S

y

h,r , where S x
h,r and S

y

h,r are finite-dimensional subspaces of H1
0(R), and let {ϕiϑ j}Mx−1,My−1

i=1, j=1

be a tensor product basis for Sh,r , where {ϕi}Mx−1
i=1 and {ϑ j}My−1

j=1 are bases for the subspaces

S x
h,r and S

y

h,r , respectively. Set

Un(x , y) =

Mx−1
∑

i=1

My−1
∑

j=1

α
(n)

i j
ϕi(x)ϑ j(y),

then

En(x , y) =

Mx−1
∑

i=1

My−1
∑

j=1

β
(n)

i j
ϕi(x)ϑ j(y), β

(n)

i j
= α

(n)

i j
−α(n−1)

i j
.

Choosing vh = ϕlϑm, l = 1, · · · , Mx − 1; m = 1, · · · , My − 1, then (3.5) becomes

Mx−1
∑

i=1

My−1
∑

j=1

¨

(ϕiϑ j ,ϕlϑm) +
p
πk3/2ε0

�

�∂ ϕi

∂ x
ϑ j,
∂ ϕl

∂ x
ϑm

�

+
�

ϕi

∂ ϑ j

∂ y
,ϕl

∂ ϑm

∂ y

�

�

+πk3ε2
0

�∂ ϕi

∂ x

∂ ϑ j

∂ y
,
∂ ϕl

∂ x

∂ ϑm

∂ y

�

«

β
(n)

i j
= F n, (3.6)

where

F n =k( f n,ϕlϑm)−
Mx−1
∑

i=1

My−1
∑

j=1

¨p
πk3/2

n−1
∑

p=1

εp

�

�∂ ϕi

∂ x
ϑ j,
∂ ϕl

∂ x
ϑm

�

+
�

ϕi

∂ ϑ j

∂ y
,ϕl

∂ ϑm

∂ y

�

�

α
(n−p)

i j
+
p
πk3/2ε0

�

�∂ ϕi

∂ x
ϑ j,
∂ ϕl

∂ x
ϑm

�

+
�

ϕi

∂ ϑ j

∂ y
,ϕl

∂ ϑm

∂ y

�

�

α
(n−1)
i j

«

. (3.7)

We define the matrices

Ax = ((ϕi,ϕ j)x)
Mx−1
i, j , Ay = ((ϑi,ϑ j)y)

My−1
i, j=1 ,

Bx =

�

�∂ ϕi

∂ x
,
∂ ϕ j

∂ x

�

x

�Mx−1

i, j=1
, By =

�

�∂ ϑi

∂ y
,
∂ ϑ j

∂ y

�

y

�My−1

i, j=1
,
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and

F (n) = [F n(ϕ1,ϑ1), F n(ϕ1,ϑ2), · · · , F n(ϕ1,ϑMy−1), F n(ϕ2,ϑ1), · · · , F n(ϕMx−1,ϑMy−1)]
T ,

where

(χ,ψ)x =

∫

R

χ(x)ψ(x)d x , (χ,ψ)y =

∫

R

χ(y)ψ(y)d y,

and let

α(p) =
�

α
(p)

11 ,α(p)12 , · · · ,α(p)1My−1,α(p)21 , · · · ,α(p)Mx−1,My−1

�T ,

with β (p) defined similarly. So the matrix form of (3.6) is

�

Ax ⊗ Ay +
p
πk3/2ε0{Bx ⊗Ay + Ax ⊗ By}+πk3ε2

0Bx ⊗ By

�

β (n) = F (n),

or

[(Ax +
p
πk3/2ε0Bx )⊗ IMy−1][IMx−1 ⊗ (Ay +

p
πk3/2ε0By)]β

(n) = F (n), (3.8)

where ⊗ denotes the matrix tensor product, and IMx−1 and IMy−1 denote the identity

matrices of order Mx − 1 and My − 1, respectively. Introducing the auxiliary vector β̂ (n),
(3.8) is equivalent to

(
�

(Ax +
p
πk3/2ε0Bx )⊗ IMy−1

�

β̂ (n) = F (n),
�

IMx−1 ⊗ (Ay +
p
πk3/2ε0By)
�

β (n) = β̂ (n).
(3.9)

Thus we determine β (n) by solving two sets of independent one-dimensional problems,
first

(Ax +
p
πk3/2ε0Bx )β̂

(n)
m = F (n)m , m= 1,2, · · · , My − 1, (3.10)

in the x -direction, where

νm = [ν1m,ν2m, · · · ,νMx−1,m]
T

followed by

(Ay +
p
πk3/2ε0By)β

(n)

l
= β̂

(n)

l
, l = 1,2, · · · , Mx − 1, (3.11)

in the y-direction, where

νl = [νl1,νl2, · · · ,νl ,My−1]
T .

Since ε0 ≥ 0, the matrices Ax+
p
πk3/2ε0Bx and Ay+

p
πk3/2ε0By are nonsingular. Hence,

there exists a unique backward Euler ADI Galerkin finite element approximation. With
standard choices of bases for S x

h,r and S
y

h,r , the linear systems (3.10) and (3.11) are almost
block diagonal and can be solved efficiently using Gauss elimination-based algorithms.
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4. Convergence and stability of the ADI scheme

In this section we present the L2 error estimate for the backward Euler ADI Galerkin
finite element approximation.

Theorem 4.1. Let u and {Un}Nn=0 denote the solutions of (1.1)-(1.2b) and (3.5), respectively.

Assume that u ∈ L∞(H r), ∂ u/∂ t, ∂ 3u/∂ x∂ y∂ t ∈ L2((0, T]; H r), ut t ∈ L2((0, T]; L2) and

u0 ∈ H r ∩H1
0 , where r ≥ 2. Then, for k sufficiently small,

‖UN − uN‖ ≤c

¨

hr

�

‖u‖L∞(H r ) +










∂ u

∂ t










L2(H r )

�

+ k3/2hr−2









∂ u

∂ t










L2(H r )

+ k3/2
�

‖∆ut‖L2(L2) +










∂ 3u

∂ x∂ y∂ t










L2(L2)

�

+ k
�

(| ln k|)1/2‖∆u(0)‖

+ ‖ut t‖L2(L2) + (| ln k|)1/2‖∆ut‖L2(L2)

�

«

,

provided the initial value U0 satisfies U0 = Rhu0.

Proof. Let ξn = Un− Rhun and ηn = un − Rhun. Then

Un− un = ξn−ηn.

Since bounds on ηn are known from Lemma 2.1, it is sufficient to bound ξn and then use
the triangle inequality to bound Un − un.

First note that (3.5) can be written as

(∂t U
n, vh)+ (πk)1/2

n−1
∑

p=0

εp(∇Un−p,∇vh) +πk3ε2
0

�∂ 2[∂t U
n]

∂ x∂ y
,
∂ 2vh

∂ x∂ y

�

=( f n, vh), ∀vh ∈ Sh,r , 1≤ n≤ N . (4.1)

Also,

(∂tu
n, vh)+ (πk)1/2

n−1
∑

p=0

εp(∇un−p,∇vh)

=( f n, vh) + (∂tu
n − un

t , vh)− (ǫn(∆u), vh), ∀vh ∈ Sh,r , (4.2)

where ǫn is the quadrature error associated with the quadrature rule (2.2), that is,

ǫn(ϕ) = I
1/2
k
(ϕ)(tn)−
∫ tn

0

(tn − s)−1/2ϕ(s)ds. (4.3)

Then, using (4.1), (4.2), and (2.4) and choosing vh = ξ
n, we obtain

(∂tξ
n,ξn) +πk3ε2

0

�∂ 2[∂tξ
n]

∂ x∂ y
,
∂ 2ξn

∂ x∂ y

�

+ (πk)1/2
n−1
∑

p=0

εp(∇ξn−p,∇ξn)

=(σn,ξn) +πk3ε2
0

� ∂ 2

∂ x∂ y
[∂tη

n − ∂tu
n],

∂ 2ξn

∂ x∂ y

�

, (4.4)
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where σn = σn
1 +σ

n
2 +σ

n
3 with

σn
1 = un

t − ∂tu
n, σn

2 = ∂tη
n, σn

3 = ǫn(∆u).

Then

(∂tξ
n,ξn)≥ 1

2
∂t‖ξn‖2, (4.5)

and
�∂ 2[∂tξ

n]

∂ x∂ y
,
∂ 2ξn

∂ x∂ y

�

≥ 1

2
∂t










∂ 2ξn

∂ x∂ y










2
. (4.6)

For the right-hand-side terms in (4.4), we have, respectively,

|(σn,ξn)| ≤ 1

2
(‖σ‖2 + ‖ξn‖2), (4.7a)

�

�

�

� ∂ 2

∂ x∂ y
[∂tη

n − ∂tu
n],

∂ 2ξn

∂ x∂ y

�
�

�

�≤ 1

2

�









∂ 2

∂ x∂ y
[∂tη

n − ∂tu
n]










2
+










∂ 2ξn

∂ x∂ y










2�

. (4.7b)

If we substitute (4.5)-(4.7b) into (4.4), multiply both sides by 2k, and then sum the result-
ing expression from n= 1 to n= N , we obtain

‖ξN‖2 +πk3ε2
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∂ 2ξN
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2
+ 2
p
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2
. (4.8)

From Lemma 2.3, it holds that

2
p
πk3/2

N
∑

n=1

n−1
∑

p=0

εp(∇ξn−p,∇ξn)≥ 0. (4.9)

So we have
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From the Gronwall inequality, for k sufficiently small, it follows that
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. (4.10)

Taking U0 = Rhu0, we can obtain

‖ξN‖2 ≤ c
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Using the triangle inequality and (4.11), we obtain

‖UN − uN‖2 ≤c[‖ξN‖2 + ‖ηN‖2]

≤c

�
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. (4.12)

It remains to estimate the terms on the right-hand side of (4.12). First, by Lemma 2.1, we
have

‖ηN‖2 ≤ ‖η‖2
L∞(L2)

≤ ch2r‖u‖2
L∞(H r )

. (4.13)

To estimate σn
1 , we use Taylor’s theorem with integral remainder and Hölder inequality to

obtain

‖σn
1‖2 =









1

k

∫ tn

tn−1

(tn − s)ut t(s)ds










2
=

∫

Ω

�

�

�

1

k

∫ tn

tn−1

(tn − s)ut t(s)ds

�

�

�

2
dµ

≤
∫

Ω

�

�

�

∫ tn

tn−1

ut t(s)ds

�

�

�

2
dµ≤ k

∫ tn

tn−1

∫

Ω

|ut t(s)|2dµds

=k

∫ tn

tn−1

‖ut t(s)‖2ds,

where dµ= d xd y. Hence, we have
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Since
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2 = ∂tη
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1

k
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similarly, using Hölder inequality, we obtain
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Then, from Lemma 2.1, we get

k
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It follows from (2.6) that
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�

, (4.16)

since 1+ 1/2+ · · ·+ 1/N ≤ c| ln k|.
We now estimate the last term on the right-hand side of (4.12). Similarly, applying the

Hölder inequality, we get
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Thus we have
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In addition, according to Lemma 2.1 and Lemma 2.4, we obtain
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Namely,
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Similarly, we have

πk4ε2
0

N
∑

n=1










∂ 2[∂tu
n]

∂ x∂ y










2
≤ πk3ε2

0

N
∑

n=1

∫ tn

tn−1










∂ 3u

∂ x∂ y∂ t










2
ds

≤ck3

∫ T

0










∂ 3u

∂ x∂ y∂ t










2
ds = ck3









∂ 3u

∂ x∂ y∂ t










2

L2(L2)
. (4.18)

On substituting (4.13)-(4.18) into (4.12), we obtain

‖UN − uN‖2 ≤c

�

h2r

�

‖u‖2
L∞(H r )

+










∂ u

∂ t










2

L2(H r )

�

+ k3h2r−4









∂ u

∂ t










2

L2(H r )

+ k3
�

‖∆ut‖2L2(L2)
+










∂ 3u

∂ x∂ y∂ t










2

L2(L2)

�

+ k2
h

| ln k|‖∆u(0)‖2

+ ‖ut t‖2L2(L2)
+ | ln k|‖∆ut‖2L2(L2)

i

�

,

which completes the proof. �

Employing a similar technique as in the Theorem 4.1, we can directly derive the stabil-
ity result.

Theorem 4.2. The ADI Galerkin finite scheme (3.5) is unconditionally stable in the sense that

for all k > 0, it holds

‖UN‖ ≤ c

�

‖U0‖+πk3ε0










∂ 2U0

∂ x∂ y








+ k

N
∑
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‖ f n‖
�

.

5. Numerical results

In this section, we present numerical results obtained using the ADI Galerkin finite
element scheme (3.5) at T = 1.

Example 5.1. We consider the following nonhomogeneous problem

ut −
∫ t

0

(t − s)−1/2∆u(x , y, s)ds = f (x , y, t), 0< x , y < 1, 0< t ≤ T, (5.1a)

u(0, y, t) = u(1, y, t) = u(x , 0, t) = u(x , 1, t) = 0, 0< t ≤ T, (5.1b)

u(x , y, 0) = sin(πx) sin(πy), 0≤ x , y ≤ 1. (5.1c)

Then we choose the exact analytical solution:

u(x , y, t) = sinπx sinπy(t3/2 + 1).

It can be checked that the associated forcing term is

f (x , y, t) = sinπx sinπy
�

3/2t1/2 + 3/4π3t2 + 4π2t1/2�.
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In the implementation of the ADI method, we take the linear tensor product bases

ϕi(x) =



























0, x0 ≤ x < x i−1,
x − x i−1

hi

, x i−1 ≤ x < x i,

x i+1 − x

hi+1
, x i ≤ x < x i+1,

0, x i+1 ≤ x < xMx
,

and

ϑ j(y) =



























0, y0 ≤ y < y j−1,
y − y j−1

h j

, y j−1 ≤ y < y j ,

y j+1 − y

h j+1
, y j ≤ y < y j+1,

0, y j+1 ≤ y < yMy
,

where i = 1,2, · · · , Mx − 1, j = 1,2, · · · , My − 1, hi = x i − x i−1, h j = y j − y j−1. We use the
same spacing h in each direction, hi = h j = h. We present the error in L2 norm

e(k,h) = ‖UN − uN‖
and the convergence rates in the temporal and spatial directions determined by the follow-
ing formulas

γ1 ≈
log(el/el+1)

log(τl/τl+1)
, γ2 ≈

log(em/em+1)

log(hm/hm+1)
,

respectively, where the stepsize τl = 1/Nl , hm = 1/Mm and el , em is the norm of the error
with τ = τl , h= hm respectively.

The initial condition can be approximated using U0 = Rhu0. The computational results
are displayed in Table 1 when uniform stepsizes k = h = T/N are used. We observe that
the numerical convergence order matches well with the theoretical convergence order in
temporal direction.

In Table 2, we list the L2 errors and convergence rates when k = h2 = T/N . It can be
clearly seen that the second order accuracy in spatial direction is verified, which is in good
agreement with the theoretical prediction of Theorem 4.1.Table 1: The L2 errors and 
onvergen
e orders in temporal dire
tion.

h k L2 error Rate γ1

1/8 1/8 0.0225

1/12 1/12 0.0128 1.3912

1/16 1/16 0.0094 1.0732

1/20 1/20 0.0076 0.9526
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onvergen
e orders in spatial dire
tion.
h k L2 error Rate γ2

1/4 1/16 0.0401

1/8 1/64 0.0103 1.9610

1/12 1/144 0.0045 2.0423

1/16 1/256 0.0025 2.0432

6. Concluding remarks

In this paper, we have formulated and analyzed ADI Galerkin finite element method
for the two-dimensional fractional evolution equation. It has been shown that the ADI
solutions are convergent in the L2 norm. The theoretical analysis has been verified by
some numerical results.

Generally, a method similar to that presented in the paper can be constructed for the
equation

ut −
∫ t

0

(t − s)α−1∆u(x , y, s)ds = f (x , y, t), 0< α < 1.

With an analysis parallel to that carried out in the paper, the stability and convergence of
the numerical method are preserved.

The problem is linear, and the spatial domain is assumed to be the unit square. It
may be possible to extend the present ADI method to nonlinear equations in rectangular
polygons.
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