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Abstract. Total variation regularization has good performance in noise removal and

edge preservation but lacks in texture restoration. Here we present a texture-preserving

strategy to restore images contaminated by blur and noise. According to a texture de-

tection strategy, we apply spatially adaptive fractional order diffusion. A fast algorithm

based on the half-quadratic technique is used to minimize the resulting objective func-

tion. Numerical results show the effectiveness of our strategy.
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1. Introduction

Noise reduction and deblurring are usually used in a pre-processing stage in image

restoration to improve image quality. In this paper, we focus on texture preserving restora-

tion of images corrupted by additive noise and spatially-invariant Gaussian blur. The most

common image degradation model, where the observed data f ∈ Rn2

is related to the

underlying n× n image rearranged into a vector u ∈ Rn2

, is

f = Bu+ e, (1.1)

where e ∈ Rn2

accounts for the random perturbations due to noise and B is a n2 × n2

matrix representing the linear blur operator.
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It is well known that restoring the image u is a very ill-conditioned problem and a

regularization method should be used. A popular approach determines an approximation

of u as the solution of the minimization problem

min
u

n1
p
‖Bu− f ‖pp +

λ

q
‖A(u)‖qq

o
, (1.2)

where A is a regularization operator and λ is a positive regularization parameter that

controls the trade-off between the data fitting term and the regularization term [13,25,27].

For p = 2 and q = 2, we get the classical Tikhonov regularization [11,13]. This approach

enforces smoothness of the solution and suppresses noise by penalizing high-frequency

components, thus also image edges can be smoothed out in the process.

Numerous regularization approaches and advances numerical methods have been pro-

posed in the literature to better preserve edges, including alternating minimization algo-

rithms [1], multilevel approaches [16], non-local means filters [4].

A very popular choice in the literature for regularization is based on the total varia-

tion (TV) norm. Total variation minimization was originally introduced for noise reduc-

tion [7,25] and has also been used for image deblurring [14] and super-resolution image

reconstruction [17]. The TV regularization (ℓ2-TV) is obtained from (1.2) by setting p = 2,

q = 1 and A(u) the gradient magnitude of u. If we let ∇ui := (Gx ,iu, Gy,iu)
T , with Gx ,i,

Gy,i representing the ith rows of the x and y-directional finite difference operators Gx , Gy ,

respectively, then the regularization term is defined by the TV-norm

‖u‖T V = ‖A(u)‖1 :=

n2∑

i=1

Æ
(Gx ,iu)

2 + (Gy,iu)
2.

The distinctive feature of TV regularization is that image edges can be preserved, but the

restoration can present staircase effects.

A variant of the ℓ2-TV regularization is the ℓ1-TV regularization which is obtained from

(1.2) by replacing the ℓ2 norm in the data-fitting term by ℓ1 norm:

min
u
{‖Bu− f ‖1+λ‖u‖TV}, (1.3)

see, e.g., [5,26–29] for discussions on this model. This model has a number of advantages,

including superior performance with non-Gaussian noise such as impulse noise, see [20].

However, it is well known that the ℓ1-TV regularization has problems in preserving tex-

tures, see [6,28].

In image denoising, recent works have dealt with this drawback mainly by two differ-

ent strategies. In [10] the ℓ2-TV model is adopted using a spatially variant regularizing

parameter λ, selected according to local variance measures. In [2], a fractional order

anisotropic diffusion model is introduced, which leads to a "natural interpolation" between

the Perona-Malik equations [22] and fourth-order anisotropic diffusion equations [15].

An adaptive fractional-order multi-scale model is proposed in [31,32], where the model is

applied to noise removal and the texture is detected by a variant of the strategy in [10].
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The main goal of this work is to apply an adaptive fractional order regularization term

for the restoration of textured images corrupted by additive noise and blur. To achieve this

aim, we use a 2-phase approach. First we apply a suitable texture detection method on the

observed image to obtain a texture map. Then a fractional order regularization is applied

to the parts of the image which are characterized to be texture regions by the map and

the classical TV regularization (ℓ1-TV) is applied elsewhere. In particular, we propose to

replace the TV regularization term ‖u‖TV in (1.3) with a spatially adaptive fractional order

TV regularization term, thus integrating the following four ingredients:

• use of the fractional order α of derivatives to better preserve textures,

• spatial adaptivity of α in order to allow flexibility in choosing the correct regularizing

operator,

• spatial adaptivity of λ in order to locally control the extent of restoration over image

regions according to their content,

• an effective texture detection methodology based on the noise auto-correlation en-

ergy which makes no assumption about the noise level of the image.

The paper is organized as follows. We describe the proposed adaptive fractional model

for image restoration in Section 2. An iterative solution of the proposed model obtained by

the half-quadratic strategy and its numerical aspects are discussed in Section 3. In Section

4 we briefly illustrate the computational aspects related to the fractional order derivatives

and in Section 5 we describe the texture detection method we used. Numerical examples

and comments are provided in Section 6 and the paper is concluded in Section 7.

2. The proposed adaptive model

We propose to modify the functional in (1.2) to the following adaptive fractional vari-

ational model

min
u
{‖Bu− f ‖1 + ‖ΛAα(u)‖1}, (2.1)

where Λ = diag(λ1, · · · ,λn2) is an n2×n2 diagonal matrix with λi representing the regular-

ization parameter for the ith pixel, Aα(ui) = ‖∇
αi ui‖2, where αi represents the fractional

order of differentiation for the ith pixel and

∇αi ui := (G
αi

x ,i
u, G

αi

y,i
u)T (2.2)

is the fractional-order discrete gradient operator, with components representing the x and

y-directional fractional finite difference operators.

Let us motivate our model by analyzing the high-pass filtering character of the frac-

tional order derivative operator. In Fig. 1 we show the restored images of the blurred and

noisy test image in Fig. 6(b) by applying model (2.1) with different α while keeping

λ = 1.0. With α = 1 we get the ℓ1-TV model (1.3) which preserves edges but fails to

preserve fine scale features such as textures in the images, see Fig. 1(a). The high-pass
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(a) α = 1.0 (b) α = 1.5 (c) α = 1.8 (d) α = 2.0Figure 1: Restoration of test image shown in Fig. 6(b) using model (2.1) with di�erent values of αwhile λ = 1.0 is �xed for all tests.
capability becomes stronger with larger α, so more and more texture regions are better

preserved when α increases to 1.5, 1.8 and then 2.0, see Figs. 1(b)-(d) respectively. How-

ever, for α = 2.0 the high pass capability of fractional order derivatives is too strong so that

most components of the image remain and only little high frequencies noise is removed.

Thus a best filtering is obtained by adaptively applying the fractional order regularization

in texture regions and TV regularization in other non-texture perturbed regions.

Our method consists of two phases. At the first phase, we apply the texture detector

proposed in Section 5 to the observed image f to obtain a texture detection map. The

texture map contains a texture measure (a real positive value) for each pixel and it is

thresholded to obtain the texture and non-texture classes. The texture class is further par-

titioned into C subclasses according to the texture measure. Following this classification a

value αi is associated to each pixel i, with αi = 1 if the ith pixel belongs to the non-texture

class and αi ∈ {α̂1, · · · , α̂C} if the ith pixel belongs to one of the C texture subclasses. The

regularization parameters λi in the diagonal matrix Λ in (2.1) are then chosen according

to αi ’s. In particular, each texture class has an associated regularization value, while for the

non-texture class we set λ= 1.0. In the second phase, we apply the classical TV regulariza-

tion (ℓ1-TV) to the non-texture regions while applying a fractional order TV regularization

(ℓ1-TVα) in the texture class. The corresponding minimization problem is solved by the

half-quadratic method in [6].

3. The numerical algorithm

The fidelity and regularization terms in (2.1) are not differentiable, therefore in the

following we use a smoothed version of them. To this end, let us define ‖v‖1,ε :=
∑

i |vi|ε,

with |vi|ε :=
p

v2
i
+ ε for any vi ∈ R and ε > 0 and let β and γ be two small regularization

parameters. Hence, we want to minimize the functional

Φ(u) =‖Bu− f ‖1,γ+ ‖ΛAα(u)‖1,β =

n2∑

i=1

|Biu− fi |γ+λi|∇
αi(ui)|β

=

n2∑

i=1

p
(Biu− fi)

2+ γ+λi

q
(G
αi

x ,i
u)2 + (G

αi

y,i
u)2 + β , (3.1)
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where Bi is the ith row of B, fi is the intensity of the ith pixel of the observed image.

The minimization of the functional (3.1) is obtained in a way similar to what is done for

the half quadratic ℓ1-TV [6,9,19]. Half-quadratic regularization is based on the following

expression for the modulus of a real, nonzero number x :

|x |=min
v>0

n
v x2+

1

4v

o
, (3.2)

whose minimum is at v = 1/(2|x |) and the function inside the curly bracket in (3.2) is

quadratic in x but not in v; hence the name half-quadratic. By using (3.2), the minimum of

the function in (3.1) can be determined by minimizing the L operator defined as follows:

min
u
Φ(u) =min

u

n2∑

i=1

�
|Biu− fi |γ+λi|∇

αiui |β
�

=min
u

n2∑

i=1

h
min
wi>0

�
wi|Biu− fi |

2
γ+

1

4wi

�
+λi min

vi>0

�
vi|∇

αiui |
2
β +

1

4vi

�i

= min
u,v>0,w>0

n2∑

i=1

h
wi |Biu− fi |

2
γ+

1

4wi

+λi

�
vi|∇

αiui |
2
β +

1

4vi

�i

:= min
u,v>0,w>0

L (u, v, w). (3.3)

In order to solve (3.3), we apply the alternating minimization procedure, namely, for k =

0,1, · · · , we solve successively

v(k+1) = argminv>0L (u
(k), v, w(k)), (3.4a)

w(k+1) = argminw>0L (u
(k), v(k+1), w), (3.4b)

u(k+1) = argminu>0L (u, v(k+1), w(k+1)). (3.4c)

The first two minimizations in (3.4) have explicit solutions for each iteration:

v
(k+1)

i
=

1

2
|∇αi u

(k)

i
|−1
β

, w
(k+1)

i
=

1

2
|Biu

(k) − fi|
−1
γ . (3.5)

Since L (u, v(k+1), w(k+1)) is continuous differentiable in u, the solution u(k+1) of the third

minimization in (3.4) is obtained by imposing

0=∇uL (u, v(k+1), w(k+1))

=(Gα)T bΛbDβ(u(k))Gαu+ BT Dγ(u
(k))(Bu− f ), (3.6)

where Gα := (Gαx ; Gαy ) ∈ R
2n2×n2

is the discretization matrix of the adaptive fractional gra-

dient operator, bΛ := diag(Λ,Λ) ∈ R2n2×2n2

is a diagonal matrix of the adaptive regulariza-

tion parameters, bDβ (u(k)) := diag(Dβ(u
(k)), Dβ(u

(k))) ∈ R2n2×2n2

, where Dβ(u
(k)) ∈ Rn2×n2
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and Dγ(u
(k)) ∈ Rn2×n2

are diagonal matrices with their ith diagonal entries being

(Dβ(u
(k)))i = 2v

(k+1)

i
= |∇αiu

(k)

i
|−1
β

, (3.7a)

(Dγ(u
(k)))i = 2w

(k+1)

i
= |Biu

(k) − fi |
−1
γ , (3.7b)

respectively.

Algorithm 3.1 outlines the computations for the adaptive fractional method for solving

(3.3).Algorithm 3.1: Adaptive-Frational (AF) AlgorithmInput: degraded image f , number of texture lasses C;Output: approximate solution u(k) of (3.3);1. {λi, αi , i = 1, · · · , n2 } = T D( f , C) ompute the texture-adaptive parameters on the de-graded image f ;2. Initialize the iterative proess by setting u(0) = f ;3. For k = 1,2, · · · until onvergent, solve
�
(Gα)T bΛ bDβ (u(k))Gα + BT Dγ(u

(k))B
�

u(k+1) = BT Dγ(u
(k)) f (3.8)endfor

The linear system of Eq. (3.8) is solved by the conjugate gradient method where we

terminate the iterations as soon as the norm of the residual is less than or equal to 10−4.

The use of an iterative solver allows us to avoid storing the large dimension matrices B

and Gα; the only requirement is matrix-vector products. In particular, the product which

involves matrix B makes use of FFT convolution, while the product by Gα is done according

to (4.5), described in Section 4. This makes it possible to solve large-scale problems on

fairly small computers. The texture detection procedure, step 1 in Algorithm 3.1, will be

outlined in Section 5.

The model (2.1) allows the use of the proof techniques in [6] to prove the convergence

of sequence {u(k)} to the minimum of Φ(u), as illustrated by the following result.

Theorem 3.1 (Convergence). For the sequence u(k) generated by the half-quadratic AF algo-

rithm, if

ker((Gα)T Gα)∩ ker(BT B) = {0}, (3.9)

then we have

(i) {Φ(u(k))} is monotonic decreasing and convergent;

(ii) limk→∞ ‖u
(k) − u(k+1)‖2 = 0;

(iii) {Φ(u(k))} converges to the unique minimizer u∗ of Φ(u) from any initial guess u(0).
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We remark that, in our case, for α ∈ [1,2], ker((Gα)T Gα) is spanned at most by the

two vectors: 1n2 , an n2 vector of ones and (1,2, · · · , n2), while the blurring matrix B is a

low-pass filter. Thus (3.9) always holds.

4. Fractional-order derivatives of variable α order

In this section, in order to allow for a complete overview of the discrete numerical

procedure for computing the matrix-vector product
�
(Gα)T bΛbDβGα
�
u(k+1) in (3.8), we will

explain how the fractional order derivatives have been discretized and made spatially-

adaptive by using variable fractional order.

Fractional-order derivatives have a long history and can be seen as a generalization of

the integer-order derivatives. Many definitions of fractional-order derivative exist and all

are consistent in some respect with the integer-order one. One of the most popular is the

frequency domain definition [8,21].

Since images are functions defined on a bounded domain, the computation of the

fractional-order partial derivatives by the discrete Fourier transforms requires that the

function must be symmetric and even, so that a prolongation of the image has to be

implemented. This yields a high computational cost. Moreover, here we are interested

in variable-order fractional differentiation, i.e., in the computation of spatially-adaptive

fractional-order derivatives. In this case the fractional order derivatives in the frequency

domain should be properly reconsidered.

Hence, following [30], in this paper we use the Grunwald-Letnikov fractional-order

derivative [23]. Let an image be an n× n matrix with i and j denoting the column and the

row pixel coordinates. The discrete, fractional-order gradient at a pixel (i, j) is defined as

(∇αi, j u)i, j =
�
(∆
αi, j

x u)i, j, (∆
αi, j

y u)i, j
�
, where

(∆
αi, j

x u)i, j=

K−1∑

s=0

ω
αi, j

s ui−s, j , (∆
αi, j

y u)i, j=

K−1∑

s=0

ω
αi, j

s ui, j−s , αi, j ∈ R
+, (4.1)

with K > 0 being the number of pixels used for the approximation and ωαs , for a generic

α= αi, j , being the real coefficients defined as

ωαs =(−1)s
�
α

s

�
=(−1)s

Γ(α+ 1)

Γ(s+ 1)Γ(α− s+ 1)
, α ∈ R+, s ∈ N. (4.2)

The generalized binomial coefficients
�α

s

�
, defined in (4.2) in terms of the Gamma function,

can be computed by the following recurrence relationships

�
α

0

�
= 1;

�
α

s

�
=

�
α

s−1

�
·
�

1−
α+ 1

s

�
, α ∈ R+, s = 1,2, · · · . (4.3)

In Fig. 2 we show the values of the coefficients ωαs used in (4.1) and defined in (4.2)-

(4.3) for values of α between 1 and 2 and increasing s values. Only the first ten coefficients

ωα0 , · · · ,ωα9 are reported since they vanish to zero very fast and only α ∈ [1,2] values are
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(a) (b)Figure 2: Values of the oe�ients ωα
s
used in (4.1) for the disrete approximation of the frational-orderpartial derivatives.

considered since this is the range we use in AF algorithm. In Fig. 2(a) the first fourth s

values are shown, while in Fig. 2(b), the remaining coefficients are shown using a different

plot scale. We remark that, independently on α, the coefficients vanish to zero very fast

when s increases, so that a small number of nodes K in (4.1) is sufficient at each pixel for

an accurate approximation of the fractional-order gradient.

For α= 1 and α= 2 the coefficients exactly vanish for s > 1 and s > 2, respectively and

in fact they reduce to the classical finite difference discretizations of the first and second

order derivatives respectively. Finally, we point out that the coefficients sum up to zero

independently on α ∈ [1,2].

In light of what said, we can make some considerations about the 2n2× n2 matrix

Gα = (Gαx , Gαy )
T in (3.8) when implementing the fractional-order gradient operator. In

the simplest case of a non-adaptive α, clearly the computations in (4.1) are nothing more

than discrete convolutions of the image with two shift-invariant kernels discretizing the

fractional-order partial derivatives. Hence, assuming Dirichlet homogeneous boundary

conditions, the two n2 × n2 matrices Gαx and Gαy are block Toeplitz with Toeplitz blocks,

i.e.,

Gαx=In⊗Uα, Gαy=Uα⊗In, (4.4)

where ⊗ denotes the Kronecker product, In is the nth-order identity matrix and Uα is the

n× n Toeplitz lower triangular banded matrix whose first column is (ωα0 ,ωα1 , · · · , ωαK−1,

0, · · · , 0)T with K denoting the number of nodes used for the computation of the frac-

tional derivatives. Different structured matrices can be obtained for different boundary

conditions, see [24].

In the case of variable α, the two matrices Gαx and Gαy retain the same sparsity structure

but are no longer Toeplitz: each row will contain different coefficients ω
αi, j

s depending

on the fractional-order of differentiation selected for the corresponding pixel. Finally, to

compute the matrix-vector product
�
(Gα)T bΛbDβGα
�
u(k+1) in (3.8), let m = n j + i be the

lexicographical coordinate of a pixel (i, j) and let (A)m denote the mth row of the matrix
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A, then the m-th element of the resulting vector is

�
(Gα)T bΛbDβGα
�

m
u(k+1)

=λi, j

�
K−1∑

s=0

ω
αi, j

s

(∆
αi, j

x u(k+1))i+s, j

|∇αi, j u
(k)

i+s, j
|β

+

K−1∑

s=0

ω
αi, j

s

(∆
αi, j

y u(k+1))i, j+s

|∇αi, j u
(k)

i, j+s
|β

�
, (4.5)

with the fractional finite difference operators ∆
αi, j

x and ∆
αi, j

y defined in (4.1).

5. Texture detection method

An automatic texture detection procedure was proposed in [10] where the noise is

assumed to be Gaussian with known variance and the authors use the ℓ2-TV denoising

method to detect texture regions in noisy images. Here, we present a new strategy for

computing a measure of texture at each pixel of a degraded image based only on the

assumption that the additive noise e in (1.1) is the realization of a white random process.

We make no assumption about the noise distribution and the noise variance. We only

assume that the noise is not correlated to the image and to itself.

Our idea is to use the auto-correlation function to detect non-whiteness in data.

Inspired by [10], starting from the observed degraded image, i.e., u(0) = f , we apply a

simple TV-flow with Neumann homogeneous boundary conditions

u(k+1)=u(k)+τ∇·
�
∇u(k)

|∇u(k)|

�
, (5.1)

which approaches a piecewise constant image, so-called "cartoon model", that we denote

by u(k). The oscillatory parts removed by the TV flow are the noise e and the "non-cartoon"

part, that is the texture parts unc, which represent small-scale geometric details in the im-

age, see [28] for a detailed analysis of the ℓ1-TV model for decomposing a real image into

the sum of cartoon and texture. Under this decomposition, the residual can be represented

as

r(k) := f − u(k) = unc + e.

The sequence u(k) converges asymptotically to the constant image with value the mean

of the input image f (that we denote by f ), so that the corresponding r(k) approaches to

f − f , We want to stop the TV flow at a characteristic scale ek which allows us to well detect

textured parts unc in the image. Unlike the heuristic criterium adopted in [10], we propose

to consider the auto-correlation of the residue r(k) and to choose ek accordingly.

To describe the details of the approach, we briefly introduce some required statistical

concepts. Let E = {Ei, j : i, j = 1, · · · , n} be an n×n discrete random field with Ei, j denoting

the scalar random variable modeling noise at pixel (i, j). The auto-correlation of E is a

function ρE mapping pairs of pixel locations (i1, j1), (i2, j2) into a scalar value that must

lie in the range [−1,1], which represents the Pearson’s correlation coefficient between the
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two corresponding random variables Ei1, j1
, Ei2, j2

, i.e.,

ρE[i1, j1, i2, j2]=
E
��

Ei1, j1
−µi1, j1

��
Ei2, j2
−µi2, j2

��

σi1, j1
σi2, j2

, (5.2)

where E is the expected value operator, µi, j and σi, j are the mean and standard deviation

of the random variable Ei, j.

Since we assume that noise is white, i.e., wide-sense stationary, zero-mean, uncorre-

lated, the auto-correlation of E depends only on the lag between the two pixel locations

[l, m] = (i2 − i1, j2 − j1) and (5.2) can be rewritten as follows

ρE[l, m]=
1

σ2
E
�

Ei, j Ei+l , j+m

�

=

¨
1, if (l, m) = (0,0),

0, otherwise,
l, m = 0, · · · , n− 1, (5.3)

independently on i, j. That is, a white noise is characterized by zero values of the auto-

correlation function at all non-vanishing lags.

Moreover, assuming that the noise process is also ergodic, provided that the observed

realization e of the noise random field E is "sufficiently long", implies that ρE in (5.3) is

well estimated by the sample auto-correlation function of e defined as

cρe[l, m]=
1

n2bσ2

n∑

i, j=1

ei, jei+l , j+m , (5.4)

where bσ2 is the sample variance of the observed noise realization e. We remark that, for

a generic observed realization x , the sample auto-correlation cρx[l, m] ∈ [−1,1], with 1

indicating perfect correlation and −1 indicating perfect anti-correlation.

In order to find a characteristic scale ek to detect textures, we propose to minimize the

following residual auto-correlation energy

Jr(k) := max
[l ,m] 6=[0,0]

��Ôρr(k)[l, m]
��, (5.5)

that, according to (5.4), for a cartoon image corrupted by white noise should be zero. For a

cartoon image without textures, the energy Jr(k) monotonically decreases and vanishes. In

the presence of textures, initially, the TV-flow makes the residual image be essentially given

by noise, so that the auto-correlation energy Jr(k) decreases. As soon as the texture part unc

initiates to contaminate the residual, the energy Jr(k) starts increasing since textures are

typically correlated.

Our proposal is based on the idea to find the characteristic scale ek which makes the

auto-correlation energy of the residual image Jr(k) minimal.

To validate this idea, in Fig. 3 we report some steps of the TV-flow applied to theBarbara image corrupted by additive white Gaussian noise with σ = 20. In particular,
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(a) u(20) (b) u(80) (c) u(120) (d) u(180)

(a) r(20) (b) r(80) (c) r(120) (d) r(180)

(a)Öρr(20) (b)Öρr(80) (c)×ρr(120) (d)×ρr(180)Figure 3: Some steps of the TV-�ow applied to the Barbara image orrupted by a white Gaussiannoise with σ = 20 (�rst row); orresponding residual images (seond row); orresponding sample auto-orrelation, restrited to the smaller lags [l , m] : l , m= 0, 1, · · · , 9 (third row).
in the first, second and third rows we show, respectively, the images filtered by the TV-

flow, u(k), the residual images, r(k) and a zoom of the auto-correlation function of the

residual images,Ôρr(k) , restricted to the smaller lags [l, m] : l, m = 0,1, · · · , 9. Moreover,

in Fig. 4 we report the values of the standard deviation and auto-correlation energy of the

20 40 60 80 100 120 140
0

5

10

15

20

25

k

σ r

20 40 60 80 100 120 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

J r

(a) σr(k) (b) Jr(k)Figure 4: Standard deviation (a) and auto-orrelation energy (b) of the residue.
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(a) (b)Figure 5: Texture maps ompute by [10℄ (a) and by our proposed strategy (b). The maps have beenlinearly saled so that the maximum value orresponds to the gray value 255.
residual image versus iterations. Fig. 4(b) shows clearly how the auto-correlation energy

exhibits a very well-defined first local minimum and looking at Fig. 4(a) one can notice

that corresponding to this minimum the standard deviation of the residual image is slightly

greater than the standard deviation of the noise (horizontal blue line).

Once the characteristic scale ek has been selected, we assign as a measure of texture at

each pixel the auto-correlation energy of the residual image computed by (5.5) locally in a

surrounding neighborhood of the pixel. We name this procedure ComputeTextureMeasure()

in Algorithm 5.1.Algorithm 5.1: Texture Detetion (TD) AlgorithmInput: degraded image f , number of texture lasses C;Output: texture-adaptive parameters λi, αi, i = 1, · · · , n2;1. Initialize the iterative proess by setting u(0) = f ;2. Repeat3. perform one step of the TV �ow u(k+1) = T V (u(k)) by (5.1)4. ompute the residue image r(k+1) = f − u(k+1)5. ompute the residue auto-orrelation ρr(k+1) by (5.4)6. ompute the residue auto-orrelation energy Jr(k+1) by (5.5)7. until Jr(k+1) > Jr(k)8. k̃ := k harateristi sale found at the �rst loal minimum;9. T = ComputeTex tureMeasure (u(k̃)) with T taking values in [0, 1℄;10. partition T into C lasses T1, T2, · · · , TC ;11. assign (λi ,αi) aording to Ti for i = 1, · · · , C.
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In Figs. 5(a) and 5(b) we illustrate the texture maps obtained by applying the method

in [10] and our proposal (with ek = 92), respectively, on the same corrupted Barbara
image used in producing the figures in Fig. 3. In the implementation of both [10] and

our algorithm, we used a 21×21 local neighborhood centered at each pixel for computing

variance values and auto-correlation energy, respectively. We remark that our approach

does not require any information about the noise distribution and variance, moreover the

obtained texture map is of better quality than the one computed by [10]. This can be due

to the fact that in [10] the texture map is defined using only the local variance information.

We finally summarize the proposed texture detection procedure in Algorithm 5.1.

To conclude, we give some details about the computational complexity of Algorithm

5.1. The most demanding steps are step 5 and step 9. As the residue auto-correlation

ρr(k) is computed by (5.4) using a two-dimensional FFT, step 5 exhibits a complexity of

O (ekn2 log n2) for a characteristic scale ek. Step 8 computes ρ
r(
ek) for each pixels locally,

i.e., in a surrounding neighborhood of size w (we used w = 21), using FFT; hence its

complexity is O (n2w2 log w2).

6. Computed examples

This section illustrates the performance of the AF algorithm which solves (3.8) when

applied to both synthetic and real images that have been contaminated by blur and noise.

We compare the results of the AF algorithm with that of the ℓ1-TV method, which solves

(1.3) and ℓ2-TV method, the well-known Rudin-Osher-Fatemi model [25]. The ℓ1-TV al-

gorithm solves (1.3) with λ = 0.1 and it is implemented as the AF algorithm where we

set αi = 1, and λi = 0.1, for all i in the difference matrix Gα and in the diagonal matrix

Λ, respectively. The ℓ2-TV algorithm is implemented as the ℓ1-TV algorithm by setting the

matrix Dγ in (3.8) to the identity matrix. In AF algorithm we fix the regularization pa-

rameters β = 10−3 and γ = 10−6 in (3.1) and the number of nodes K = 8 in (4.1), for

all tests. Neumann homogeneous boundary conditions for the difference matrix Gα have

been considered in all tests, which corresponds to a reflection of the original image at the

boundary [18].

We compare the accuracy of the methods by the Signal-to-Noise Ratio (SNR) defined

by

SNR(u, û) := 10 log10

‖u− E(û)‖

‖u− û‖
dB,

where u is an available approximation of the desired blur- and noise-free image û and E(û)

represents the mean gray-level value of the uncorrupted image. This measure provides a

quantitative measure of the quality of u. A large SNR-value indicates that u is an accurate

approximation of û; however, the SNR-values are not always in agreement with visual

perception.

The matrix B in (1.1) represents a Gaussian blurring operator and is generated by the

Matlab function blur.m in Regularization Tools [12]. This function has two parametersband and sigma. The former specifies the half-bandwidth of the Toeplitz blocks and the
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latter the variance of the Gaussian point spread function. The larger sigma, the more

blurring. Enlarging band increases the storage requirement, the arithmetic work required

for the evaluation of matrix-vector products with B and to some extent the blurring.

The entries of f are contaminated either by additive Gaussian noise or by salt-and-

pepper noise. The noise is added to the blurred image to obtain the observed image f . In

the salt-and-pepper noise white and black pixels randomly occur, while unaffected pixels

always remain unchanged. The salt-and-pepper noise is usually quantified by the per-

centage of pixels which are corrupted. In the case of Gaussian noise, let ef ∈ Rn2

be the

associated vector with the unknown noise-free entries, i.e., f = ef + e where the vector e

represents the noise. We define the noise-level

ν =
‖e‖

‖ef ‖
(6.1)

in all the examples.

In these examples we partitioned the texture-map only into four classes, three texture

classes and one non-texture class, with associated fractional order and regularization pa-

rameter values α1 = 1.9, λ1 = 0.05, α2 = 1.8, λ2 = 0.05, α3 = 1.7, λ3 = 0.05 and

α4 = 1.0, λ4 = 1.0, respectively. For this particular case, the diagonal entries of the matrix

Λ may assume one of the four different values λ1, λ2, λ3 and λ4.

All computations are carried out in MATLAB with about 16 significant decimal digits.

As concerning the computational complexity of the AF algorithm, sketched in (3.1),

we have a preliminary texture detection step (see step 1 in (3.1)), whose complexity has

been discussed in Section 5. Then, the core of the algorithm consists of an outer iteration

loop (step 3 in (3.1)) and an inner iteration loop required by the iterative solver CG for

the linear system in (3.8). From our experience very good results are obtained by at

most 10 outer iterations, while the number of inner iterations depends on the required

tolerance. In our experiments we used 10−4 as stopping tolerance for the CG algorithm,

that involves an average of 18 inner iterations. Each iteration in the inner loop requires

the evaluation of one matrix-vector product with the matrix which is composed by the sum

of two matrices, one related to the regularizer and the other to the blur operator. The

implementation details of the former are given in Section 4, while the latter makes use of

FFT convolutions.

Example 6.1. We consider the restoration of a blur- and noise-contaminated test image

represented by 255× 255 pixels. The desired blur- and noise-free image is depicted in

Fig. 6(a). The image is contaminated by a spatially-invariant Gaussian blur, determined

by the parameters band = 3 and sigma = 1.5 and by 10% noise. The resulting image is

displayed in Fig. 6(b).

In Table 1 the second column with header SNRi reports SNR values for images test
that have been corrupted by the spatially-invariant Gaussian blur, characterized by band=
3 and sigma = 1.5 and by noise of different noise-levels ν defined in (6.1). The value of

ν are shown in the first column. Column three, labeled SNRAF, shows the SNR values for

restorations by AF algorithm and column four and fifth, labeled SNRℓ1−TV and SNRℓ2−TV
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(a) true image (b) observed image

(c) ℓ1-TV (d) AF

(e) ℓ2-TV (f) texture mapFigure 6: Example 6.1. test images: (a) blur- and noise-free image; (b) the orrupted image produedby Gaussian blur, de�ned by the parameters band = 3 and sigma = 1.5 and by 10% of Gaussian noise;() restoration with ℓ1-TV with λ1 = 0.1; (d) restored image determined by AF algorithm; () restorationwith ℓ2-TV with λ1 = 0.1; (f) texture lasses omputed on (b).
show the SNR values for restorations by TV method, implemented by (1.3) with ℓ1 and ℓ2
data fidelity terms, respectively.

The adaptive regularization process applies different levels of denoising in different

image regions. This improves the result visually, in terms of texture preservation and

smoothing of the homogeneous regions and in terms of signal-to noise-ratio. Fig. 6(d)

shows the restoration by AF algorithm and Fig. 6(f) depicts the texture-map used for the

restoration. The texture measures are obtained on the corrupted image in Fig. 6(b) and

the four texture classes are shown using gray-level values. In particular, in black regions

the AF algorithm is applied with α4 = 1.0, α2 = 1.7 and α3 = 1.8 in the gray regions
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ν .

ν SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

0.01 15.98 20.46 20.00 18.22

0.05 13.29 15.86 15.06 15.48

0.10 9.44 13.06 11.56 12.44

and α1 = 1.9 in white regions. The restoration by ℓ1-TV is illustrated in Fig. 6(c) using

λ = 0.1 and it preserves textures but it does not remove the noise. However, when we

apply ℓ2-TV restoration with λ= 1.0 it does the opposite, that is, it preserves very well the

edges but it destroys the textures. The restoration by ℓ2-TV, illustrated in Fig. 6(e), shows

less sharpness and smoothing of the texture regions.

Example 6.2. We demonstrate how well our adaptive method performs on natural images

by processing a noisy version of the barbara image. The noise- and blur-free 510× 510

image barbara used in this example is shown in Fig. 7(a). The corresponding image

corrupted by the Gaussian blur, defined by band = 3 and sigma = 1.5 and by 10% of

Gaussian noise, is shown in Fig. 7(b).

Table 2 reports the SNR values for the contaminated images and for the restorations by

the three methods. The table is analogous to Table 1. Fig. 7(c) shows the best restoration

by the ℓ1-TV method using λ = 1.0. Fig. 7(d) shows the restoration by AF algorithm

using the texture-map depicts in Fig. 7(f) which is computed from the observed image

in Fig. 7(b). Some texture parts of the image are lost in the texture-map, i.e., parts of

the pants and thus these regions cannot benefit from the fractional order restoration. A

well-defined texture-map is obtained and illustrated in Fig. 7(e), when the texture-map

is computed on the blur- and noise- free image in Fig. 7(a). In case severe blur or noise

levels corrupt the image, the texture-map can present both erroneously detected texture

parts and missing textures. In these cases the performance of AF algorithm reduces to that

of a fractional order image restoration without spatial adaptivity.Table 2: Example 6.2. Results for restorations of barbara images that have been orrupted by spatially-invariant Gaussian blur, de�ned by band = 3 and sigma = 1.5 and by additive Gaussian noise orre-sponding to noise-level ν .
ν SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

0.01 11.41 14.00 13.53 12.14

0.05 10.71 11.94 10.89 11.64

0.10 9.05 10.59 9.73 10.26Table 3: Example 6.2. Results for restorations of barbara images that have been orrupted by spatially-invariant Gaussian blur, de�ned by band= 3 and sigma = 1.5 and by salt-and-pepper noise orrespondingto noise-level n.
n SNRi SNRAF SNRℓ1−TV SNRℓ2−TV

5% 3.89dB 14.12 13.39 7.56

10% 1.42dB 13.17 12.93 6.61
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(a) true image (b) observed image

(c) l1-TV (d) AF

(e) texture map from (a) (f) texture map from (b)Figure 7: Example 6.2. barbara images: (a) blur- and noise-free image; (b) the orrupted imageprodued by Gaussian blur, de�ned by the parameters band = 3 and sigma = 1.5 and by Gaussianadditive 10% noise; () restoration with ℓ1- TV with λ1 = 0.1; (d) restored image determined by AFalgorithm; (e) texture lasses omputed on (a); (f) texture lasses omputed on (b).
Table 3 provides a comparison of the three methods when applied to a small part of

the barbara image corrupted by a salt-and-pepper noise of level n (given in the first

column). The ℓ2-TV algorithm performs well when applied to Gaussian noise removal, as

shown in Table 2, but it fails when applied to salt-and-pepper noise removal, as shown in

the fifth column in Table 3. Both ℓ2-TV and ℓ1-TV implementation used the regularization

parameter λ = 0.1 which produced the best results. The best quality in SNR is obtained

with the AF algorithm and it is shown in the third column of Table 3. The image in

Fig. 8(a) has been degraded by %5 salt-and-pepper noise and by Gaussian blur, defined

by the parameters band = 3 and sigma = 1.5, the restored image determined by AF
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(a) observed image (b) AF

(c) texture map (d) texture classesFigure 8: Example 6.2. barbara images: (a) the orrupted image produed by Gaussian blur, de�nedby the parameters band = 3 and sigma= 1.5 and by 5% salt & pepper additive noise; (b) restored imagedetermined by AF algorithm; () texture map omputed on (a); (d) texture lasses from ().
algorithm is illustrated in Fig. 8(b). In Section 5 we showed the texture map obtained

by applying the proposed texture detection strategy to an image corrupted by additive

Gaussian noise. In Fig. 8(c), the texture map computed on the corrupted image in Fig. 8(a)

is illustrated, together with the four textured classes computed from it (Fig. 8(d)).

Example 6.3. As a final example, we show the performance of AF algorithm when applied

to a photographic image, skysraper, of size 256× 256, which presents large textured

parts. The original unperturbed image is shown in Fig. 9(a) and the degraded version of

it by the Gaussian blur, defined by band = 3 and sigma = 1.5 and by 10% of Gaussian

noise, is shown in Fig. 9(b). The perturbed image has a qualitative measure SNR = 8.17.

The restored image determined by AF algorithm is illustrated in Fig. 9(c) and provides a

SNR value of 9.79, the ℓ1-TV restored image is reported in in Fig. 9(d), with SNR equal

to 8.44. The λ regularization parameter used in ℓ1-TV algorithm is 0.5 and we kept the

same value for the λi corresponding to pixels belonging to the non-textured class when

the AF algorithm is applied. The best ℓ2-TV restoration has been obtained for λ = 0.05

which gives a restored image with SNR = 8.65. The corresponding restored image is

visually similar to Fig. 9(d), therefore is not reported. In Fig. 9(f), which illustrates the

four classes used, pixels belonging to the non-textured class are black colored. Fig. 9(e)

illustrates the texture map computed on the corrupted image shown in Fig. 9(b), which
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(a) true image (b) observed image

(c) AF (d) ℓ1-TV

(e) texture map (f) texture classesFigure 9: Example 6.3. skysraper images: (a) original unperturbed image (b) orrupted imageprodued by Gaussian blur, de�ned by the parameters band= 3 and sigma= 1.5 and by 10% Gaussianadditive noise; () restored image determined by AF algorithm; (d) restoration with ℓ1- TV with λ1 = 0.5;(e) texture map omputed on (b); (f) texture lasses omputed on (e).
well highlights the textured zones. Consequently, the details present in these textured parts

are well reconstructed by AF algorithm as shown in Fig. 9(c).

7. Conclusion remarks

This paper describes a new adaptive method for image deblurring and denoising. The

regularization operator is constructed by using fractional order derivatives, where the

choice of the fractional order for each pixel in the image is driven by the texture map

of the image. Moreover, the regularization parameters are also chosen adaptively accord-
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ing to the texture map. This makes the proposed algorithm an efficient tool to preserve

texture well in the texture regions while removing noise and staircase effects in the image.

We have developed a simple iterative algorithm to solve the model which is based on the

half-quadratic strategy. Numerical results showed that the proposed algorithm yields bet-

ter signal-to-noise ratio and visual effects than using non-adaptive fractional order image

restorations based on TV regularization and ℓ1 or ℓ2 data fitting terms.

Increasing the number of texture classes would maintain the same computational cost

of the AF algorithm while improving the accuracy in terms of SNR value. We will investi-

gate this important aspect in future experiments.
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