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Abstract. The inverse problem considered in this paper is to determine the shape and

the impedance of crack from a knowledge of the time-harmonic incident field and the

corresponding far field pattern of the scattered waves in two-dimension. The combined

single- and double-layer potential is used to approach the scattered waves. As an im-

portant feature, this method does not require the solution of u and ∂ u/∂ ν at each

iteration. An approximate method is presented and the convergence of this method is

proven. Numerical examples are given to show that this method is both accurate and

simple to use.
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1. Introduction

The inverse scattering problem for electromagnetic time-harmonic plane wave by very

thin obstacles has been considered in a series of papers [1–3]. Among these papers, the

Dirichlet and Neumann crack problem has been solved. In the paper [4], the inverse

problem considered is to determine the shape and the impedance of an obstacle from a

knowledge of the time-harmonic incident field and the phase and amplitude of the far field

pattern of the scattered wave in two-dimension. In this paper we are interested in numer-

ical methods for determining the shape and impedance for crack from the knowledge of

the incident field and the scattered field of the far field pattern. The difference is that the

closed boundary curve is considered in paper [4] but a non-intersecting arc is considered

in this paper. And the combined potential is put forward.
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In comparison with [1], our method considers the impedance problem. In paper [5],

the same problem is considered. But in this paper, using the combined single and double

layer potentials to approach the scattered field us, the problem is changed to a minimiza-

tion problem. Furthermore, our reconstructions do not require the solution of the function

u and its normal derivative ∂ u/∂ ν at each iteration step and only require the nonzero

initials of ϕ, Γ, λ. We approximate the functions ψ, z and λ by finite trigonometric series.

Let Γ⊂ R2 be a non-intersecting C3-smooth arc, i.e.,

Γ =
�

z(t) : t ∈ [−1,1], z ∈ C3[−1,1] and |z′(t)| 6= 0, ∀t ∈ [−1,1]
	

.

By z1, z−1 we denote the two end points z1 := z(1) and z−1 := z(−1) of Γ and set Γ0 :=

Γ \ {z−1, z1}. Assuming an orientation for Γ from z−1 to z1, by Γ+ and Γ− we denote the

left- and right-hand sides of Γ, respectively, and by ν the unit normal vector to Γ directed

towards Γ+. Let the incident field ui be given by ui(x) = exp[ikx · d], where k > 0 is the

wave number and d is a fixed unit vector. The direct scattering problem consists of finding

the total field u = ui + us such that both the Helmholtz equation

∆u+ k2u= 0 in R2\Γ (1.1)

and the impedance boundary condition

∂ u±
∂ ν
± ikλu± = 0 on Γ0 (1.2)

are satisfied. To ensure uniqueness, the Sommerfeld radiation condition

lim
r→∞
p

r

�

∂ us

∂ r
− ikus

�

= 0, r = |x | (1.3)

is imposed uniformly for all directions.

The radiation condition (1.3) ensures an behavior of the form

us(x) =
eik|x |
p

|x |

�

u∞( x̂)+ O
� 1

|x |
�

�

, |x | →∞ (1.4)

uniformly for all directions x̂ = x/|x | (see [6]). The amplitude factor u∞ is known as the

far field pattern of the scattered wave us and defined in the unit circle Ω⊂ R2. The inverse

problem we are concerned with is to determine the impedance and the shape of crack Γ

from a knowledge of the far field pattern u∞ for the incident wave ui .

For the problem (1.1)-(1.3), there exists the following theorem.

Theorem 1.1 (see [7]). The impedance crack problem has at most one solution.
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2. Mathematical analysis of the inverse scattering problem

In the paper [7], the direct problem is solved by the combined single- and double-layer

potential. We are now in a position to present our method through the same potential. Let

the single- and double-layer potential

v(x) =

∫

Γ

Φ(x , y)ϕ1(y)ds(y) +

∫

Γ

∂Φ(x , y)

∂ ν(y)
ϕ2(y)ds(y), x ∈ R2 \Γ (2.1)

with densitiesϕ1 ∈ C(Γ) andϕ2 ∈ C
1,α
0,l oc
(Γ) approach the scattered field us, where Φ(x , y) =

i

4
H
(1)
0 (k|x − y|) (x 6= y) denotes the fundamental solution to the Helmholtz equation in

two-dimension. From the asymptotic for us(x), we see that the far-field pattern of the

potential (2.1) is given by

u∞( x̂) =
e−iπ/4

p
8πk

∫

Γ

�

iϕ1(y) + kx̂ · ν(y)ϕ2(y)
	

e−ik x̂ ·yds(y). (2.2)

For solving inverse problem, we would focus on the method as a numerical method for

shape and impedance. Hence, for the given far-field pattern, we should solve the integral

equation

(Fϕ1,2)( x̂) = u∞( x̂), (2.3)

where F : L2(Γ)× L2(Γ)→ L2(Ω) is defined by the form (2.2).

Then one tries to find the boundary Γ as the location where the boundary condition

(1.2) is satisfied.

Now we have the following theorem:

Theorem 2.1. The far-field patterns corresponding to an infinite number of plane waves

with distinct directions uniquely determine the shape and location of the scatterer Γ and the

impedance function λ.

Proof. See [1, Theorem 3.1] and [3, Theorem 2]. �

Eq. (2.3) is an ill-posed problem, so we use the Tikhonov regularization method to

solve this problem, that is for the regularization parameters α, β > 0, find the solution

ϕ1,2;α,β ∈ L2(Γ) satisfying





Fϕ1,2;α,β − u∞






2

L2(Ω)
+α




ϕ1;α







2

L2(Γ)
+ β




ϕ2;β







2

L2(Γ)

= inf
ϕ1,2∈L2(Γ)×L2(Γ)

n





Fϕ1,2 − u∞






2

L2(Ω)
+α




ϕ1







2

L2(Γ)
+ β




ϕ2







2

L2(Γ)

o

. (2.4)

Define

U :=
�

λ : 0¶ λ¶ M1, |x(t)− y(t)| ¶ M2, x , y ∈ Γ},



346 A. L. Yang, L. T. Wang and X. H. Li

where M1 and M2 are positive constants. From theorem Arzela-Ascoli, U is compact in

C(Γ). By the approach of the scattered wave

us
α,β(x) =

∫

Γ

Φ(x , y)ϕ1;α(y)ds(y) +

∫

Γ

∂Φ(x , y)

∂ ν(y)
ϕ2;β (y)ds(y), (2.5)

we should find Γ and λ, which minimize the impedance boundary condition

inf
(Γ,λ)∈C3[−1,1]×U










∂

∂ ν

�

ui(Γ) + us
α,β(Γ)
�± ikλ
�

ui(Γ)+ us
α,β (Γ)
�










L2(Γ0)
.

Define operators

(Sϕ)(x) := 2

∫

Γ

ϕ(y)Φ(x , y)ds(y), (Kϕ)(x) := 2

∫

Γ

ϕ(y)
∂Φ(x , y)

∂ ν(y)
ds(y),

(K ′ϕ)(x) = 2

∫

Γ

∂Φ(x , y)

∂ ν(x)
ϕ(y)ds(y), (Tϕ)(x) = 2

∂

∂ ν(x)

∫

Γ

∂Φ(x , y)

∂ ν(y)
ϕ(y)ds(y),

for x ∈ Γ0. As in the case of boundary curves it can be obtained by partial integration using

ϕ(x1) = ϕ(x−1) = 0.

Clearly, us satisfies the radiation condition. After rewriting the two boundary conditions

(1.2) in the equivalent form of their difference and their sum, the jump relations also

imply that u satisfies the boundary condition provided the densities ϕ1;α and ϕ2;β solve

the system of integral equations

2ui −ϕ1;α + ikλSϕ1;α + ikλKϕ2;β = 0, (2.6a)

2
∂ ui

∂ ν
+ Tϕ2;β + K ′ϕ1;α + ikλϕ2;β = 0. (2.6b)

Then for the boundary Γ and impedance λ, we can define the minimization problem

µ(ϕ1,2;α,β , z,λ;α,β)

= min
(ϕ1,2;α,β ,z,λ)∈L2(Γ)×L2(Γ)×C3[−1,1]×U

�





Fϕ1,2;α,β − u∞






2

L2(Γ)
+α




ϕ1;α







2

L2(Γ)

+ β




ϕ2;β







2

L2(Γ)
+




(−ϕ1;α + ikλSϕ1;α + ikλKϕ2;β + 2ikλui)






2

L2(Γ0)

+










�

2
∂ ui

∂ ν
+ Tϕ2;β + K ′ϕ1;α + ikλϕ2;β

�









2

L2(Γ0)

�

. (2.7)

3. Convergence analysis

In this section, we will consider a minimization problem that is related to the method

presented in the previous section. To this end, we choose a closed and bounded subset

V ⊂ C3[−1,1], which makes each ξ ∈ V be an injective mapping ξ : [−1,1] → R2

representing a crack Γ.
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Definition 3.1. Given the incident field ui, a far field pattern u∞ and regularization pa-

rameters α,β > 0, a pair (z0,λ0) ∈ V × U will be called admissible if there exists ϕ1,2;0 ∈
L2(Γ) × L2(Γ) such that (ϕ1,2;0, z0,λ0) minimizes the expression in (2.7) over all ϕ1,2 ∈
L2(Γ)× L2(Γ), z ∈ V and λ ∈ U, that is, we have

µ(z0,λ0,ϕ1,2;0;α,β) = m(α,β),

where

m(α,β) := inf
(ϕ1,2,z,λ)∈L2(Γ)×L2(Γ)×V×U

µ(ϕ1,2, z,λ;α,β).

Theorem 3.1. For each α, β > 0 there exists an optimal pair (z0,λ0) ∈ V × U.

Proof. We will follow [8], but have to take into account the additional regularization

term on the length of Γ. Consider a minimizing sequence (ϕ1,2;n, zn,λn) in L2(Γ)× L2(Γ)×
V × U , i.e.,

lim
n→∞µ(ϕ1,2;n, zn,λn;α,β) = m(α,β),

where

m(α,β) = inf
(ϕ1,2,z,λ)∈L2(Γ)×L2(Γ)×V×U

µ(ϕ1,2, z,λ;α,β).

As V × U is assumed to be closed and bounded, we can assume convergence zn → z ∈ V

as n → ∞ with respect to the C2-norm and λn → λ ∈ U as n → ∞ with respect to the

C-norm.

One also has that

α‖ϕ1‖2L2(Γ)
+ β‖ϕ2‖2L2(Γ)

≤ lim
n→∞µ(ϕ1,2;n, zn,λn;α,β) = m(α,β)

as n → ∞, so ϕ1,2 is bounded and by a similar argument using the compact V one can

assume that ϕ1,2;n → ϕ1,2. By continuity of the function µ in all its variables, one has the

result, since

µ(ϕ1,2, z,λ;α,β) = lim
n→∞µ(ϕ1,2;n, zn,λn;α,β) = m(α,β).

The proof is complete. �

Theorem 3.2. Let u∞ be the far field pattern corresponding to the incident field ui ,

(z(t),λ(t)) ∈ V × U, then we have convergence of the cost functional

lim
α,β→0

m(α,β) = 0.

Proof. From Theorem 1.1, the solution to the direct problem has unique solution.

One knows that the solution can be represented by a combined single and double layer

potentials. So there is ‖Fϕ1,2;α,β − u∞‖2L2(Γ)
= 0. Since we can represent the solution for

the boundary curve Γ via (1.2) through the unique solution ϕ of the integral equations

(2.6a) and (2.6b), there are





(−ϕ1;α + ikλSϕ1;α + ikλKϕ2;β + 2ikλui)






2

L2(Γ0)
= 0
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and









�

2
∂ ui

∂ ν
+ Tϕ2;β + K ′ϕ1;α + ikλϕ2;β

�









2

L2(Γ0)
= 0.

Therefore one has that

lim
α,β→0

m(α,β) = 0,

since

m(α,β)≤ µ(ϕ1,2, z,λ;α,β) = α‖ϕ1‖2L2(Γ)
+ β‖ϕ2







2

L2(Γ)
. (3.1)

The proof is complete. �

Theorem 3.3. If the conditions of Theorem 3.2 is satisfies, αn, βn > 0, n = 1,2, · · · , are

sequences converging to zero, {zn,λn} are the admissible solutions corresponding to them,

then zn(t)→ z(t), λn(t)→ λ(t) as n→∞.

Proof. There exits a convergent subsequence of (zn,λn) by the proof of Theorem 3.1.

We again denote by (zn,λn), and zn → z∗ ∈ V and λn → λ∗ ∈ U . We want to show that

z∗ = z and λ∗ = λ.

Let u∗ be the scattering waves corresponding to the boundary z∗ and impedance λ∗,
that is, it satisfies the boundary condition

∂

∂ ν

�

u∗(z∗) + ui(z∗)
�± ikλ∗
�

u∗(z∗) + ui(z∗)
�

= 0 on Γ0.

zn, λn are the admissible solutions corresponding to αn, βn, and by Definition 3.1, there

exists ϕ1,2;n ∈ L2(Γ) such that

µ(ϕ1,2;n, zn,λn;α,β) = m(αn,βn).

By Theorem 3.2, these boundary data satisfy





Fzn ,λn
ϕ1,2;n − u∞






2

L2(Γ)
→ 0 (3.2)

and









∂

∂ ν
(us(zn) + ui(zn))± ikλn(u

s(zn) + ui(zn))










2

L2(Γ0)
→ 0, (3.3)

both as n→∞.

From Theorem 1.1 and the expressions (2.2) and (3.3), the far field pattern Fϕ1,2;n of

the combined double- and single-layer potential converges to the far field pattern u∗∞ of u∗.
By (3.2) we conclude that u∞ = u∗∞ and so us = u∗ follows. Since it satisfies the condition

of [9, Theorems 6.12, 6.13], this completes the proof of the theorem. �
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4. Numerical examples

In this section, we shall discuss the numerical implementation of the algorithm pre-

sented in the previous section. The data for the inverse problem is the far field pattern for

a variety of incoming waves and choices of the wave number k. In order to get the better

result, the incoming waves are written as ui
N (x) =
∑N

p=1 eikx ·dp and uN
∞( x̂) is the far field

pattern corresponding to it. For our examples, this data is generated by approximately

solving the direct scattering problem [7].

In order to discretize the inverse problem (2.7), define t = cos(s) and the integrals

are approximated using the trapezium rule with s j = jπ/n, j = 0,1, · · · , n and ψ1,2(s) =

ϕ1,2(y). For −1< t < 1 and the Maue’s identity for operator T we can write

(Sϕ)(z(t)) =

∫ 1

−1

L1(t,τ)ϕ(z(τ))dτ,

(Kϕ)(z(t)) =

∫ 1

−1

L2(t,τ)ϕ(z(τ))dτ,

(K ′ϕ)(z(t)) =
1

|z′(t)|

∫ 1

−1

L3(t,τ)ϕ(z(τ))dτ,

(Tϕ)(z(t)) =
1

|z′(t)|

∫ 1

−1

n 1

π

1

τ− t

d

dτ
ϕ(z(τ)) + L4(t,τ)ϕ(z(τ))dτ

o

,

with the kernels

L1(t,τ) :=
i

2
H
(1)
0 (k|z(t)− z(τ)|)|z′(τ)|,

L2(t,τ) :=
ik

2
H
(1)
1 (k|z(t)− z(τ)|){z(t)− z(τ)}(z′2(τ),−z′1(τ))

|z(t)− z(τ)| ,

L3(t,τ) := |z′(τ)|L2(τ, t),

and

L4(t,τ) :=− i

2

z′(t){z(t)− z(τ)}z′(τ){z(t)− z(τ)}
|z(t)− z(τ)|2

×
�

k2H
(1)
0 (k|z(t)− z(τ)|)− 2kH

(1)
1 (k|z(t)− z(τ)|)
|z(t)− z(τ)|

�

− ik

2

z′(t)z′(τ)
|z(t)− z(τ)|H

(1)
1 (k|z(t)− z(τ)|)

− 1

π

1

(τ− t)2
+

ik2

2
H
(1)
0
(k|z(t)− z(τ)|)z′(t)z′(τ).

By t = cos(s), the operators S, K , K ′, T are parameterized see [7]. Now the representation
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(2.7) will be written to

µ(ψ1,2, z,λ;α,β) =

L−1
∑

q=0













e−iπ/4

p
8πk

n
∑

j=0

i|z′(s j)|e−ik x̂q·(z1(s j),z2(s j))w j sin s jψ1(s j)

+

n−1
∑

j=1

π

n
kx̂q · (z1(s j), z2(s j))e

−ik x̂q·(z1(s j),z2(s j)) sin s jψ2(s j)− u∞( x̂q)













2

+α

n
∑

j=0

‖ψ1(s j)‖2 + β
n−1
∑

j=1

‖ψ2(s j)‖2

+













n
∑

j=0

n

−ψ1(s j) + ikλ(s j)S(s j)ψ1(s j) + ikλ(s j)K(s j)ψ2(s j)

+ 2ikλ

N−1
∑

p=0

eikz(s j)·dp

o













2

+













n−1
∑

j=1

�

2

N−1
∑

p=0

∂ eikz(s j)·dp

∂ ν
+ T (s j)ψ2(s j)

+ K ′(s j)ψ1(s j)+ ikλ(s j)ψ2(s j)

�












2

. (4.1)

In order to discrete the inverse problem (4.1), we approximate the functions ψ, z and

λ by finite trigonometric series

ψ1,2;α,β (s) =

n1
∑

j=−n1

g1,2; je
i js, g1,2; j ∈ C,

zα,β(s) = a
(n2)

0 +

n2
∑

j=1

�

a
(n2)

j
cos js+ b

(n2)

j
sin js
�

, a
(n2)

j
, b
(n2)

j
∈ R,

λα,β(s) = a
(n3)

0 +

n3
∑

j=1

�

a
(n3)

j
cos js+ b

(n3)

j
sin js
�

, a
(n3)

j
, b
(n3)

j
∈ R.

We now report on the examples we have computed. The approximate minimum of µ

occurred at k = 1.0 and the fixed unit vector

dp =

�

cos(2πp/3),

sin(2πp/3),

�

, (p = 0,1,2).

In our examples, the full line denotes graph of Γ or λ, and the broken line denotes graph

of Γα,β or λα,β .

Example 4.1. Exact figure: The curve:

Γ =
�

t, 0.5 cos
πt

2
+ 0.2 sin

πt

2
− 0.1 cos

3πt

2

�

.

The impedance:

λ = (1− t2)2.
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Figure 1: The numeri
al results for Example 4.1.
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Figure 2: The numeri
al results for Example 4.2.
Parameters: Number of incoming waves: 3.

Inverse problem: n1 = 6, n2 = 4, n3 = 4, L = 6, α= β = 1.0E − 10.

The numerical results of Γα,β and λα,β are shown in Fig. 1.

Example 4.2. Exact figure: The curve:

Γ = (t, t3 − t + 1).

The impedance:

λ= 0.6 cos
�π

2
t
�

+ 0.2 sin
�π

2
t
�

.

Parameters: Number of incoming waves: 3.

Inverse problem: n1 = 6, n2 = 4, n3 = 4, L = 6, α= β = 1.0E − 10.

The numerical results of Γα,β and λα,β are shown in Fig. 2.

Example 4.3. For this example, we consider the noisy data for the prior two example. The

far field pattern is taken to be uδ∞( x̂ i, d) := (1+ ((−1)i + 0.4)δ)u∞( x̂ i, d) with δ = 5%.

The results (Figs. 3 and 4) show that our method is stable.

We want to point out that this method can be carried over the parametric type boundary

value with

z1;α,β (s) = a
(n1

2)

0 +

n1
2
∑

j=1

�

a
(n1

2)

j
cos js+ b

(n1
2)

j
sin js
�

, a
(n1

2)

j
, b
(n1

2)

j
∈ R,

z2;α,β (s) = a
(n2

2)

0 +

n2
2
∑

j=1

�

a
(n2

2)

j
cos js+ b

(n2
2)

j
sin js
�

, a
(n2

2)

j
, b
(n2

2)

j
∈ R.
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Figure 3: The noisy results for Example 4.1.
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Figure 4: The noisy results for Example 4.2.
Our reconstructions do not require the solution of the direct scattering problem at each

iteration step. For both examples we used as initial guess a curve at z = 1.0 and a constant

impedance λ = 1.0. The examples imply that, as for the arbitrary form of the arc Γ and

the impedance λ, our method is simple, accurate and fast.
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