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Abstract. One of the classical optimization models for image segmentation is the well

known Markov Random Fields (MRF) model. This model is a discrete optimization

problem, which is shown here to formulate many continuous models used in image

segmentation. In spite of the presence of MRF in the literature, the dominant perception

has been that the model is not effective for image segmentation. We show here that the

reason for the non-effectiveness is due to the lack of access to the optimal solution.

Instead of solving optimally, heuristics have been engaged. Those heuristic methods

cannot guarantee the quality of the solution nor the running time of the algorithm.

Worse still, heuristics do not link directly the input functions and parameters to the

output thus obscuring what would be ideal choices of parameters and functions which

are to be selected by users in each particular application context.

We describe here how MRF can model and solve efficiently several known continuous

models for image segmentation and describe briefly a very efficient polynomial time

algorithm, which is provably fastest possible, to solve optimally the MRF problem. The

MRF algorithm is enhanced here compared to the algorithm in Hochbaum (2001) by

allowing the set of assigned labels to be any discrete set. Other enhancements include

dynamic features that permit adjustments to the input parameters and solves optimally

for these changes with minimal computation time. Several new theoretical results on

the properties of the algorithm are proved here and are demonstrated for images in

the context of medical and biological imaging. An interactive implementation tool for

MRF is described, and its performance and flexibility in practice are demonstrated via

computational experiments.

We conclude that many continuous models common in image segmentation have

discrete analogs to various special cases of MRF and as such are solved optimally and

efficiently, rather than with the use of continuous techniques, such as PDE methods, that

restrict the type of functions used and furthermore, can only guarantee convergence to

a local minimum.
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1. Introduction

Partitioning and grouping of similar objects plays a fundamental role in image segmen-

tation and in clustering problems. In such problems the goals are to group together similar

objects, or pixels in the case of image processing. Given an input image, the objective of

image segmentation is to recognize the salient features in the image. Each feature set is

grouped together in one segment represented by some uniform color area.

A noisy or corrupted image is characterized by lacking uniform color areas, which are

assumed to characterize a true image. Rather, in such image there are adjacent pixels of

different color areas. To achieve higher degree of uniform color areas, it is reasonable to

assign a penalty to neighboring pixels that have different colors associated with them. On

the other hand, the purpose of the segmentation is to represent the "true" image. For that

purpose the given assignment of colors in the input image is considered to be the "priors"

on the colors of the pixels, and as such, the best estimate available on their true labels.

Therefore, any change in those priors is assigned a penalty for deviating from the priors.

The Markov Random Fields problem for image segmentation is to assign colors to the

pixels so that the total penalty is minimized. The penalty consists of two terms. One is the

separation penalty, or smoothing term, and the second is the deviation penalty, or fidelity
term. For this reason we refer to this penalty minimization problem also as the separation-
deviation problem. This problem has been extensively studied over the past two decades,

see, e.g., [4,7,19,20,28,31].

The input to the problem is a graph G = (V, E), where in the case of image segmentation

each pixel is represented as a node in V . Let N(i) be the set of neighbors of node i ∈ V .

For each j ∈ N(i) the pair of nodes {i, j} have an edge [i, j] ∈ E connecting them. Each

node i ∈ V has a deviation function Gi() associated with it, and each edge [i, j] ∈ E has

an associated separation function Fi j(). The problem formulation, described in full detail

in Section 5 is,

(MRF) min
∑

i∈V

Gi(x i) +
∑

i∈V

∑

j∈N(i)

Fi j(x i − x j)

subject to x i ∈ X i, ∀i ∈ V.

The sets X i consists of a collection of discrete labels, {a1, a2, · · · ,an}, that can be assumed

by variables x i in a feasible solution. That is, MRF is a multi-label assignment. It is noted

that the concept of "colors" associated with pixels can be replaced by any other scalar char-

acterization of pixels or voxels, such as texture. We refer here to colors as a representation

of such characterizations.

The complexity of MRF depends on the form of the penalty functions. This complexity

of MRF was fully resolved and classified according to the properties of the penalty functions

in [26] for sets of consecutive integers X i = {ℓi,ℓi+1, · · · ,ui}. For convex penalty functions

MRF is polynomial time solvable, and for non-convex the problem is NP-hard. The cases

when the deviation penalty functions are convex and the separation penalty functions are

(bi-)linear (defined below) was shown by Hochbaum [26] to be solvable in polynomial
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time using a parametric cut procedure. Furthermore, it was shown there that the complex-

ity of the algorithm is the fastest possible. The case where both separation and deviation

penalty functions are convex were also shown to be solvable very efficiently, and within a

multiplicative log factor of fastest possible, by [1, 2]. For non-convex deviation functions

and convex separation functions the problem is solved in pseudo-polynomial time, that de-

pends on the number of label values, or the range of the variables. This running time is

the time required to solve a minimum cut problem on a graph with number of nodes that

depends on the number of labels [1]. When both type of penalty functions are non-convex

the MRF problem is NP-hard. These results, all for multi-labels MRF, are summarized in

Table 1. Table 1: Complexity of MRF problems.
Deviation Separation Complexity Reference

function Gi() function Fi j()

Convex Convex O(mn log n2

m
log nU) Ahuja et al. [2]

Convex Bilinear O(mn log n2

m
+ n log U) Hochbaum [26]

Quadratic Bilinear O(mn log n2

m
) Hochbaum [26]

General (nonlinear) convex O(mnU2 log n2U
m
) Ahuja et al. [1]

Linear Nonlinear NP-hard Hochbaum [26]

In Table 1 and henceforth we let U =maxi |X i| be the number of labels. In referring to

complexity of algorithms here, we will use the standard notation of n= |V | the number of

nodes in the graph, m = |E| the number of edges (or arcs, in case of directed graphs) in

the graph, and T (n, m) the complexity of the minimum s, t-cut problem on a graph with

n nodes and m arcs or edges. A bi-linear separation function is a (two) piecewise linear

function with a linear function in the range x i ≥ x j and a linear function in the range

x j ≥ x i, of the form:

Fi j(x i − x j) =







ui j(x i − x j), if x i > x j,

0, if x i = x j,

u ji(x j − x i), if x i < x j.

Comments

1. When the set of discrete values for each variable consists of two values, U = 2, then the MRF

problem (for any deviation or separation functions) is the binary MRF. The link of binary

MRF to the minimum cut problem was first presented by Greig et al. [22], and later from a

different perspective, as an s-excess problem, in [25,26].

2. The complexities of the algorithms of [26] and [1] stated in Table 1 for convex-bilinear,

quadratic-bilinear and nonlinear-convex, are fastest possible.

3. The complexity O(mn log(n2/m)) is replaced by the respective complexity of a minimum

s, t-cut procedure that can be implemented efficiently as parametric. To date, the only

known parametric cut procedures are the HPF (Hochbaum’s PseudoFlow) algorithm and

push-relabel algorithm. For these algorithms T (n, m) is O(mn log(n2/m)), or parametric

HPF can also be implemented in O(n3), [23].
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4. The MRF problems in the table include those with convex functions such as Fi j(x i − x j) =

(x i − x j − ai j)
2. Such functions do not assume the value 0 for x i − x j = 0. This is notable,

since in segmentation applications both Gi() and Fi j() are assumed to map the zero argument

to 0. The algorithms referenced in Table 1 that solve the respective MRF problems with

either convex separation or nonlinear or convex deviation apply also to functions that do

not assume the value 0 for arguments equal to 0, and therefore solve these more general

problems.

5. The MRF algorithms cited can all be applied to directed graphs.

6. The number of labels given U is presented here as a set of consecutive integers. (See Remark

1.1 as to why it is sufficient to consider integers.) However, as proved here in Section 5 the

algorithm for convex-bilinear given here can apply to any discrete set of U values, that are

not required to be consecutive (or converted to integers).

7. The running time for nonlinear-convex is "pseudo-polynomial" as it depends on the number

of labels U . The number U is not a part of the input. It is sufficient to indicate the length

of the interval of the values, which requires log U . Solving this problem provably requires

at least pseudo-polynomial running time, as shown in Lemma 1.1 below. In that sense this

problem is harder than e.g., the (weakly) NP-hard Knapsack problem, which can be solved

in pseudo-polynomial time, but may be polynomial time solvable if N P = P. A pseudo-

polynomial time algorithm is therefore best possible in the sense that it cannot be improved

to polynomial time algorithm, that would depend on log U only.

Remark 1.1. It is always assumed that the input data describing a problem instance is

given in integers. This is since digital computers can only process integers, or equiva-

lently, rational numbers. If the input is given in rational numbers, there exists a scalar

large enough so the input data can be scaled and converted to an equivalent instance in

integers. When one considers nonlinear functions the solution may be irrational. Indeed

such solutions cannot be expressed as the output of a computer algorithm, and can be at

best attained within pre-specified accuracy, or number of significant digits. An ε-accurate

solution is a solution that is within norm max distance of ε from the true solution. For

more on this subject the reader is referred to [27].

Lemma 1.1. The complexity of MRF with nonlinear deviation functions and no separation
functions, all Fi j() = 0, is at least pseudo-polynomial.

Proof. For Gi() nonlinear consider the MRF problem,

min
∑

i∈V

Gi(x i)

subject to 0≤ x i ≤ U integer ∀i ∈ V.

This problem is decomposable to n nonlinear optimization problems, for all i = 1, · · · , n, of

the form,

min Gi(x i)

subject to 0≤ x i ≤ U integer.
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Solving this problem is equivalent to finding the minimum entry in the array of length

U + 1, (Gi(0), Gi(1), · · · , Gi(U)). Since the entries in this array are arbitrary, it is necessary

to inspect all of them. Therefore the running time of solving this nonlinear problem is

Ω(U), and the complexity of nonlinear deviation MRF is Ω(nU). �

We conclude that MRF with nonlinear deviation functions and convex separation func-

tions is only harder than the respective MRF with no separation functions. Therefore

pseudo-polynomial complexity is best possible for nonlinear deviation MRF. In that sense

the complexity of nonlinear deviation convex separation given in Table 1 is fastest possible.

Even though, with the results above, the MRF problem is fully understood and solved,

there is still much active work on attempting to solve certain image segmentation models

using restricted forms of MRF and/or solving them heuristically. One class of such problems

is the continuous models of Mumford-Shah, total variations and regularization.

Continuous optimization models of total variations and regularization have been uti-

lized in image analysis for the purpose of denoising an image. In solving these models

researchers employ continuous methodologies and heuristics. Often the functions and pa-

rameters selected are chosen so as to facilitate the solution techniques instead to reflect

the properties of the segmented features. Even if the model selected is MRF it is often

approached with continuous techniques. For example, a recent work by Pock et al. [34]

provides approximate continuous methods for solving MRF with the Potts model in which

the separation functions assume the value 0 only if x i = x j and Fi j(x i − x j) = 1 if x i 6= x j.

Although such Fi j functions are non-convex, and the respective MRF problem is NP-hard,

Pock et al. [34] address that problem with continuous techniques also for the case of a

bipartition (where the variables x i are binary). The method proposed, that relaxes the

integrality, may not converge to an optimal solution, and the running time cannot be de-

termined in advance. This is surprising, given that the exact binary problem can be solved

within guaranteed polynomial time complexity. Moreover, digital images are inherently

discrete, and considering them as continuous causes loss of accuracy. The output of a con-

tinuous method must be mapped back to digital image information, entailing further loss

of accuracy. Additional examples and details of this phenomenon are provided in Section

2. We demonstrate that several classical continuous models are better represented with

the MRF model and thus benefit from the algorithmic efficiency, described here, of solving

it.

The main contributions here include: The introduction of the efficient use of the MRF

algorithm for continuous and discrete models in vision; a new result allowing to solve

convex-bilinear MRF for any discrete set of labels; new theoretical results on parametric

cut; the implementation of the MRF algorithm with new flexibility features, the MRF tool,

presented here for the first time; and experimental results that demonstrate the capabilities

of the MRF tool.

The next section reviews representative research to date that addressed algorithms for

MRF for vision problems or continuous models modeled as MRF. In Section 3 we describe

the HPF algorithm for maximum flow and minimum cut, which is a main subroutine for

the MRF algorithms described. Section 4 describes a few known continuous models that

were previously addressed with continuous techniques, and their representation as MRF,
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resulting in efficient algorithms. In Section 5 we provide a sketch of the MRF polynomial

time algorithm and theoretical results on the parametric cut algorithm. This section in-

cludes a new result in Lemma 5.3 on solving for any discrete set of permissible labels,

not necessarily consecutive integers, without an increase in the running time. Section 6

describes a user-interactive tool that runs the convex-bilinear MRF algorithm and its prop-

erties. That tool allows for several flexibility features that include changing the balance

between separation and deviation, and allowing to increase the fidelity of the output with

respect to a subset of the given colors. In Section 7 we present experimental results that

show how the MRF algorithm’s output depends on the choice of the parameters and the

available selected features. In this section we also provide comparisons with the image

segmentation algorithm based on Shi and Malik’s eigenvector approach [37]. Finally we

provide conclusions and brief summary in Section 8.

2. Related literature on algorithms for MRF

As noted already, the binary MRF was linked to the minimum cut problem originally by

Greig et al. [22], and later from a different perspective, as an s-excess problem, in [25,26]

where it was shown equivalent to a minimum s, t-cut problem. In that sense the binary

MRF problem has been fully resolved. The MRF problem has been further studied over the

past two decades, see, e.g., [4, 7, 19, 20, 28]. These studies present either heuristic algo-

rithms or non-polynomial optimization algorithms for the MRF problem. Some attention

has been devoted to binary MRF problems with submodular separation functions which do

not appear to fall directly within the formulation of MRF given here, since those energy

function are non-separable. However, Kolmogorov and Zabih, [30], demonstrated that

such functions can be represented by a graph. This means that it is possible to formulate

the submodular MRF problem as a simple binary MRF problem. Alternatively, this means

that such submodular functions are separable and can be treated as any other binary MRF

problem, and consequently solved with a minimum cut procedure on the respective graph.

Ishikawa presented in [29] a "multi-labels" MRF algorithm with convex separation and

arbitrary nonlinear deviation functions. Although the complexity of Ishikawa’s algorithm

is not stated, it appear to have at least pseudo-polynomial complexity as the running time

depends on the number of labels. Ishikawa was not aware that a more efficient pseudo-

polynomial time algorithm already existed for the same problem. The nonlinear deviation

algorithm was discussed in [26] (and referenced there as a 1999 manuscript) and de-

scribed in detail in [1]. That algorithm, listed in Table 1, solves the nonlinear deviation

MRF problem on U labels with a single minimum s, t-cut procedure on a graph on nU
nodes and mU edges. As shown in Lemma 1.1 the run time of the algorithm of Ahuja et

al. [1] is fastest possible in the sense that the dependence on U in the running time cannot

be removed.

When the deviation functions are convex as well, which is the case in all the appli-

cations discussed in the literature, that run time is shown to be polynomial: Ahuja et

al. [1] present a more efficient version of this algorithm that runs in log U applications

of minimum s, t-cut on graphs of polynomial size (rather than pseudo-polynomial) which
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improves on the run time of Ishikawa’s algorithm. Moreover, for arbitrary convex penalty

functions the run time of the algorithm in [2] is polynomial and the fastest known for MRF

problems, O(mn log n2/m log nU)
Bae and Tai presented in [3] a simplification of the Mumford-Shah model that reduces

to an MRF problem on multiple labels (as opposed to a binary MRF problem). The problem

formulation for setting φi = ui is:

min
∑

i∈V

δ2(ui − u0
i )

2+ ν
∑

[i, j]∈E

1

2
wi j |ui − u j |. (2.1)

Bae and Tai [3] solved the problem by using, at each call to such an MRF problem,

Ishikawa’s algorithm [29]. As pointed above, that algorithm is less efficient than the re-

spective algorithms in [1, 2, 26]. Moreover, problem (2.1) has bilinear separation terms

and quadratic deviation terms. Thus there is no need to employ an algorithm to solve the

harder problem with nonlinear deviation functions. Such a problem was shown in [26]

to be solved in strongly polynomial time equal to T (n, m) for a graph on n nodes and m
adjacencies (edges). That running time is also the fastest possible in that the problem is

at least as hard as a minimum s, t-cut problem and therefore if of complexity Ω(T (n, m)).
Therefore Ishikawa’s algorithm is inappropriate to use in this context. Bae and Tai [3] fur-

ther refer to Darbon and Sigelle [15] as being able to solve problem (2.1) by a sequence

of min-cuts. As pointed out above, this problem can be solved by a single minimum cut

procedure.

In [15], Darbon and Sigelle address, as here, a discrete version of the total variation

problem. They present the problem as a collection of binary MRF problems, and therefore

not of polynomial time complexity. They considered the deviation terms to be either linear

or convex quadratic and the separation terms are bi-linear corresponding to absolute value.

Therefore this problem is solved in the run time of a single minimum cut and is strongly

polynomial (independent of the number of labels), as shown in [26]. Although aware

of this algorithm, they do not use it, since "Hochbaum in [26] did not present numerical
results". One of our goals here is to present numerical results, in addition to the theoretical

foundations and algorithms for MRF.

Pock et al. in [34] claim to show that in the isotropic, and thus non-separable, case

with Potts penalty functions, the continuous approach dominates the discrete one. A sim-

plification of the problem they address is cast as MRF, and therefore separable problem.

They refer to Ishikawa’s algorithm for solving that MRF exactly. As noted already, this algo-

rithm is not the best even for nonlinear deviation terms and is dominated by the algorithm

in [1]. Although unclear, it appears that Pock et al. use convex deviation terms rather than

nonlinear deviation. And since they use for the separation terms absolute value (bilinear)

functions, such an MRF problem is solved in polynomial time and very efficiently, with the

algorithm described in [26].

Another issue is that Pock et al. also claim that the size of the graph makes it com-

putationally impossible to compute the minimum cut. They do not state however which

algorithm was used to solve the cut problem. Recently, a popular cut algorithm used in
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vision problem is by Boykov and Kolmogorov, [6]. But that algorithm does not work well

for the setting here. This is because the neighborhood in the constructed graph is different

from a grid and Boykov Kolmogorov algorithm does not run as efficiently as HPF except

for low connectivity low degree graphs. A study comparing the performance of Boykov

Kolmogorov algorithm to HPF for vision problems is described in [16] and demonstrates

that other than small size low connectivity vision graphs, where that algorithm is slightly

faster, HPF provides substantial improvement for vision problems solving the minimum cut

problem and is the fastest algorithm to date for cut problems and vision problems.

Based on the combination of Ishikawa’s algorithm with a choice of minimum cut algo-

rithm that is suboptimal, Pock et al. conclude that approaching their vision problem with

a continuous method yields better results and is more efficient. However, the use of the

MRF algorithm of [26], along with the HPF algorithm would have provided results much

more efficiently, and based on this author’s experience, the results are likely to have been

of better quality than those achieved with the continuous method. Until tested properly,

the claim of Pock et al. that the continuous method performs better remains unsettled.

In [24]Hochbaum et al. conduct an experimentation with the parametric cut algorithm

HPF for the convex-deviation bilinear-separation MRF. The results indicate that the MRF

is a fast and effective method at denoising medical images as well as segmenting tissue

types, organs, lesions, and other features within medical images.

3. HPF — the pseudoflow algorithm

The pseudoflow algorithm, HPF, plays an important role here, both in terms of effi-

ciency, and in its adaptability to solve the parametric cut problem.

3.1. Definitions and notation

Let Gst be a graph (Vst ,Ast), where Vst = V ∪{s, t} and Ast = A∪As∪At in which As and

At are the source-adjacent and sink-adjacent arcs respectively. The number of nodes |Vst |
is denoted by n, while the number of arcs |Ast | is denoted by m. A flow f = { fi j}(i, j)∈Ast

is

said to be feasible if it satisfies

(i) Flow balance constraints: for each j ∈ V ,
∑

(i, j)∈Ast
fi j =
∑

( j,k)∈Ast
f jk (i.e., inflow( j) =

outflow( j)), and

(ii) Capacity constraints: the flow value is between the lower bound and upper bound capacity

of the arc, i.e., ℓi j ≤ fi j ≤ ui j . We assume henceforth w.l.o.g that ℓi j = 0.

The maximum flow or max-flow problem on a directed capacitated graph with two

distinguished nodes—a source and a sink—is to find a feasible flow f ∗ that maximizes the

amount of flow that can be sent from the source to the sink while satisfying flow balance

constraints and capacity constraints.

A cut is a partition of nodes S ∪ T = V , T = S̄, with s ∈ S, t ∈ T . The set S is referred

to as the source set and T as the sink set. The capacity of a cut is the sum of capacities

of arcs that go from S to T denoted by C(S, T ) =
∑

i∈S, j∈T,(i, j)∈A ui j . The minimum s-t
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cut problem, henceforth referred to as the min-cut problem, is to find a bi-partition of

nodes—one containing the source and the other containing the sink—such that the sum

of capacities of arcs from the source set to the sink set is minimized. In 1956, Ford and

Fulkerson [17] established the max-flow min-cut theorem, which states that the value of a

max-flow in any network is equal to the value of a min-cut.

Given a capacity-feasible flow, hence a flow that satisfies (ii), an arc (i, j) is said to be a

residual arc if (i, j) ∈ Ast and fi j < ui j or ( j, i) ∈ Ast and f ji > 0. For (i, j) ∈ Ast , the residual

capacity of arc (i, j) with respect to the flow f is c f
i j = ui j− fi j, and the residual capacity of

the reverse arc ( j, i) is c f
ji = fi j . Let Af denote the set of residual arcs with respect to flow

f in Gst which consists of all arcs or reverse arcs with positive residual capacity.

A preflow is a relaxation of a flow that satisfies capacity constraints, but inflow into a

node is allowed to exceed the outflow. The excess of a node v ∈ V is the inflow into that

node minus the outflow denoted by e(v) =
∑

(u,v)∈Ast
fuv −
∑

(v,w)∈Ast
fvw . Thus a preflow

may have nonnegative excess.

A pseudoflow is a flow vector that satisfies capacity constraints but may violate flow

balance in either direction (inflow into a node needs not to be equal outflow). A negative

excess is called a deficit.

3.2. Hochbaum’s pseudo-flow algorithm

Hochbaum’s pseudoflow algorithm, HPF, [25] works with pseudoflows that can violate

flow balance constraints. HPF has a strongly polynomial complexity of O(nm log n2

m
) [23].

It was shown to be fast in theory [25] and in practice [11] for general benchmark prob-

lems. In [16] HPF’s performance for vision problems was compared to that of the push-

relabel algorithm and its improvement, PAR, [21] and to Boykov and Kolmogorov’s al-

gorithm [6]. The results demonstrated that the superior performance of HPF for vision

problems, compared to that of the other methods, makes it the most effective algorithm

for large vision problems.

At each iteration of the algorithm a spanning forest is maintained: Each node in v ∈ V
is associated with at most one parent node w such that the current arc, (w, v), is in Af ;

the corresponding parent node of v is denoted by parent(v) = w. The algorithm also

associates with each node with a root that is defined constructively as follows: starting

with node v, generate the sequence of nodes {v, v1, v2, · · · , vr} defined by the current arcs

(v1, v), (v2, v1), · · · , (vr , vr−1) until vr has no current arc. Such root node vr always ex-

ists [23,25]. Let the unique root of node v be denoted by root(v). Note that if node v has

no current arc, then root(v) = v. For each root node, the connected component it belongs

to forms a tree, and is called a branch.

HPF algorithm can be initiated with any arbitrary initial pseudoflow (i.e., flow vector

that may violate flow balance in either direction) that saturates source adjacent and sink-

adjacent arcs. The simple initialization is generated by saturating all source-adjacent and

sink-adjacent arcs, As ∪ At , and setting all other arcs to have zero flow. This creates a set

of source-adjacent nodes with excess, and a set of sink-adjacent nodes with deficit. All
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other arcs have zero flow, and the set of initial current arcs is empty. Thus, each node is a

singleton component of the forest for which it serves as a tree and the root of the tree.

The algorithm associates each node v ∈ V with a distance label d(v). For distance

labels to be valid, they must satisfy,

(i) d(t) = 0;

(ii) for all (i, j) ∈ Af , d(i)≤ d( j) + 1;

(iii) if i a non-root node d(i)≥ d(parent(i)).

Condition (iii) implies that in each branch the distance labels can only increase with the

distance from the root of the branch. Distance labels are initialized at d(i) = 1 for all

i ∈ V , d(s) = n and d(t) = 0. Throughout the algorithm the distance labels maintain the

invariant that they can only be lower than the shortest distance to t in the residual graph.

A residual arc (w, v) is said to be admissible if d(w) = d(v)+ 1.

A node is said to be active if it has strictly positive excess. Given an admissible arc

(w, v) with nodes w and v in different components, an admissible path is the path from

root(w) to root(v) along the set of current arcs from root(w) to w, the arc (w, v), and the

set of current arcs (in the reverse direction) from v to root(v).
An iteration of HPF consists of choosing an active component, with root node label

< n and searching for an admissible arc from a lowest labeled node w in this component.

Choosing a lowest labeled node for processing ensures that an admissible arc is never

between two nodes of the same component.

By construction (see [25]), the root is the lowest labeled node in a component and

node labels are non-decreasing with their distance from the root of the component. Thus,

all the lowest labeled nodes within a component form a branch (sub-tree) rooted at the

root of the component. Once an active component is identified, all the lowest labeled nodes

within the component are examined for admissible arcs by performing a depth-first-search

in the branch starting at the root.

Figure 1: (a) Components before merger. (b) Before pushing �ow along the admissible path from ri to
r j. (
) New 
omponents generated when ar
 (w, v) leaves the 
urrent forest due to insu�
ient residual
apa
ity.
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If an admissible arc (w, v) is found, a merger operation is performed. The merger oper-

ation consists of pushing the entire excess of root(w) towards root(v) along the admissible

path and updating the excesses and the arcs in the current forest. A schematic description

of the merger operation is shown in Fig. 1. The pseudocode is given in Fig. 2.

/*
Min-cut stage of HPF algorithm.
*/

procedure HPF (Vst ,Ast , c):

begin

SimpleInit (As,At , c);

while ∃ an active component T with root r, where d(r)< n, do

w← r;

while w 6= ; do

if ∃ admissible arc (w, v) do

Merger (root(w), · · · , w, v, · · · , root(v));
w← ;;

else do

if ∃y ∈ T : (parent(y) = w)∧ (d(y) = d(w)) do

w← y;

else do {relabel}
d(w)← d(w) + 1;

w← parent(w);
endFigure 2: The min-
ut stage of the HPF algorithm. At termination all nodes in label-n 
omponents arethe sour
e set of the min-
ut.

If no admissible arc is found, d(w) is increased by 1 unit for all lowest label nodes w in

the component. The algorithm terminates when there are no active nodes with label < n.

At termination all n labeled nodes form the source set of the min-cut.

The active component to be processed in each iteration can be selected arbitrarily.

There are two variants of HPF with specific selection rules: (i) the lowest label HPF, where

an active component with the lowest labeled root is processed at each iteration; and (ii)

the highest label HPF, where an active component with the highest labeled root node is

processed at each iteration.

The first stage of HPF terminates with the min-cut and a pseudoflow. The second

stage converts this pseudoflow to a maximum feasible flow using flow decomposition. The

running time of the second stage O(m log n) is dominated by that of the first stage. The

experiments on vision problems in [16], and the experiments for general flow problems

in [11], indicate that the time spent in flow recovery is small compared to the time to find

the min-cut. Moreover, for vision problems, it is only necessary to identify the minimum

cut in the network.

An important property of HPF is monotonicity, which is utilized in the parametric HPF
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algorithm: Given two sets of capacities of arcs adjacent to source As with set 1 having

all capacities equal or lesser than those of set 2. There are two corresponding sets of

capacities of arcs adjacent to sink At with set 1 having all capacities equal or larger than

set 2. Suppose HPF terminated with a minimum cut for set 1. The update, or change, of

the capacities of As from set 1 to set 2 is upwards, and can only create newly active nodes.

The update of the capacities of At from set 1 to set 2 is downwards, and can only increase

the distance of nodes from the sink. For distance labels to be valid they need to be a lower

bound on the actual distance to the sink. Therefore, this form of update maintains valid

distance labels, but the current solution may no longer be optimal if there are active nodes.

HPF then solves for set 2 of the capacities by continuing from the optimal solution of set

1. Since the complexity of the algorithm is dominated by a potential function that depends

on the distance labels, this continuation and solving for set 2 is still within the complexity

of a single minimum cut solution.

This property of the HPF algorithm is also used to prove that the source set of the min-

cut for set 1 is contained in the source set of the min-cut for set 2-the nestedness property.

This is because the nodes in the source set for set 1 all have label at least n. The update of

the capacities does not change their status. Further processing may only add nodes to the

source set by applying the relabel operation to some of the nodes.

4. Casting image segmentation continuous models as MRF

4.1. Total variations

In the total variation method [33,36] the recorded image is represented by the function

which maps each pixel to its label (color). It is assumed that u0 can be decomposed as

u0 = u + v where u contains homogeneous regions with sharp prominent edges, and v
contains additional texture and noise. The goal of the total variation method is to find u
by minimizing the functional

∫

Ω

|∇u|d xd y +α‖u− u0‖.

This functional is defined on the plane, where (x , y) designate the position of each pixel

in the image.

Although not immediately apparent, there is a connection between this problem and

the MRF problem: The term |∇u| captures the difference between each pixel and its neigh-

borhood. The neighborhood can be set to any desirable set — it is not restricted to the

commonly used grid neighborhood. This gradient term is thus the separation term. The

second term α‖u− u0‖ is the deviation of the mapped function u from the recorded image

u0.

This total variation problem is solved by continuous techniques. One such method

solves the associated Euler-Lagrange equation

u= u0 +
1

2α
∇ ·
� ∇u

‖∇u‖

�

.
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In contrast to MRF, this method does not guarantee to deliver an optimal solution

and its complexity is undetermined. For this quadratic deviation and absolution value

separation MRF does deliver an optimal solution in strongly polynomial time.

In a more general set-up, the total variation regularization problem (TVR) the image

is represented as s(x) — a given function defined on an open subset Ω, and f (x) is its

regularized version, or for images, it is called the denoising of s(). We define two real

functions γ : R→ [0,∞) and β : R→ [0,∞) which assume the value 0 for the argument

of 0,

F( f ) =

∫

Ω

γ( f (x)− s(x))d x .

In the denoising literature F is called a fidelity term since it measures deviation from

s() which could be a noisy grayscale image. In our terminology, the fidelity term is the

deviation.

A second function is the total variations on f , T V ( f ): The discrete form of the total

variations function is represented as a function f on a grid of discrete values in Ω and

associated with a defined neighborhood of each grid point. Let the set of neighboring pairs

be denoted by E. Then the total variation of f is
∑

[i, j]∈E β( f (i)− f ( j)) for a function β

often selected as the absolute value function: β(x) =max{0, x}. For a constant α the total
variation regularization of s() is the function f that minimizes the weighted combination

of the total variations and fidelity of f :

min T V ( f ) +αF( f ).

Rudin, Osher and Fatemi [36] have studied TVRs of F where γ(y) = y2, and Chan and

Esedoglu [10] studied γ(y) = |y|.
Since MRF is solved in polynomial time for convex γ and convex β , consequently, the

problem of Chan and Esedoglu is a special case solved by parametric cut, and the problem

of Rudin et al. is a special case solved by the quadratic convex dual of min cost network

flow. Both cases are efficiently solvable and the MRF algorithm guarantees an optimal

solution in polynomial time.

4.2. Classes of the Mumford-Shah problem

Computational difficulties with traditional active contour methods were addressed with

so-called level set methods, by Chan and Vese (2001) and by Osher and Fedkiw (2003) [9,

33]. The idea used in these methods is viewing contours as level sets of a function. For

example, a contour in 2D may be viewed as all points (x , y) satisfying f (x , y) = C for some

function f and a given constant C . Chan-Vese considered the Mumford Shah functional

but assumed a mapping to a simplified function that is piecewise constant and that can

only attain two values, c1 and c2. Let Ω denote the image domain and let Ω1 and Ω2 be

two subsets of Ω such that Ω = Ω1 ∪Ω2. Define B as the boundary separating Ω1 and Ω2.

The goal is to minimize the Mumford Shah functional which in the case of partition to two
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subsets is:

F(c1, c2, f )

=

∫

Ω

[c1 − u0(x , y)]2H( f ) + [c2 − u0(x , y)]2(1−H( f )) + β |∇H( f )|d xd y,

where H( f ) = 1 if (x , y) ∈ Ω1 and 0 if ∈ Ω2. This model is a special case of MRF with two

labels c1 and c2. That is, this is a binary MRF. Assume, w.l.o.g. that c2 > c1. We let each

pixel position (x , y) be represented by a single index i. The variable x i indicating the side

of the bipartition (S, S̄) that pixel i belongs to,

x i =

¨

1, if i ∈ S,

0, if i ∈ T = S̄.

We let w1
i = [c1 − u0(i)]

2 if i ∈ S and w2
i = [c2 − u0(i)]

2 if i ∈ S̄. Also, let W =
∑

i∈Ωw2
i .

Observe that,
∑

i∈S

w1
i x i +
∑

i∈S̄

w2
i (1− x i) =W +

∑

i∈Ω

(w1
i −w2

i )x i.

The problem is then equivalently stated as the minimization problem:

W +min
S⊂Ω

∑

i∈Ω

(w1
i −w2

i )x i + β
∑

[i, j]∈E

(c2 − c1) · |x i − x j|.

This discrete version corresponds to anisotropic total variation in the continuous version,

i.e., |∇u|1 = |ux |+ |uy |.
We let β ′ = β(c2 − c1) noting that the model

min
S⊂Ω

∑

i∈Ω

(w1
i −w2

i )x i + β
′
∑

[i, j]∈E

|x i − x j|

is a particularly simple case of MRF. The functions Gi(x i) = (w
1
i − w2

i )x i are linear, with

positive or negative coefficients. For each adjacency edge [i, j] the function Fi j(x i − x j) is

the absolute value, |x i−x j|. This is a special case of the bilinear MRF with the derivatives of

the deviation terms equal to constants (for the use of the derivatives see the next section,

Section 5). This type of MRF problem is solved by a single minimum s, t cut problem

(non-parametric) on a graph on |Ω| nodes, [26] as explained next in Section 5.

5. The methodology

For the separation-deviation model of the image segmentation problem the input is an

image constituting of a set of pixels each with a given color and a neighborhood relation

between pairs of pixels. The decision is to assign each pixel a color assignment, that may

be different from the given color of the pixel, so that neighboring pixels will tend to have

the same color assignment. The aim is to modify the given color values as little as possible
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while penalizing changes in color between neighboring pixels. The penalty function thus

has two components: the deviation cost that accounts for modifying the color assignment

of each pixel, and the separation cost that penalizes the extent of pairwise discontinuities

in color assignment for each pair of neighboring pixels.

Formally, we are given an image which is a set of pixels V , with a real-valued intensity

ri for each pixel i ∈ V . The neighborhood of pixel i, which contains pixels adjacent to i,
is denoted by N(i). We wish to assign each pixel i ∈ V an intensity x i that belongs to a

discrete finite set X = {i1, i2, · · · , ik} so that the sum over all pixels of the deviation cost

Gi(·) and the separation cost Fi j(·) is minimized. The deviation function depends on the

deviation of the assigned color from the given intensity Gi(x i − ri). The separation is a

function of the difference in assigned intensities between adjacent pixels Fi j(x i− x j). This

is the MRF problem,

min
∑

i∈V

Gi(x i) +
∑

i∈V

∑

j∈N(i)

Fi j(x i − x j)

subject to x i ∈ X ∀i ∈ V.

A variant of the problem with each variable x i taking an integer value in an interval

[ℓi,ui] is the separation-deviation problem. We will show that it extends to the problem

with x i ∈ X for any set of values X . This is important when segmenting an image with a

restricted subset of colors.

Since the model of convex-bilinear MRF is the most commonly used in vision, we de-

vote the remainder of this section to providing details on the efficient algorithm that solves

this problem.

5.1. Solving the convex deviation bilinear separation MRF

Let ℓ and u be the smallest and largest values respectively in the set of feasible values

X , ℓ = minx∈X x and u = maxx∈X x . For a parameter value α ∈ (ℓ,u) we construct an

s, t-graph Gα = (Vst ,Ast) from the adjacency graph of the image (V,A) where V is the set of

pixels and A the set of adjacency arcs. For Fi j() bilinear we have two opposite arcs between

i and j with ui j the arc capacity of arc (i, j) and u ji the arc capacity of arc ( j, i).
We add to the set of nodes V a source s and sink t, Vst = V ∪ {s, t}. For each i ∈ V

let G′i(α) be the derivative, or the subgradient, at α of Gi(). Each node i ∈ V has two arcs

adjacent to it, one from source and the other one directed to sink. Assign arc (s, i) the

capacity max{0, G′i(α)} and assign arc (i, t) the capacity max{0,−G′i(α)}}. Notice that one

of these two capacities for each i is always zero. Let the set of arcs of positive capacity

adjacent to the source be denoted by As, and the set of arcs of positive capacity adjacent to

the sink, At . Let the minimum cut ({s} ∪ S, S̄ ∪ {t}) in the graph Gα partition V to S = Sα
and V \ S = S̄α. The graph Gα is illustrated in Fig. 3 for a grid graph (V,A). Note however

that the algorithm described works for any type of graph, rather than for grid graphs only.

Let the optimal solution to MRF be x∗ = (x∗j ) j. The key to the efficiency of the algorithm

solving the problem is the following threshold theorem:
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 !"#$% &' (Figure 3: Gα.
Theorem 5.1 (The threshold theorem [26]). The optimal solution x∗ to convex bilinear

satisfies x∗j < α for all j ∈ Sα, and x∗j ≥ α for all j ∈ S̄α.

The threshold theorem means that for each node we can determine whether the corre-

sponding variable’s value in an optimal solution is < α or ≥ α, depending on whether the

respective node belongs to the source or the sink set of the cut. See Fig. 4 for illustration.

 !"#$% &' ()% *)$%+),-. *)%,$%/' ()% .0+)%. -!1% *$02%$+%+ 01. !1*%$+%
*+ *)% 0$
+ ,4 *)% 
#*5Figure 4: The threshold theorem: The dashed line traverses and interse
ts the ar
s of the 
ut.
By solving for each value of α in the range, the threshold theorem can be used to

establish a partition of the nodes in the graph, and the corresponding variables, to sets

where in each set all variables get the same value (and same color) in an optimal solution.

So if the set X is of small cardinality, one can apply the minimum cut algorithm |X | times

and determine the values of all variables. While this is possible, such an algorithm is not

polynomial, e.g., for the case that X can be specified as the integer values in an interval

[ℓ,u].
We can however solve the problem in polynomial time by noting several important

properties of the cut function. Let Sλq
be the minimal source set obtained by solving the

minimum cut problem in the graph corresponding to parameter α = λq. Then, for a

sequence of monotone increasing values of the parameter, λ0 < λ1 < · · · < λp, we get a
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Figure 5: The parametri
 
ut.
nested collection of source sets of the respective minimum cuts: {s} = Sλ1

⊆ · · · ⊆ Sλp
⊆ V .

See Fig. 5 for illustration. When λ0 ≤ ℓ then the set of nodes of value < λ0 is empty. For

λp ≥ u the set of nodes of value < λp is V . From the threshold theorem it follows that

in an optimal solution all nodes in Sq = Sλq
\ Sλq−1

, q = 2, · · · , p have intensity strictly less

than λq and greater or equal than λq−1.

The most efficient approach for solving the problem involves using the parametric cut
algorithm. The parametric algorithm can be implemented with the push-relabel algorithm

or HPF. No other algorithms are known that have the required "parametric" structure. This

structure, loosely speaking, means that once a minimum cut solution has been found for

some value α = λ1, it is possible to "continue" the algorithm to find a solution for λ2 > λ1

without restarting. This results in run time, for a sequence of increasing K parameter

values, that is identical to that of a single cut T (n, m) plus certain adjustment of excesses

and deficits in the switch from one parameter value to the next that requires O(Kn) steps.

Again, if K = |X | is a quantity greater than polynomial in n and m this would not be

considered a polynomial time algorithm. In the next subsection we describe procedure

parametric that solves the problem in polynomial time regardless of the value of K .

In all vision applications the number of parameter values is small and therefore the

run time of the parametric algorithm is dominated by O(T (n, m)). We nevertheless include

here, for completeness sake, also the algorithm that works in polynomial time regardless

of the size of X .

5.2. The parametric cut algorithm

A directed graph Gst containing a source and sink nodes s and t is said to be parametric
if the source-adjacent arcs are functions of a parameter λ that are monotone nondecreasing

and the sink-adjacent arcs are functions of λ that are monotone nonincreasing.

Consider varying the value of λ in an interval [ℓ,u]. As the value of λ increases, the

source set becomes larger and contains the previous source sets corresponding to smaller
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Figure 6: The 
ut 
apa
ity as a fun
tion of λ in a parametri
 
ut.
values of λ. Specifically, for some λ≤ ℓ Sλ = {s}, and for some λ≥ u Sλ = V ∪{s}. We call

the smallest value of λ where Sλ strictly increases-a node shifting breakpoint, or breakpoint.
For λ1 < · · · < λℓ the set of all breakpoints we get a corresponding nested collection of

source sets:

{s} = Sλ1
⊂ Sλ2

⊂ · · · ⊂ Sλℓ = {s} ∪ V.

Fig. 6 illustrates how the minimum cut capacity function C(λ) changes with λ. In this

figure λ∗ and λ′ are node shifting breakpoints. For any value of λ that lies strictly between

any two consecutive breakpoints λ(1) < λ(2), the function C(λ) does not change, since the

bi-partition remains the same and it is equal to the function Cλ(1)(λ). In Fig. 6, Cλ2
(λ) =

Cλ∗(λ), but Cλ′(λ) is a different function from Cλ2
(λ). The smallest value of λ where

the bi-partition changes and at least one node is added to the source set, the cut function

changes as well and that value is a breakpoint.

Certain facts concerning the parametric cut functions are of importance. An efficient

parametric cut algorithm was first introduced in the seminal paper of Gallo et al. [18].

Although Gallo et al. addressed the parametric cut problem and its implementation with

push-relabel algorithm, their discussion is restricted to linear parametric functions. This

corresponds to deviation functions that are quadratic convex. For general nonlinear mono-

tone parameter functions the following lemmas are critical. We let Cλ1
(λ) be the min cut

capacity function of the minimum cut for capacity functions’ argument λ= λ1.

The next lemma establishes that the function C(λ) is breakpoint-concave. (This term

is introduced here for the first time.) To motivate this concept consider the simple case

where the parametric capacity functions are linear. In that case all the different cut func-

tion, e.g., Cλ1
(λ), are linear. The cut capacity function is then piecewise linear. It is also

concave as for λ1 < λ2, Cλ1
(λ)−Cλ2

(λ) is a linear function with nonnegative slope. Equiv-

alently, the slope of Cλ1
(λ) is greater or equal to that of Cλ2

(λ). Therefore the function

C(λ) is concave when the parametric functions are linear. This is clearly not the case for

general parametric functions considered here, as between breakpoints the functions are

sums of arbitrary monotone increasing (or nondecreasing) and monotone decreasing (or

nonincreasing) functions.
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Definition 5.1. A function C(λ) is breakpoint-concave if for λ1 < λ2, Cλ1
(λ)− Cλ2

(λ) is a

monotone nondecreasing function of λ.

Lemma 5.1. In a parametric graph, the cut capacity function C(λ) is breakpoint-concave.

Proof. By the definition, we need to show that for λ1 < λ2, Cλ1
(λ) − Cλ2

(λ) is a

monotone nondecreasing function of λ.

Let ({s} ∪ S1, {t} ∪ T1), ({s} ∪ S2, {t} ∪ T2) be the cuts corresponding to λ1 and λ2

respectively.

Cλ1
(λ)− Cλ2

(λ) =C(S1, T1)− C(S2, T2) + C({s}, T1)(λ)

− C({s}, T2)(λ)+ C(S1, {t})(λ)− C(S2, {t})(λ)

=K12 + C({s}, T1 \ T2)(λ)− C(S2 \ S1, {t})(λ).

Note that K1,2 is a constant independent of λ. C({s}, T1 \T2)(λ) is a monotone nondecreas-

ing function, and C(S2 \ S1, {t})(λ) is a monotone nonincreasing function. Therefore the

difference between these two terms is monotone nondecreasing. �

Consider the interval [λ1,λ2], the respective cut functions Cλ1
(λ) and Cλ2

(λ) and the

value of λ at the intersection of these function, λ̂. As a corollary to Lemma 5.1 we get that

either:

1. the interval [λ1,λ2] contains no breakpoints, and then the functions Cλ1
(λ), Cλ2

(λ) are

identical, or,

2. there is exactly one breakpoint in the interval [λ1,λ2] and this breakpoint is λ̂— the inter-

section of the two functions Cλ1
(λ̂) = Cλ2

(λ̂), or,

3. there are two or more breakpoints in the interval [λ1,λ2], then λ̂ "separates" them in the

sense that [λ̂,λ2] and [λ1, λ̂] each contain at least one breakpoint.

In the parametric cut algorithm the step of taking the intersection of two cut functions

is repeated recursively. With each such call, either a breakpoint is found, or it is proved

that there is no breakpoint, or else there is a partition to two intervals each containing at

least one breakpoint.

Since the cut functions appear to be arbitrary, it is not obvious that finding the inter-

section of two cut functions can be accomplished easily or efficiently. However, we prove

next that this step is no harder than finding the minimum of a convex function in a given

interval.

Lemma 5.2. The complexity of finding λ̂ is the same as the complexity of finding that the

sum of derivatives of convex functions is equal to a constant K (or finding the minimum of a

convex function.)

Proof. Since the capacities of source adjacent arcs are monotone nondecreasing, there

exists, for each j ∈ V a (nondecreasing) convex function f j()whose derivative max{0, f ′j (λ)}
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coincides with the parametric capacity function on arc (s, j). Similarly, the capacity func-

tions of the sink adjacent arcs, (s, i), are monotone nonincreasing and therefore these

coincide with the derivatives of (nonincreasing) convex functions min{0, f ′i (λ)}.
Let ({s} ∪ S1, {t} ∪ T1), ({s} ∪ S2, {t} ∪ T2) be the cuts corresponding to λ1 and λ2

respectively, as in the proof to Lemma 5.1. Using that proof we write the intersection of

the two functions λ as satisfying,

0=Cλ1
(λ)− Cλ2

(λ)

=K1,2 + C({s}, T1 \ T2)(λ)− C(S2 \ S1, {t})(λ)

=K1,2 +
∑

j∈T1\T2

max{0, f ′j (λ)}+
∑

i∈S2\S1

min{0, f ′i (λ)}.

Observe that T1 \ T2 = S2 \ S1 therefore this sum is K1,2 +
∑

i∈S2\S1
f ′i (λ). Thus the ar-

gument λ̂ that solves this equation is also the minimum argument of the sum of convex

functions,
∑

i∈S2\S1
fi(λ)+K1,2λ. Since sum of convex functions is convex this is equivalent

to finding the minimum of a convex function. We note that the minimum (or maximum)

of a convex (concave) function can be found, within accuracy ε, in time log U/ε). This

time cannot be improved in the sense that the complexity must depend on U/ε (For an

extensive discussion of this subject, the reader is referred to [27]). �

The recursive procedure parametric finds all the breakpoints:

Procedure parametric (λ1,λ2, Sλ1
, Sλ2

)Find the interse
tion λ̂ of Cλ1
and Cλ2

, Cλ1
(λ̂) = Cλ2

(λ̂).If Sλ1
= Sλ̂, halt "no breakpoints in the interval, and λ1 is a breakpoint".ElseCall parametric (λ1, λ̂, Sλ1

, Sλ̂)Call parametric (λ̂,λ2, Sλ̂, Sλ2
)

end

The complexity of parametric is O(T (n, m)+ n log U/ε), where U is the length of the

interval between the smallest value of λ, where Sλ = {s}, and the largest value of λ, where

Sλ = {s} ∪ V . As proved in [26], this complexity is best possible.

For a set of breakpoints {λ1 < · · · < λℓ}, the bi-partition, and therefore the source set,

does not change for any α ∈ [λq−1,λq), q = 2, · · · ,ℓ. We conclude that for all j ∈ Sq =

Sλq
\Sλq−1

x∗j is equal to the largest value in X that is < λq. This is because for any λ in the

interval the set Sλ = Sλq−1
. Thus all nodes in the set are greater or equal to λ and strictly

smaller than λq.

Example 5.1. Let λ1 < λ2 < λ3 < λ4 be four breakpoints so that Sλ1
= ;, and let x1 <

x2 < x3 < x4 < x5 be the values in the set X so that, λ1 < λ2 < x1 < x2 < λ3 ≤ x3 <

x4 < x5 < λ4. Given the source sets for the breakpoints, ; ⊂ Sλ2
⊂ Sλ3

⊂ Sλ4
we conclude
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that Sx1
= Sx2

= Sλ2
⊂ Sx3

= Sx4
= Sx5

= Sλ3
. Then, for all i ∈ Sλ2

, x∗i = x2 and for all

i ∈ Sλ3
\ Sλ2

, x∗i = x5.

Therefore, once the set of breakpoints is available we can quickly generate the optimal

solution for any discrete set X . Assuming that for any λ, the value maxxi∈X ,xi≤λ x i can be

found in O(1), we get the following lemma:

Lemma 5.3. Given the set of all breakpoints λ0 < λ1 < λ2 · · · < λp, the optimal solution to

convex-bilinear MRF restricted to any set of discrete values X is generated in linear time.

6. The interactive tool

Due to its speed, the convex-bilinear MRF algorithm can be applied in an interactive

online mode. This is particularly suitable for applications where one is looking for hidden

pathologies of specific type in noisy images. This is the case when searching for tumors or

lesions in medical images, or in anti-terrorism or crime prevention applications. The MRF

algorithm of [26] was implemented within a framework of an "imaging tool" with a user

interface. The interactive tool’s interface is shown in Fig. 7. It is implemented with several

specific features.

The interactive tool solves the separation-deviation (SD) problem:

(SD) min D
∑

j∈V

G j(r j − x j) + S
∑

(i, j)∈A

ui j |x i − x j|

subject to x i ∈ X for i ∈ V.

Figure 7: The intera
tive tool.
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The functions G j can be either quadratic or absolute value functions. D and S are

constant integers multiplying the deviation and separation terms respectively. If D = 0

then the output is a single color label assigned to all nodes. If S = 0 then the output is the

same as the input, if the colors set of the input is in X , otherwise each pixel is assigned a

"nearest" color label in X .

The specific values of S and D are unimportant. Rather, it is the ratio S/D which is

crucial in determining the degree of color uniformity in the image. The larger this ratio,

the greater the color uniformity.

The empirical implementation of the MRF algorithm is using the parametric HPF code

accessible for download at [12].

The current algorithm’s interface can support the following interactive functions:

1. Segment image with a fixed number of automatically selected colors. For a chosen number of

colors k the tool uses a k-means algorithm to select the color set X . Note that the number of

colors is not equal to the number of segments as each color set is not necessarily a connected

component.

2. Segment for a input color set X . Alternatively, the user can add or remove colors to an

existing color set by clicking on any pixel in the image, or manually inserting the color code.

As proved in Lemma 5.3 the output image can be generated by reading the existing output

and without additional computation.

3. Uniform increase/decrease in deviation cost. The coefficient of all the deviation terms is

denoted by D. The tool allows to increase all deviation costs by a selected constant factor.

4. Similarly, the tool allows to increase/decrease all separation costs by a selected constant

factor, denoted by S. We note that the only parameter of interest is the ratio, D/S between

the deviation and separation penalty terms. The tool allows to modify the coefficient of each

by an integer factor. Consequently any rational number ratio can be generated.

5. Color restricted change in deviation. This feature is important in identifying hidden struc-

tures. When the user suspects that a certain color area may indicate an object of interest, it

is possible to increase the deviation functions associated with this color only. So for selected

color g the deviation function Gi(x i , g) is increased by the selected factor for all pixels with

input color g. This guarantees that any pixel with input color equal to g is more likely to

show in the segmented output, even though it is small and has unusual boundaries that oth-

erwise would have been "cleaned" by the separation penalty dominance. Thus an object of

this or similar color, is likely to be identified.

6. The color restricted change in deviation may lead to the pronounced appearance of this color

also in areas where it is not of significance. For that purpose the tool allows to restrict the

change in deviation or separation to a user defined rectangular window region.

7. Choose an 8-neighbor adjacency or a 4-neighbor adjacency.

7. Experimental results

In order to assess the performance of the algorithm we use a simulation on medical

images of thorax and brain: For a "true" image, noise is randomly added to obscure the
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image and simulate an input "noisy" image. The objective, when processing true images,

is to segment correctly the salient features in the image. These features are determined as

per their clinical significance. For noisy images, the objective is to de-blur them without

losing the salient features of the image.

7.1. The effect of changing the number of colors in the output

Here we demonstrate the feature of choosing a fixed number of colors, k, from the

interval of colors of the input noisy image. The set of k colors is selected automati-

cally by using k-means algorithm that chooses k numbers in the range of input colors

[0,1,2, · · · , 255] that minimize the total distance on the real line from all the pixels col-

ors. This choice may generate colors that do not even exist in the input image, but are

nevertheless among the optimal median set.

This is illustrated here in an image of the thorax. The true and noisy images are

presented in Fig. 8. In Fig. 9 we show the results of the segmentation with linear absolute

value functions for both the deviation and separation penalties. Note that for the choices

of k = 5 and k = 6 the lesion color has been selected and the lesion appears as one of the

segments in the output image.

Liver

Heart

Lesion

True Recovered noisy imageFigure 8: The "true" and noisy thorax images.
k=5

k=6

k=7k=3

k=4 k=9Figure 9: The output for di�erent values of k � number of 
olors � sele
ted automati
ally by a
k-means algorithm.
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Output
segmented image

Input
blurred image

True
imageFigure 10: Thorax input, output and true 
omparison.

To demonstrate the segmented image appearance of the lesion compared to the noisy

and true, we give them side-by-side in Fig. 10.

7.2. Modifying the ratio between the separation and deviation penalties

The effect of modifying the ratio S/D is illustrated here for two examples of brain

images. The first set of true and noisy images are given in Fig. 11. In that image there

are four small lesions. We then apply the separation-deviation algorithm with D = 2 and

for increasing values of S, as shown in Fig. 12. The lesions show very clearly in the high

separation images in yellow color.

Noisy Image True Image

Figure 11: Brain image 1, true and noisy.
The second set is similar, with an elongated form of lesion in the brain image. The true

and noisy are shown in Fig. 13.

Again the high separation coefficient images in Fig. 14 clearly segment the elongated

lesion tissue.

7.3. Increasing deviation for a selected color

The tool allows to select a particular color, either by the color code, or by clicking on

a pixel that has the desired color. The deviation penalty is then increased for all integer
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S = 30 S = 40 S = 50

S = 60 S = 70 S = 80

Figure 12: The output for in
reasing values of S when applied to noisy brain image 1.
Noisy Image Original Image

Figure 13: Brain image 2, true and noisy.
S = 30 S = 40 S = 50

S = 60 S = 70 S = 80

Figure 14: The output for in
reasing values of S when applied to noisy brain image 2.
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Effect of increasing Deviation penalty for selected 

color (orange )

k = 5, D = 2, S = 70

Figure 15: In
reased deviation penalty for a sele
ted 
olor in brain image 1.
color codes in a small interval around the selected color. For color code q the interval is

[q− 5,q+ 5]. The size of this interval can be adjusted by the user.

We show here, for brain image 1, that if the color orange is selected, then it show as

the color of 3 out of the 4 lesions. When the deviation for that color is increased the lesions

become better segmented and more prominent. Of course, the color orange also appears

in other areas of the brain shell where it is of no clinical significance. This issue will be

addressed in the next prototype of the interactive tool, where the deviation increase will

apply only in a user-defined window.

7.4. Comparison of image segmentation with separation-deviation to

normalized cuts approach

We now compare our software for image segmentation with the normalized cut

approach introduced by Shi and Malik [37]. This normalized cut approach utilizes

the spectral technique in finding the Fiedler eigenvalue and the corresponding eigen-

vector. The method is described and Shi’s software implementation is provided in:http://www.
is.upenn.edu/∼jshi/software/.

The input to that code is the number of desired segments in the output image. The

code preprocesses the input image, first by converting it to gray scale and then resizing it

to 160× 160. The algorithm is then applied to the preprocessed image. We show here

the segmentation of the thorax image, for 5 segments and for 12 segments. The running

time increases approximately linearly with the number of segments. It appears that a much

larger number of segments will be required before the lesion will be segmented.

Similar results apply to brain image 2 where the true image is segmented. This is

shown in Fig. 17. Only the 20 segments partition begins to show the lesion area, yet still

this segmentation does not delineate the lesion correctly.

Note that the software of Shi requires to convert the image first to gray scale, which is

why it is not presented in color.
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5 segments 12 segmentsFigure 16: Normalized 
ut software segmentation of the noisy thorax image for 5 and 12 segments.
8 segments 12 segments

20 segments16 segments

Figure 17: Normalized 
ut software segmentation of true brain image 2 for 8, 12, 16 and 20 segments.
8. Conclusions

We demonstrate here that the MRF algorithm is an effective technique for regulariza-

tion and denoising of images, that has not been utilized to date to its full potential. The

advantage of the algorithm is both in theory and in practice. Since the MRF algorithm

delivers an optimal solution, and is provably fastest possible, it gives better quality results

than any alternative methodology, in terms of minimizing the objective function. This is

in contrast to using heuristics, where the solution generated is not directly linked to a

particular optimization criterion. The algorithm is shown here to segment successfully in
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practice the salient features in true images, and to be able to identify hidden important

features and de-blur noisy images. These capabilities together with the efficiency of the

MRF algorithm, renders it a useful addition to a segmentation tool box.
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