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Abstract. We prove the quasi-optimal convergence of a standard adaptive finite ele-
ment method (AFEM) for a class of nonlinear elliptic second-order equations of mono-
tone type. The adaptive algorithm is based on residual-type a posteriori error estimators
and Dörfler’s strategy is assumed for marking. We first prove a contraction property for
a suitable definition of total error, analogous to the one used by Diening and Kreuzer
(2008) and equivalent to the total error defined by Cascón et. al. (2008). This con-
traction implies linear convergence of the discrete solutions to the exact solution in
the usual H1 Sobolev norm. Secondly, we use this contraction to derive the optimal
complexity of the AFEM. The results are based on ideas from Diening and Kreuzer and
extend the theory from Cascón et. al. to a class of nonlinear problems which stem from
strongly monotone and Lipschitz operators.
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1. Introduction

The main goal of this article is the study of convergence and optimality properties
of an adaptive finite element method (AFEM) for quasi-linear elliptic partial differential
equations over a polygonal/polyhedral domain Ω ⊂ Rd (d = 2,3) having the form

¨

Au := −∇ ·
�

α( · , |∇u|2)∇u
�

= f inΩ

u = 0 on∂Ω,
(1.1)
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where α : Ω× R+ → R+ is a bounded positive function whose precise properties will be
stated in Section 2 below, and f ∈ L2(Ω) is given. The assumptions on α guarantee that
the nonlinear operator A is Lipschitz and strongly monotone; see (2.6)–(2.7). This kind of
problems arises in many practical situations; see Section 2.2 below.

AFEMs are an effective tool for making an efficient use of the computational resources,
and for certain problems, it is even indispensable to their numerical resolvability. The
ultimate goal of AFEMs is to equidistribute the error and the computational effort obtaining
a sequence of meshes with optimal complexity. Adaptive methods are based on a posteriori
error estimators, that are computable quantities depending on the discrete solution and
data, and indicate a distribution of the error. A quite popular, natural adaptive version of
classical finite element methods consists of the loop

SOLVE → ESTIMATE → MARK → REFINE, (1.2)

that is: solve for the finite element solution on the current grid, compute the a posteriori
error estimator, mark with its help elements to be subdivided, and refine the current grid
into a new, finer one.

A general result of convergence for linear problems has been obtained by Morin, Siebert
and Veeser [16], where very general conditions on the linear problems and the adaptive
methods that guarantee convergence are stated. Following these ideas a (plain) conver-
gence result for elliptic eigenvalue problems has been proved in [8]. On the other hand,
optimality of adaptive methods using Dörfler’s marking strategy [7] for linear elliptic prob-
lems has been stated by Stevenson [22] and Cascón, Kreuzer, Nochetto and Siebert [2].
Linear convergence of an AFEM for elliptic eigenvalue problems has been proved in [13],
and optimality results can be found in [5,9]. For a summary of convergence and optimal-
ity results of AFEM we refer the reader to the survey [18] and the references therein. We
restrict ourselves to those references strictly related to our work.

Well-posedness and a priori finite element error estimates for problem (1.1) have been
stated in [4]. A posteriori error estimators for nonconforming approximations have been
developed in [19]. Linear convergence of an AFEM for the ϕ-Laplacian problem in a
context of Sobolev-Orlicz spaces has been established in [6]. Recently, the (plain) conver-
gence of an adaptive inexact FEM for problem (1.1) has been proved in [10], where only
a discrete linear system is solved before each adaptive refinement; albeit with stronger
assumptions on α.

In this article we consider a standard adaptive loop of the form (1.2) based on classi-
cal residual-type a posteriori error estimators, where the Galerkin discretization for prob-
lem (1.1) is considered. We use the Dörfler’s strategy for marking and assume a minimal
bisection refinement. The goal of this paper is to prove the optimal complexity of this
AFEM by stating two main results. The first one establishes the linear convergence of the
adaptive loop through a contraction property. More precisely, we will prove the following

Theorem 1.1 (Contraction property). Let u be the weak solution of problem (1.1) and let

{Uk}k∈N0
be the sequence of discrete solutions computed through the adaptive algorithm de-
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scribed in Section 4. Then, there exist constants 0< ρ < 1 and µ > 0 such that

[F (Uk+1)−F (u)] +µη
2
k+1 ≤ ρ

2�[F (Uk)−F (u)] +µη
2
k

�

, ∀ k ∈ N0, (1.3)

where [F (Uk)−F (u)] is a notion equivalent to the energy error and ηk denotes the global a

posteriori error estimator in the mesh corresponding to the step k of the iterative process.

The second main result shows that, if the solution of the nonlinear problem (1.1)
can be ideally approximated with adaptive meshes at a rate (DOFs)−s, then the adaptive
algorithm generates a sequence of meshes and discrete solutions which converge with this
rate. Specifically, we will prove the following

Theorem 1.2 (Quasi-optimal convergence rate). Assume that the solution u of problem (1.1)
belongs to As.

† Let {Tk}k∈N0
and {Uk}k∈N0

denote the sequence of meshes and discrete solu-

tions computed through the adaptive algorithm described in Section 4, respectively. If the

marking parameter θ in Dörfler’s criterion is small enough (cf. (4.1) and (5.1)), then

�

‖∇(Uk − u)‖2Ω + osc2
Tk
(Uk)
�

1
2 = O
�

(#Tk−#T0)
−s
�

, ∀ k ∈ N. (1.4)

The left-hand side is called total error and consists of the energy error plus an oscillation term.

Basically, we follow the steps presented in [2] for linear elliptic problems. However,
due to the nonlinearity of problem (1.1) the generalization of the mentioned results is
not obvious. In particular, for linear elliptic problems the Galerkin orthogonality property

(Pythagoras)

‖∇(U − u)‖2Ω + ‖∇(U − V )‖2Ω = ‖∇(V − u)‖2Ω, (1.5)

where U is a discrete solution and V is a discrete test function, is used to prove the con-
traction property and a generalized Cea’s Lemma (the quasi-optimality of the total error).
This orthogonality property does not hold when we consider problem (1.1) though. To
overcome this difficulty we resort to ideas from [6], replacing (1.5) by the trivial equality

[F (U)−F (u)] + [F (V )−F (U)] = [F (V )−F (u)],

where each term in brackets is equivalent to the corresponding term in (1.5) (cf. Theo-
rem 4.1 below), and F is the energy functional of (1.1). We thus establish some kind of
quasi-orthogonality relationship for the energy error (cf. Lemma 5.1) which is sufficient to
prove the quasi-optimality of the total error (cf. Lemma 5.2).

Additionally, it is necessary to study the behavior of the error estimators and oscillation
terms when refining. In order to do that, we need to show that a certain quantity, which
measures the difference of error estimators and oscillation terms between two discrete
functions (cf. (3.13)), is bounded by the energy of the difference between these functions
(see Lemma 3.2 in Section 3.3). This result can be proved with usual techniques for linear
elliptic problems using inverse inequalities and trace theorems, but the generalization of

†Roughly speaking, u ∈ As if u can be approximated with adaptive meshes with a rate (DOFs)−s (cf. (6.1) in
Section 6).
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this result to nonlinear problems requires some new technical results. We establish suitable
hypotheses on the main coefficient α of problem (1.1) to be able to prove the mentioned
estimation for the nonlinear problems that we study in this article (see (2.8)).

It is worth mentioning that even though we exploit ideas from [6], our results nei-
ther contain, nor are contained in those from [6]. They prove linear convergence of a
ϕ-Laplacian problem in a context of Sobolev-Orlicz spaces through a contraction property
analogous to (1.3). On the one hand, we prove the contraction property (1.3) for a class
of nonlinear problems arising from Lipschitz and strongly monotone operators, which ex-
cludes the p-Laplacian, but allows for a spatial dependence of the nonlinearity α, and uses
only the more familiar Sobolev norms, without resorting to Orlicz-Sobolev norms. Even
though the use of these norms has been a breakthrough in the numerical investigation
of p-Laplacian-like problems, being able to leave these norms aside allows for a simpler
presentation, with more familiar and easily computable norms. On the other hand, we
also study the complexity of the AFEM in terms of degrees of freedom, and establish the
quasi-optimality bound (1.4). We thus conclude that the theory developed for linear prob-
lems in [2] can be generalized to quasi-linear problems arising from differential operators
being Lipschitz continuous and strongly monotone, and believe that this is a step forward
towards a more general optimality analysis of AFEMs for nonlinear problems.

This paper is organized as follows. In Section 2 we present specifically the class of
problems that we study and some of its properties, together with some applications that
fall into our theory. In Section 3, we present a posteriori error estimations. In Section 4 we
state the adaptive loop that we use for the approximation of problem (1.1) and we prove
its linear convergence through a contraction property. Finally, the last two sections of the
article are devoted to prove that the AFEM converges with quasi-optimal rate.

2. Setting and applications

2.1. Setting

Let Ω ⊂ Rd be a bounded polygonal (d = 2) or polyhedral (d = 3) domain with
Lipschitz boundary. A weak formulation of (1.1) consists in finding u ∈ H1

0(Ω) such that

a(u; u, v) = L(v), ∀ v ∈ H1
0(Ω), (2.1)

where

a(w; u, v) =

∫

Ω

α( · , |∇w|2)∇u · ∇v, ∀w,u, v ∈ H1
0(Ω),

and

L(v) =

∫

Ω

f v, ∀ v ∈ H1
0(Ω).

In order to make this presentation clearer, we define β : Ω×R+→ R+ by

β(x , t) :=
1

2

∫ t2

0

α(x , r) dr,
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and note that from Leibniz’s rule the derivative of β as a function of its second variable
satisfies

D2β(x , t) :=
∂ β

∂ t
(x , t) = tα(x , t2).

We require that α is C 1 as a function of its second variable and there exist positive con-
stants ca and Ca such that

ca ≤
∂ 2β

∂ t2 (x , t) = α(x , t2) + 2t2D2α(x , t2)≤ Ca, ∀ x ∈ Ω, t > 0. (2.2)

Since

α(x , t2) =
D2β(x , t)− D2β(x , 0)

t
=
∂ 2β

∂ t2 (x , r),

for some 0< r < t the last assumption yields

ca ≤ α(x , t)≤ Ca, ∀ x ∈ Ω, t > 0. (2.3)

It is easy to check that the form a is linear and symmetric in its second and third variable.
Additionally, from (2.3) it follows that a is bounded,

|a(w; u, v)| ≤ Ca‖∇u‖Ω‖∇v‖Ω, ∀w,u, v ∈ H1
0(Ω), (2.4)

and coercive,
ca‖∇u‖2Ω ≤ a(w; u,u), ∀w,u ∈ H1

0(Ω).

Now, we sketch the proof that (2.2) is sufficient to guarantee the well-posedness of
problem (2.1). Let γ : Ω×Rd → R+ be given by

γ(x ,ξ) := β(x , |ξ|) =
1

2

∫ |ξ|2

0

α(x , r) dr,

and note that if ∇2γ denotes the gradient of γ as a function of its second variable, then

∇2γ(x ,ξ) = α(x , |ξ|2)ξ, ∀ x ∈ Ω, ξ ∈ Rd . (2.5)

Condition (2.2) means that D2β is Lipschitz and strongly monotone as a function of its
second variable and it can be seen that ∇2γ so is [25].

If A : H1
0(Ω)→ H−1(Ω) is the operator given by

〈Au, v〉 := a(u; u, v), ∀u, v ∈ H1
0(Ω),

problem (2.1) is equivalent to the equation

Au= L,
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where L ∈ H−1(Ω) is given. It is easy to check that the properties of ∇2γ are inherited by
A, i.e., A is Lipschitz and strongly monotone. More precisely, there exist positive constants
CA and cA such that

‖Au− Av‖H−1(Ω) ≤ CA‖∇(u− v)‖Ω, ∀u, v ∈ H1
0(Ω), (2.6)

and
〈Au− Av,u− v〉 ≥ cA‖∇(u− v)‖2Ω, ∀u, v ∈ H1

0(Ω). (2.7)

As a consequence of (2.6) and (2.7), problem (2.1) has a unique stable solution [24, 25],
which will be denoted throughout this article by u.

In order to have the behavior of the error estimator and oscillation terms under con-
trol when refining, we need some additional assumptions on α(x , t) and D2α(x , t)t with
respect to the space variable x ∈ Ω. From now on we assume that α(·, t) and D2α(·, t)t are
piecewise Lipschitz over an initial triangulation T0 of Ω uniformly in t > 0. More precisely,
there exists a constant Cα > 0 such that

|α(x , t)−α(y, t)|+ |D2α(x , t)t − D2α(y, t)t| ≤ Cα|x − y|,

for all x , y ∈ T , all T ∈ T0 and all t > 0, (2.8)

where T0 is the initial triangulation of the domain Ω.

2.2. Applications

As seen in the last section, condition (2.2) guarantees the existence and uniqueness
of the solutions of problem (2.1), and it is a standard assumption allowing a unified the-
ory [25] in a framework of the familiar Sobolev norms. In this section we show that there
exist several applications in which (2.2) is reasonable.

Example 2.1 Problems like (2.1) arise in electromagnetism; see the presentation from
nonlinear Maxwell equations in [14] and for nonlinear magnetostatic field in [3]. Concrete
formulas such as

α(t) =
1

µ0

�

a+ (1− a)
t8

t8 + b

�

, (2.9)

appear in [14], and characterize the reluctance of stator sheets in the cross-sections of
an electrical motor [14] (µ0 is the vacuum permeability and a, b > 0 are characteristic
constants). Also, x -dependent nonlinearities arise where typically the function α is inde-
pendent of x in some subdomain Ω1 ⊂ Ω and constant on the complement, where these
subdomains correspond to ferromagnetic and other media, respectively. In the case of the
nonlinearity (2.9) on Ω1, we have

α(x , t) =







1

µ0

�

a+ (1− a)
t8

t8 + b

�

if x ∈ Ω1, t > 0

a if x ∈ Ω \Ω1,
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where a > 0 is a constant magnetic reluctance.
The formula

α(t) =

�

1− (c − d)
1

t2 + c

�

,

is stated in [3] and describes the magnetostatic field (c > d > 0 are constants).
It is easy to check that the functions α just described satisfy assumption (2.2) for all

t > 0.

In the examples that follow, α does not fulfill (2.2) for all t > 0 but it does for t in
any interval of the form (0, T ) with T > 0. Therefore, under the assumption that an upper
bound for the gradient of the solution |∇u| is known, the function α could be replaced by
one satisfying (2.2) without changing the solution. This replacement of α is not needed in
practice, but is rather a theoretical tool for proving that this assumption holds. We note
that in several applications, an upper bound for the gradient of the solution |∇u| is known
or can be computed.

Example 2.2 For the equation of prescribed mean curvature, the unknown u defines
the graph of the surface whose curvature is prescribed by f and

α(t) =
1

(1+ t)
1
2

.

This function α satisfies (as can be easily checked) assumption (2.2) on any interval of
the form (0, T ) with T > 0. Therefore, this example falls into our theory when we are
computing a solution with |∇u|2 uniformly bounded. This assumption is made in [15] and
can be proved for several domains and right-hand side functions f .

Example 2.3 In [20], a problem like (2.1) arises from Forchheimer flow in porous
media and Ergun’s law for incompressible fluid flow. In the case of Forchheimer’s law the
unknown u denotes the pressure and

α(t) =
2

c +

p

c2 + d t
1
2

,

in the absence of gravity, where c =
µ

k
(µ is the viscosity of the fluid, k = k(x) is the

permeability of the medium) and d = 4bρ (b is a dynamic viscosity and ρ is the fluid
density), all taken to be uniformly positive. Again, it is easy to check that this function
α satisfies (2.2) on any interval of the form (0, T ) with T > 0. Under the constraint that
|∇u|2 is uniformly bounded from above, as is done in [20], this example falls within our
theory.

Example 2.4 The concept of fictitious gas has been introduced to regularize the tran-
sonic flow problem for shock free airfoil design (see [4] and the references therein). The
velocity potential u for the fictitious gas is governed by an equation of the form (2.1) with

α(t) =

�

1−
γ− 1

2
t

�
1
γ−1

.
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The flow remains subsonic when γ ≤ −1, and in this case α satisfies assumption (2.2) on
any interval of the form (0, T ) with T > 0; notice that the case γ = −1 coincides with
Example 2.2.

3. Discrete solutions and a posteriori error analysis

3.1. Discretization

In order to define discrete approximations to problem (2.1) we will consider trian-

gulations of the domain Ω. Let T0 be an initial conforming triangulation of Ω, that is,
a partition of Ω into d-simplices such that if two elements intersect, they do so at a full
vertex/edge/face of both elements. Let us also assume that the initial mesh T0 is labeled
satisfying condition (b) of Section 4 in Ref. [23]. Let T denote the set of all conforming tri-
angulations of Ω obtained from T0 by refinement using the bisection procedure described
by Stevenson [23], which coincides, (after some re-labeling) with the newest vertex bisec-
tion procedure in two dimensions and the Kossaczký’s procedure in three dimensions [21].

Due to the processes of refinement used, the family T is shape regular, i.e.,

sup
T ∈T

sup
T∈T

diam(T )

ρT

=: κT <∞,

where diam(T ) is the diameter of T , and ρT is the radius of the largest ball contained
in it. Throughout this article, we only consider meshes T that belong to the family T,
so the shape regularity of all of them is bounded by the uniform constant κT which only
depends on the initial triangulation T0 [21]. Also, the diameter of any element T ∈ T is
equivalent to the local mesh-size HT := |T |1/d , which in turn defines the global mesh-size
HT := max

T∈T
HT . Also, the complexity of the refinement can be controlled, as described in

Lemma 6.3 below.
Hereafter, we denote the subset of T consisting of neighbors of T by NT (T ) and the

union of T and its neighbors in T by ωT (T ). More precisely,

NT (T ) := {T ′ ∈ T | T ′ ∩ T 6= ;}, ωT (T ) :=
⋃

T ′∈NT (T)

T ′.

For the discretization we consider the Lagrange finite element spaces consisting of
continuous functions vanishing on ∂Ω which are piecewise linear over a mesh T ∈ T, i.e.,

VT := {V ∈ H1
0(Ω) | V|T ∈ P1(T ), ∀ T ∈ T }. (3.1)

The discrete problem associated to (2.1) consists in finding U ∈ VT such that

a(U; U , V ) = L(V ), ∀V ∈ VT . (3.2)

Note that the discrete problem (3.2) has a unique solution because A|VT
is Lipschitz and

strongly monotone (cf. (2.6)–(2.7)).
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At this point, it is important to remark that the discrete problem (3.2) is also nonlinear,
and for our analysis we will assume that it can be solved exactly in every mesh T ∈ T.
However, this assumption is usual even though in practice, even for discrete linear prob-
lems, we compute only approximations to the solution of discrete problems. The optimality
of inexact methods has been studied for linear problems in [17, 22], and a generalization
to nonlinear problems is subject of future work.

3.2. A posteriori error estimators

In this section we present the a posteriori error estimators for the discrete approxima-
tion (3.2) of problem (2.1) and state results showing their reliability and efficiency. These
estimations will be useful in order to prove the optimality of the AFEM in Section 6.

The residual of V ∈ VT is given by

〈R(V ), v〉 := a(V ; V, v)− L(v), ∀ v ∈ H1
0(Ω).

Integrating by parts on each T ∈ T we have that

〈R(V ), v〉=
∑

T∈T

�∫

T

RT (V )v+

∫

∂ T

JT (V )v

�

, ∀ v ∈ H1
0(Ω), (3.3)

where RT (V ) denotes the element residual given by

RT (V )|T := −∇ · [α( · , |∇V |2)∇V ]− f , ∀ T ∈ T , (3.4)

and JT (V ) the jump residual given by

JT (V )|S :=
1

2

h

(α( · , |∇V |2)∇V )|T1
· ~n1 + (α( · , |∇V |2)∇V )|T2

· ~n2

i

, (3.5)

for each interior side S, and JT (V )|S := 0, if S is a side lying on the boundary of Ω. Here,
T1 and T2 denote the elements of T sharing S, and ~n1 and ~n1 are the outward unit normals
of T1 and T2 on S, respectively.

We define the local a posteriori error estimator ηT (V ; T ) of V ∈ VT by

η2
T (V ; T ) := H2

T



RT (V )




2
T
+HT



JT (V )




2
∂ T

, ∀ T ∈ T , (3.6)

and the global error estimator ηT (V ) by

η2
T (V ) :=
∑

T∈T

η2
T (V ; T ).

In general, if Ξ⊂ T we denote
�∑

T∈Ξ η
2
T (V ; T )
�

1
2 by ηT (V ;Ξ).

Recall that if V ∈ VT is the Scott-Zhang interpolant of v ∈ H1
0(Ω) then

‖v − V‖T +H
1/2
T ‖v − V‖∂ T ® HT‖∇v‖ωT (T), ∀ T ∈ T .
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Notice that 〈R(U), V 〉 = 0 and therefore 〈R(U), v〉 = 〈R(U), v − V 〉 because V ∈ VT
(cf. (3.2)). Using (3.3), Hölder’s and Cauchy-Schwartz’s inequalities and the definition (3.6)
we obtain:

|〈R(U), v〉|®
∑

T∈T

ηT (U; T )‖∇v‖ωT (T), ∀ v ∈ H1
0(Ω). (3.7)

The next lemma establishes a local lower bound for the error. Its proof follows the
usual techniques taking into account that if u denotes the solution of problem (2.1),

|〈R(V ), v〉| = |a(V ; V, v)− L(v)|= |a(V ; V, v)− a(u; u, v)| ≤ CA‖∇(V − u)‖ω‖∇v‖ω,

for V ∈ VT , whenever v ∈ H1
0(Ω) vanishes outside of ω, for any ω⊂ Ω.

Lemma 3.1 (Local lower bound). Let u ∈ H1
0(Ω) be the solution of problem (2.1). Let T ∈ T

and T ∈ T be fixed. If V ∈ VT ,‡

ηT (V ; T )® ‖∇(V − u)‖ωT (T) +HT





RT (V )− RT (V )







ωT (T)

+H
1
2
T





JT (V )− JT (V )







∂ T
, (3.8)

where RT (V )|T ′
denotes the mean value of RT (V ) on T ′, for all T ′ ∈ NT (T ), and for each

side S ⊂ ∂ T, JT (V )|S denotes the mean value of JT (V ) on S.

The last result is known as local efficiency of the error estimator. According to the
lemma, if a local estimator is large, then so is the corresponding local error, provided the
last two terms in the right-hand side of (3.8) are relatively small.

We define the local oscillation corresponding to V ∈ VT by

osc2
T (V ; T ) := H2

T





RT (V )− RT (V )







2

T
+HT





JT (V )− JT (V )







2

∂ T
, ∀ T ∈ T ,

and the global oscillation by

osc2
T (V ) :=
∑

T∈T

osc2
T (V ; T ).

In general, if Ξ ⊂ T we denote
�∑

T∈Ξ osc2
T (V ; T )
�

1
2 by oscT (V ;Ξ).

As an immediate consequence of the last lemma, adding over all elements in the mesh
we obtain the following

Theorem 3.1 (Global lower bound). Let u ∈ H1
0(Ω) denote the solution of problem (2.1).

Then, there exists a constant CL = CL(d ,κT, CA)> 0 such that

CLη
2
T (V )≤ ‖∇(V − u)‖2Ω + osc2

T (V ), ∀V ∈ VT , ∀T ∈ T.

‡From now on, we will write a ® b to indicate that a ≤ C b with C > 0 a constant depending on the data of
the problem and possibly on shape regularity κT of the meshes. Also a ≃ b will indicate that a ® b and b ® a.



Quasi-optimal convergence rate of an AFEM 141

We conclude this section with two upper estimations for the error.

Theorem 3.2 (Global upper bound). Let u ∈ H1
0(Ω) be the solution of problem (2.1). Let

T ∈ T and let U ∈ VT be the solution of the discrete problem (3.2). Then, there exists

CU = CU(d ,κT, cA)> 0 such that

‖∇(U − u)‖2Ω ≤ CUη
2
T (U). (3.9)

Proof. Let u ∈ H1
0(Ω) be the solution of problem (2.1). Let T ∈ T and let U ∈ VT be the

solution of the discrete problem (3.2). Since A is strongly monotone (cf. (2.7)), and u is
the solution of problem (2.1) we have

cA‖∇(U − u)‖2Ω ≤ 〈AU − Au, U − u〉 = a(U; U , U − u)− L(U − u) = 〈R(U), U − u〉.

Using (3.7) with v = U − u the assertion (3.9) follows with CU = CU(d ,κT, cA)> 0. �

Theorem 3.3 (Localized upper bound). Let T ∈ T and let T∗ ∈ T be a refinement of

T . Let R denote the subset of T consisting of the elements which are refined to obtain

T∗, that is, R := {T ∈ T | T 6∈ T∗}. Let U ∈ VT and U∗ ∈ VT∗ be the solutions of the

discrete problem (3.2) in VT and VT∗ , respectively. Then, there exists a constant CLU =

CLU(d ,κT, cA)> 0 such that

‖∇(U − U∗)‖
2
Ω ≤ CLUη

2
T (U;R). (3.10)

Proof. Let T , T∗,R , U and U∗ be as in the assumptions of the theorem. Analogously to the
last proof, using that A is strongly monotone and that U∗ is the solution of problem (3.2)
in VT∗ we have that

cA‖∇(U − U∗)‖
2
Ω ≤ 〈AU −AU∗, U − U∗〉

= a(U; U , U − U∗)− L(U − U∗) = 〈R(U), U − U∗〉. (3.11)

Now, we build, using the Scott-Zhang operator, an approximation V ∈ VT of U − U∗ that
coincides with U − U∗ over all unrefined elements T ∈ T \ R , and satisfies (see [2] for
details)

‖(U − U∗)− V‖T +H
1/2
T ‖(U − U∗)− V‖∂ T ®

(

HT‖∇(U − U∗)‖ωT (T) if T ∈ R ,

0 if T ∈ T \R .

Since V ∈ VT , 〈R(U), U−U∗〉 = 〈R(U), (U−U∗)−V 〉 (cf. (3.2)). Using (3.3), Hölder’s and
Cauchy-Schwartz’s inequalities and the definition (3.6) we obtain:

|〈R(U), U − U∗〉| ®
∑

T∈R

ηT (U; T )‖∇(U − U∗)‖ωT (T). (3.12)

Finally, from (3.11) and (3.12) the assertion (3.10) follows with CLU = CLU(d ,κT, cA)> 0.
�
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3.3. Estimator reduction and perturbation of oscillation

In order to prove the contraction property it is necessary to study the effects that re-
finement has upon the error estimators and oscillation terms. We thus present two main
results in this section. The first one is related to the error estimator and it will be used in
Theorem 4.2.

Proposition 3.1 (Estimator reduction). Let T ∈ T and let M be any subset of T . Let

T∗ ∈ T be obtained from T by bisecting at least n ≥ 1 times each element inM . If V ∈ VT
and V∗ ∈ VT∗ , then

η2
T∗
(V∗)≤ (1+ δ)
n

η2
T (V )− (1− 2−

n

d )η2
T (V ;M )
o

+ (1+ δ−1)CE‖∇(V∗ − V )‖2Ω,

for all δ > 0, where CE > 1 is a constant (cf. Lemma 3.2 below).

The second result is related to the oscillation terms. It will be used to establish the
quasi-optimality for the error (see Lemma 5.2) and to prove Lemma 5.3 in the next section.

Proposition 3.2 (Oscillation perturbation). Let T ∈ T and let T∗ ∈ T be a refinement of T .

If V ∈ VT and V∗ ∈ VT∗ , then

osc2
T (V ;T ∩ T∗)≤ 2 osc2

T∗
(V∗;T ∩T∗) + 2CE‖∇(V∗ − V )‖2Ω,

where CE > 1 is a constant (cf. Lemma 3.2 below).

In order to prove Propositions 3.1 and 3.2 we observe that if we define for T ∈ T and
V,W ∈ VT

gT (V,W ; T ) := HT



RT (V )− RT (W )




T
+H

1
2
T



JT (V )− JT (W )




∂ T
, (3.13)

then from the definition of the local error estimators (3.6) and the triangle inequality it
follows that

ηT (W ; T )≤ ηT (V ; T ) + gT (V,W ; T ), ∀ T ∈ T , (3.14)

and analogously

oscT (W ; T )≤ oscT (V ; T ) + gT (V,W ; T ), ∀ T ∈ T . (3.15)

After proving that gT (V,W ; T ) is bounded by ‖∇(V−W )‖ωT (T), the first terms on the right-
hand sides of (3.14) and (3.15) may be treated as in [2, Corollary 3.4 and Corollary 3.5] for
linear elliptic problems, respectively, and the assertions of Propositions 3.1 and 3.2 follow.
On the other hand, while proving that gT (V,W ; T ) ® ‖∇(V −W )‖ωT (T) is easy for linear
problems by using inverse inequalities and trace theorems, it is not so obvious for nonlinear
problems. Therefore, we omit the details of the proofs of the last two propositions, but we
prove the following lemma, which is the main difference with linear problems [2].
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Lemma 3.2. Let T ∈ T and let gT be given by (3.13). Then, there holds that

gT (V,W ; T )® ‖∇(V −W )‖ωT (T), ∀V,W ∈ VT , ∀ T ∈ T . (3.16)

Consequently, there exists a constant CE > 1 which depends on d, κT and the problem data,

such that
∑

T∈T

g2
T (V,W ; T )≤ CE‖∇(V −W )‖2Ω, ∀V,W ∈ VT . (3.17)

In order to prove Lemma 3.2, we define

ΓV (x) :=∇2γ(x ,∇V (x)) = α(x , |∇V (x)|2)∇V (x), ∀ x ∈ Ω, (3.18)

and prove first the following auxiliary result.

Lemma 3.3. Let T ∈ T . Let D2
2γ be the Hessian matrix of γ as a function of its second

variable. If

‖D2
2γ(x ,ξ)− D2

2γ(y,ξ)‖2 ≤ Cγ|x − y|, ∀ x , y ∈ T, ξ ∈ Rd ,

for some constant Cγ > 0, then for all V,W ∈ P1(T ), there holds that

|ΓV (x)− ΓW (x)− ΓV (y) +ΓW (y)| ≤ Cγ‖∇(V −W )‖L∞(T)|x − y|, ∀ x , y ∈ T.

Proof. Let T ∈ T . Let V,W ∈ P1(T ) and x , y ∈ T . Taking into account that V and W are
linear over T , we denote v := ∇V (x) = ∇V (y) and w := ∇W (x) = ∇W (y). Thus, we
have that

|ΓV (x)− ΓW (x)− ΓV (y) + ΓW (y)|

= |∇2γ(x ,v)−∇2γ(x ,w)−∇2γ(y,v) +∇2γ(y,w)|

=

�

�

�

�

�

∫ 1

0

�

D2
2γ(x ,w+ r(v−w))− D2

2γ(y,w+ r(v−w))
�

(v−w) dr

�

�

�

�

�

≤ Cγ|x − y||v−w|,

which completes the proof of the lemma. �
We conclude this section with the proof of Lemma 3.2, where we use that

RT (V )|T = −∇ · ΓV − f , and JT (V )|S =
1

2

�

ΓV |T1
· ~n1 +ΓV |T2

· ~n2

�

, S ⊂ Ω,

which is an immediate consequence of (3.18) and the definitions of the element resid-
ual (3.4) and the jump residual (3.5).
Proof. [Proof of Lemma 3.2] 1 Taking into account (2.5), we have that, if x ∈ Ω and
ξ ∈ Rd ,

(D2
2γ(x ,ξ))i j = 2D2α(x , |ξ|2)ξiξ j +α(x , |ξ|2)δi j ,
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for 1 ≤ i, j ≤ d , where δi j denotes the Kronecker’s delta. Assumption (2.8) then implies
that D2

2γ(x ,ξ) is piecewise Lipschitz as a function of its first variable, i.e., there exists a
constant Cγ > 0 such that

‖D2
2γ(x ,ξ)− D2

2γ(y,ξ)‖2 ≤ Cγ|x − y|, ∀ x , y ∈ T , ξ ∈ Rd ,

for all T ∈ T0. In particular this holds for any T ∈ T , T ∈ T, and the assumptions of
Lemma 3.3 hold.

2 Let T ∈ T, let V,W ∈ VT and let T ∈ T be fixed. By Lemma 3.3, for the element
residual we have that



RT (V )− RT (W )




T
=


∇ · (ΓV − ΓW )




T
≤ H

d

2
T ‖∇ · (ΓV − ΓW )‖L∞(T)

® H
d

2
T sup

x ,y∈T
x 6=y

|ΓV (x)− ΓW (x)− ΓV (y) +ΓW (y)|

|x − y|

® H
d

2
T ‖∇(V −W )‖L∞(T) = ‖∇(V −W )‖T ,

and thus,
HT



RT (V )− RT (W )




T
® ‖∇(V −W )‖T . (3.19)

3 Consider now the term corresponding to the jump residual. If S is a side of T

which is interior to Ω and if T1 and T2 are the elements sharing S, we have that



JT (V )− JT (W )




S
=











1

2

∑

i=1,2

(ΓV − ΓW )|Ti
· ~ni











S

≤
∑

i=1,2





(ΓV − ΓW )|Ti







S

®
∑

i=1,2

�

H
− 1

2
T ‖ΓV − ΓW‖Ti

+H
1
2
T ‖∇(ΓV − ΓW )‖Ti

�

,

where we have used a scaled trace theorem. Since ∇2γ is Lipschitz as a function of its
second variable, we have that

|ΓV (x)− ΓW (x)|= |∇2γ(x ,∇V (x))−∇2γ(x ,∇W(x))|® |∇V (x)−∇W (x)|,

for x ∈ Ti (i = 1,2), and therefore,

‖ΓV − ΓW‖Ti
® ‖∇(V −W )‖Ti

, i = 1,2.

Using the same argument as in 2 , we have that

‖∇(ΓV − ΓW )‖Ti
® ‖∇(V −W )‖Ti

, for i = 1,2,

and in consequence,

H
1
2
T



JT (V )− JT (W )




∂ T
® ‖∇(V −W )‖ωT (T). (3.20)

Finally, (3.16) follows from (3.19) and (3.20), taking into account (3.13). �
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4. Linear convergence of an adaptive FEM

In this section we present the adaptive FEM and establish one of the main results of this
article (Theorem 4.2 below) which guarantees the convergence of the adaptive sequence.

4.1. The adaptive loop

We consider the following adaptive loop to approximate the solution u of problem (2.1).

Adaptive Algorithm. Let T0 be an initial conforming mesh of Ω and let θ be a
parameter satisfying 0< θ < 1. Let k = 0.

1. Uk := SOLVE(Tk).

2. {ηk(T )}T∈Tk
:= ESTIMATE(Uk,Tk).

3. Mk :=MARK({ηk(T )}T∈Tk
,Tk,θ).

4. Tk+1 := REFINE(Tk,Mk, n).

5. Increment k and go back to step 1.

Now we explain each module in the last algorithm.

• The module SOLVE. This module takes a conforming triangulation Tk of Ω as
input argument and outputs the solution Uk of the discrete problem (3.2) in Tk;
i.e., Uk ∈ Vk := VTk

satisfies

a(Uk; Uk, V ) = L(V ), ∀ V ∈ Vk.

• The module ESTIMATE. This module computes the a posteriori local error esti-
mators ηk(T ) of Uk over Tk given by ηk(T ) := ηTk

(Uk; T ), for all T ∈ Tk, (see (3.6)).

• The module MARK. Based on the local error estimators, the module MARK selects
a subset Mk of Tk, using an efficient Dörfler’s strategy. More precisely, given the
marking parameter θ ∈ (0,1), the module MARK selects a minimal subsetMk of Tk

such that
ηk(Mk)≥ θ ηk(Tk), (4.1)

where ηk(Mk) =
�

∑

T∈Mk
η2

k
(T )
�

1
2 and ηk(Tk) =

�

∑

T∈Tk
η2

k
(T )
�

1
2 .

• The moduleREFINE. Finally, the moduleREFINE takes the mesh Tk and the subset
Mk ⊂ Tk as inputs. By using the bisection rule described by Stevenson in [23],
this module refines (bisects) n times (where n ≥ 1 is fixed) each element in Mk.
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After that, with the goal of keeping conformity of the mesh, possibly some further
bisections are performed leading to a new conforming triangulation Tk+1 ∈ T of Ω,
which is a refinement of Tk and the output of this module.

From now on, Uk, {ηk(T )}T∈Tk
,Mk, Tk will denote the outputs of the corresponding

modules SOLVE, ESTIMATE, MARK and REFINE, when iterated after starting with a
given initial mesh T0.

4.2. An equivalent notion for the error

In order to prove a contraction property for the error of a similar AFEM for linear
elliptic problems the well-known Galerkin orthogonality relationship is used(see [2]). In
this case, due to the nonlinearity of our problem, this property does not hold. We present
an equivalent notion of error so that it is possible to establish a property analogous to the
orthogonality (cf. (4.9) below).

It is easy to check that J : H1
0(Ω)→ R given by

J (v) :=

∫ 1

0

〈A(r v), v〉 dr =

∫

Ω

γ(·,∇v) d x , ∀ v ∈ H1
0(Ω),

is a potential for the operator A. More precisely, if W is a closed subspace of H1
0(Ω), the

following claims are equivalent

• w ∈W is solution of
a(w; w, v) = L(v), ∀ v ∈W, (4.2)

where L(v) =
∫

Ω
f v, for v ∈ H1

0(Ω).

• w ∈W minimizes the functional F : H1
0(Ω)→ R overW, where F is given by

F (v) := J (v)− L(v) =

∫

Ω

γ(·,∇v)− f v d x , v ∈ H1
0(Ω). (4.3)

The following theorem states a notion equivalent to the H1
0(Ω)-error. The proof follows

the ideas used in [6] and uses that the Hessian matrix of γ, denoted by D2
2γ, is uniformly

elliptic, i.e.,
cA|ζ|

2 ≤ D2
2γ(x ,ξ)ζ · ζ ≤ CA|ζ|

2, ∀ x ∈ Ω, ξ,ζ ∈ Rd . (4.4)

This fact holds because ∇2γ is Lipschitz and strongly monotone as a function of its second
variable.

Theorem 4.1. Let W be a closed subspace of H1
0(Ω) and let F be given by (4.3). If w ∈W

satisfies (4.2), then

cA

2
‖∇(v−w)‖2Ω ≤F (v)−F (w) ≤

CA

2
‖∇(v−w)‖2Ω, ∀ v ∈W.
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Proof. Let W be a closed subspace of H1
0(Ω) and let w ∈W be the solution of (4.2). Let

v ∈W be fixed and arbitrary. For z ∈ R, we define φ(z) := (1− z)w + zv, and note that

φ′(z) = v −w and ∇φ(z) = (1− z)∇w + z∇v.

If we define ψ(z) :=F (φ(z)), integration by parts yields

F (v)−F (w) =ψ(1)−ψ(0) =ψ′(0)+

∫ 1

0

ψ′′(z)(1− z) dz. (4.5)

From (4.3) it follows that

ψ(z) =F (φ(z)) =

∫

Ω

γ(x ,∇φ(z)) d x −

∫

Ω

f φ(z) d x , (4.6)

and therefore, in order to obtain the derivatives of ψ we first compute ∂
∂ z
(γ(x ,∇φ(z))),

for each x ∈ Ω fixed. On the one hand, we have that

∂

∂ z
γ(·,∇φ(z)) =∇2γ(·,∇φ(z)) ·

∂

∂ z
∇φ(z) =∇2γ(·,∇φ(z)) · ∇(v−w),

and then

∂ 2

∂ z2
γ(·,∇φ(z)) = D2

2γ(·,∇φ(z))∇(v −w) · ∇(v−w),

where D2
2γ is the Hessian matrix of γ as a function of its second variable. Thus, taking into

account that φ′′(z) = 0 for all z ∈ R, from (4.6) it follows that

ψ′′(z) =

∫

Ω

D2
2γ(x ,∇φ(z))∇(v−w) · ∇(v−w) d x . (4.7)

Since w minimizes F over W, we have that ψ′(0) = 0; and using (4.7), from (4.5) we
obtain that

F (v)−F (w) =

∫ 1

0

∫

Ω

D2
2γ(x ,∇φ(z))∇(v−w) · ∇(v−w)(1− z) d x dz.

Finally, since D2
2γ is uniformly elliptic (cf. (4.4)) we have that

cA

2
‖∇(v−w)‖2Ω ≤

∫ 1

0

∫

Ω

D2
2γ(x ,∇φ(z))∇(v−w) · ∇(v−w)(1− z) d x dz

≤
CA

2
‖∇(v−w)‖2Ω,

which concludes the proof. �
As an immediate consequence of the last theorem,

cA

2
‖∇(Uk − Up)‖

2
Ω ≤F (Uk)−F (Up) ≤

CA

2
‖∇(Uk − Up)‖

2
Ω, ∀ k, p ∈ N0, k < p, (4.8)

and the same estimation holds replacing Up by u, the exact weak solution of problem (2.1).
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4.3. Convergence of the adaptive FEM

Recall that u denotes the exact weak solution of problem (2.1), and Uk, {ηk(T )}T∈Tk
,

Mk, Tk will denote the outputs of the corresponding modules SOLVE, ESTIMATE,MARK
and REFINE of the Adaptive Algorithm when iterated after starting with a given initial
mesh T0.

Taking into account the estimator reduction (Proposition 3.1), the global upper bound
(Theorem 3.2) and (4.8), we now prove the following result which establish the conver-
gence of the Adaptive Algorithm.

Theorem 4.2 (Contraction property). There exist constants 0 < ρ < 1 and µ > 0 which

depend on d, κT, of problem data, of number of refinements n performed on each marked

element and the marking parameter θ such that

[F (Uk+1)−F (u)] +µη
2
k+1 ≤ ρ

2([F (Uk)−F (u)] +µη
2
k), ∀ k ∈ N0,

where ηk :=
�

∑

T∈Tk
η2

k
(T )
�

1
2

denotes the global error estimator in Tk.

Proof. Let k ∈ N0, using that

F (Uk)−F (u) =F (Uk)−F (Uk+1) +F (Uk+1)−F (u), (4.9)

and the estimator reduction given by Proposition 3.1 with T = Tk and T∗ = Tk+1 we have
that

[F (Uk+1)−F (u)] +µη
2
k+1

≤[F (Uk)−F (u)]− [F (Uk)−F (Uk+1)]

+ (1+ δ)µ
¦

η2
k − ξη

2
k(Mk)
©

+ (1+ δ−1)CEµ‖∇(Uk − Uk+1)‖
2
Ω,

for all δ,µ > 0, where ξ := 1− 2−
n

d and η2
k
(Mk) :=
∑

T∈Mk
η2

k
(T ). By choosing µ :=

cA

2(1+δ−1)CE
, and using (4.8) it follows that

[F (Uk+1)−F (u)] +µη
2
k+1 ≤ [F (Uk)−F (u)] + (1+ δ)µ

¦

η2
k − ξη

2
k(Mk)
©

.

Dörfler’s strategy yields ηk(Mk)≥ θηk and thus

[F (Uk+1)−F (u)] +µη
2
k+1

≤[F (Uk)−F (u)] + (1+ δ)µη
2
k − (1+δ)µξθ

2η2
k

=[F (Uk)−F (u)] + (1+ δ)µ

�

1−
ξθ2

2

�

η2
k − (1+ δ)µ

ξθ2

2
η2

k.

Using (4.8), the global upper bound (Theorem 3.2) and that (1+δ)µ= cAδ

2CE
it follows that

[F (Uk+1)−F (u)] +µη
2
k+1

≤[F (Uk)−F (u)] + (1+ δ)µ

�

1−
ξθ2

2

�

η2
k
−

cAδξθ
2

2CU CECA

[F (Uk)−F (u)].
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If we define

ρ2
1(δ) :=

�

1−
cAδξθ

2

2CU CECA

�

, ρ2
2(δ) :=

�

1−
ξθ2

2

�

(1+δ),

we thus have that

[F (Uk+1)−F (u)] +µη
2
k+1 ≤ ρ

2
1(δ)[F (Uk)−F (u)] +µρ

2
2(δ)η

2
k.

The proof concludes choosing δ > 0 small enough to satisfy

0< ρ :=max{ρ1(δ),ρ2(δ)}< 1.

The last result, coupled with (4.8) allows us to conclude that the sequence {Uk}k∈N0
of

discrete solutions obtained through the Adaptive Algorithm converges to the weak solution
u of the nonlinear problem (2.1), and moreover, there exists ρ ∈ (0,1) such that

‖∇(Uk − u)‖Ω ≤ Cρk, ∀ k ∈ N0,

for some constant C > 0. Also, the global error estimators {ηk}k∈N0
tend to zero, and in

particular,
ηk ≤ Cρk, ∀ k ∈ N0,

for some constant C > 0.

5. Optimality of the total error and optimal marking

In this section we introduce the notion of total error, we show an analogous of Cea’s
lemma for this new notion (see Lemma 5.2) and a result about optimal marking (see
Lemma 5.3). Both of them will be very important to establish a control of marked ele-
ments in each step of the adaptive procedure (cf. Lemma 6.2 in Section 6).

We first present an auxiliary result that will allow us to show the analogous of Cea’s
lemma for the total error. Its proof is an immediate consequence of Theorem 4.1 and will
thus be omitted.

Lemma 5.1 (Quasi-orthogonality property in a mesh). If U ∈ VT denotes the solution of

the discrete problem (3.2) for some T ∈ T, then

‖∇(U − u)‖2Ω + ‖∇(U − V )‖2Ω ≤
CA

cA

‖∇(V − u)‖2Ω, ∀V ∈ VT ,

where CA and cA are the constants appearing in (2.6) and (2.7).

Since the global oscillation term is smaller than the global error estimator, that is,
oscT (U)≤ ηT (U), using the global upper bound (Theorem 3.2), we have that

‖∇(U − u)‖2Ω + osc2
T (U)≤ (CU + 1)η2

T (U),
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whenever u is the solution of problem (2.1) and U ∈ VT is the solution of the discrete
problem (3.2). Taking into account the global lower bound (Theorem 3.1) we obtain that

ηT (U)≈
�

‖∇(U − u)‖2Ω + osc2
T (U)
�

1
2 .

The quantity on the right-hand side is called total error, and since adaptive methods are
based on the a posteriori error estimators, the convergence rate is characterized through
properties of the total error.

Remark 5.1. (Cea’s Lemma) Taking into account that A is Lipschitz and strongly monotone,

it is easy to check that

‖∇(U − u)‖Ω ≤
CA

cA

inf
V∈VT
‖∇(V − u)‖Ω.

This estimation is known as Cea’s Lemma and shows that the approximation U is optimal (up

to a constant) of the solution u from VT .

A generalization of Cea’s Lemma for the total error is given in the following

Lemma 5.2 (Cea’s Lemma for the total error). If U ∈ VT denotes the solution of the discrete

problem (3.2) for some T ∈ T, then

‖∇(U − u)‖2Ω + osc2
T (U)≤

2CECA

cA

inf
V∈VT

(‖∇(V − u)‖2Ω + osc2
T (V )),

where CE > 1 is the constant given in (3.17).

Proof. Let T ∈ T and let U ∈ VT be the solution of the discrete problem (3.2). If V ∈ VT ,
using Proposition 3.2 with T∗ = T and Lemma 5.1 we have that

‖∇(U − u)‖2Ω + osc2
T (U)≤ ‖∇(U − u)‖2Ω + 2 osc2

T (V ) + 2CE‖∇(V − U)‖2Ω

≤ 2CE

CA

cA

‖∇(V − u)‖2Ω + 2 osc2
T (V )

≤
2CECA

cA

�

‖∇(V − u)‖2Ω + osc2
T (V )
�

.

Since V ∈ VT is arbitrary, the claim of this lemma follows. �
The following result establishes a link between nonlinear approximation theory and

AFEM through Dörfler’s marking strategy. Roughly speaking, it is a reciprocal to the con-
traction property (Theorem 4.2). More precisely, we prove that if there exists a suitable
total error reduction from T to a refinement T∗, then the error indicators of the refined
elements from T must satisfy a Dörfler’s property. In other words, Dörfler’s marking and
total error reduction are intimately connected. This result is known as optimal marking

and was first proved for linear elliptic problems by Stevenson [22]. The notion of total er-
ror presented above was first introduced by Cascón et al. [2] for linear problems, together
with the appropriate optimal marking result, which we mimic here.
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In order to prove the optimal marking result we assume that the marking parameter θ
satisfies

0< θ < θ0 :=

�

CL

1+ 2CLU(1+ CE)

�1/2

, (5.1)

where CL, CLU are the constants appearing in the global lower bound (Theorem 3.1) and
in the localized upper bound (Theorem 3.3), respectively, and CE is the constant appearing
in (3.17).

Lemma 5.3 (Optimal marking). Let T ∈ T and let T∗ ∈ T be a refinement of T . Let

R denote the subset of T consisting of the elements which were refined to obtain T∗, i.e.,

R = T \ T∗. Assume that the marking parameter θ satisfies 0 < θ < θ0 and define ν :=
1
2

�

1− θ 2

θ 2
0

�

> 0. Let U and U∗ be the solutions of the discrete problem (3.2) in VT and VT∗ ,

respectively. If

‖∇(U∗− u)‖2Ω + osc2
T∗
(U∗)≤ ν
�

‖∇(U − u)‖2Ω + osc2
T (U)
�

, (5.2)

then

ηT (U;R)≥ θηT (U).

Proof. Let T , T∗, R , U , U∗, θ and ν be as in the assumptions. Using (5.2) and the global
lower bound (Theorem 3.1) we obtain that

(1− 2ν)CLη
2
T (U)≤ (1− 2ν)

�

‖∇(U − u)‖2Ω + osc2
T (U)
�

≤ ‖∇(U − u)‖2Ω − 2‖∇(U∗− u)‖2Ω + osc2
T (U)− 2 osc2

T∗
(U∗). (5.3)

Since ‖∇(U − u)‖Ω ≤ ‖∇(U∗ − u)‖Ω + ‖∇(U∗− U)‖Ω, we have that

‖∇(U − u)‖2Ω − 2‖∇(U∗− u)‖2Ω ≤ 2‖∇(U∗− U)‖2Ω. (5.4)

Using Proposition 3.2 and that osc2
T (U; T )≤ η2

T (U; T ) if T ∈ R = T \T∗, for the oscillation
terms we obtain that

osc2
T (U)− 2 osc2

T∗
(U∗)≤ 2CE‖∇(U∗− U)‖2Ω +η

2
T (U;R).

Taking into account (5.4) and the last inequality, from (5.3) it follows that

(1− 2ν)CLη
2
T (U)≤ 2‖∇(U − U∗)‖

2
Ω + 2CE‖∇(U − U∗)‖

2
Ω+η

2
T (U;R),

and using the localized upper bound (Theorem 3.3) we have that

(1− 2ν)CLη
2
T (U)≤ 2(1+ CE)CLUη

2
T (U;R)+η2

T (U;R)

= (1+ 2CLU(1+ CE))η
2
T (U;R).

Finally,
(1− 2ν)CL

1+ 2CLU(1+ CE)
η2
T (U)≤ η

2
T (U;R),

which completes the proof since (1−2ν)CL

1+2CLU (1+CE )
= (1−2ν)θ2

0 = θ
2 by the definition of ν . �
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6. Quasi-optimality of the adaptive FEM

In this section we state the second main result of this article, that is, the adaptive
sequence computed through the Adaptive Algorithm converges with optimal rate to the
weak solution of the nonlinear problem (2.1). For N ∈ N0, let TN be the set of all possible
conforming triangulations generated by refinement from T0 with at most N elements more
than T0, i.e.,

TN := {T ∈ T | #T −#T0 ≤ N}.

The quality of the best approximation in TN is given by

σN (u) := inf
T ∈TN

inf
V∈VT

�

‖∇(V − u)‖2Ω + osc2
T (V )
�

1
2 .

For s > 0, we say that u ∈ As if

|u|s := sup
N∈N0

�

(N + 1)sσN (u)
	

<∞. (6.1)

In other words, u belongs to the class As if it can be ideally approximated with adaptive
meshes at a rate (DOFs)−s. From another perspective, if u ∈ As, then for each ǫ > 0 there
exist a mesh Tǫ ∈ T and a function Vǫ ∈ VTǫ such that

#Tǫ −#T0 ≤ |u|
1
s
s ǫ
− 1

s and ‖∇(Vǫ − u)‖2Ω + osc2
Tǫ
(Vǫ)≤ ǫ

2.

The study of classes of functions that will yield such rates is beyond the scope of this article.
Some results along this direction can be found in [1,11,12].

The following result proved in [2, 22], provides a bound for the complexity of the
overlay of two triangulations T 1 and T 2 obtained as refinements of T0.

Lemma 6.1 (Overlay of triangulations). For T 1,T 2 ∈ T the overlay T := T 1 ⊕ T 2 ∈ T,
defined as the smallest admissible triangulation which is a refinement of T 1 and T 2, satisfies

#T ≤ #T 1 +#T 2 −#T0.

The next lemma is essential for proving the main result below (see Theorem 6.1).

Lemma 6.2 (Cardinality ofMk). Let us assume that the weak solution u of problem (2.1)
belongs to As. If the marking parameter θ satisfies 0< θ < θ0 (cf. (5.1)), then

#Mk ≤
�

2CECA

νcA

�
1
2s

|u|
1
s
s

h

‖∇(Uk − u)‖2Ω + osc2
Tk
(Uk)
i− 1

2s , ∀ k ∈ N0,

where ν = 1
2

�

1− θ 2

θ 2
0

�

as in Lemma 5.3.
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Proof. Let k ∈ N0 be fixed. Let ǫ = ǫ(k) > 0 be a tolerance to be fixed later. Since u ∈ As,
there exist a mesh Tǫ ∈ T and a function Vǫ ∈ VTǫ such that

#Tǫ −#T0 ≤ |u|
1
s
s ǫ
− 1

s and ‖∇(Vǫ − u)‖2Ω + osc2
Tǫ
(Vǫ)≤ ǫ

2.

Let T∗ := Tǫ ⊕Tk the overlay of Tǫ and Tk (cf. Lemma 6.1). Since Vǫ ∈ VT∗ , we have
that oscTǫ(Vǫ) ≥ oscT∗(Vǫ), and from Lemma 5.2, if U∗ ∈ VT∗ denotes the solution of the
discrete problem (3.2) in VT∗ , we obtain that

‖∇(U∗ − u)‖2Ω + osc2
T∗
(U∗)≤ 2CE

CA

cA

�

‖∇(Vǫ − u)‖2Ω + osc2
Tǫ
(Vǫ)
�

≤ 2CE

CA

cA

ǫ2.

Let ǫ be such that

‖∇(U∗− u)‖2Ω + osc2
T∗
(U∗)≤ ν
�

‖∇(Uk − u)‖2Ω + osc2
Tk
(Uk)
�

= 2CE

CA

cA

ǫ2,

where ν is the constant given by Lemma 5.3. Thus, this lemma yields

ηTk
(Uk;Rk)≥ θηTk

(Uk),

if Rk denotes the subset of Tk consisting of elements which were refined to get T∗. Taking
into account that Mk is a minimal subset of Tk satisfying the Dörfler’s criterion, using
Lemma 6.1 and recalling the choice of ǫ we conclude that

#Mk ≤ #Rk ≤ #T∗−#Tk ≤ #Tǫ −#T0 ≤ |u|
1
s
s ǫ
− 1

s

=

�

2CECA

νcA

�
1
2s

|u|
1
s
s

�

‖∇(Uk − u)‖2Ω + osc2
Tk
(Uk)
�− 1

2s .

The next result bounds the complexity of a mesh Tk in terms of the number of elements
that were marked from the beginning of the iterative process, assuming that all the meshes
were obtained by the bisection algorithm of [23], and that the initial mesh was properly
labeled (satisfying condition (b) of Section 4 in [23]).

Lemma 6.3 (Complexity of REFINE). Let us assume that T0 satisfies the labeling condition

(b) of Section 4 in Ref. [23], and consider the sequence {Tk}k∈N0
of refinements of T0 where

Tk+1 := REFINE(Tk,Mk, n) with Mk ⊂ Tk. Then, there exists a constant CS > 0 solely

depending on T0 and the number of refinements n performed by REFINE to marked elements,

such that

#Tk −#T0 ≤ CS

k−1
∑

i=0

#Mi, for all k ∈ N.

The next result will use Lemma 6.3 and is a consequence of the global lower bound
(Theorem 3.1), the bound for the cardinality ofMk given by Lemma 6.2 and the contrac-
tion property of Theorem 4.2. This is the second main result of the paper.
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Theorem 6.1 (Quasi-optimal convergence rate). Let us assume that T0 satisfies the labeling

condition (b) of Section 4 in Ref. [23]. Let us assume that the weak solution u of problem (2.1)
belongs to As. If {Uk}k∈N0

denotes the sequence computed through the Adaptive Algorithm,

and the marking parameter θ satisfies 0< θ < θ0 (cf. (5.1)), then

�

‖∇(Uk − u)‖2Ω + osc2
Tk
(Uk)
�

1
2 ≤ C |u|s(#Tk −#T0)

−s, ∀ k ∈ N, (6.2)

where C > 0 depends on d, κT, problem data, the number of refinements n performed over

each marked element, the marking parameter θ , and the regularity index s.

Proof. Let k ∈ N be fixed. The global lower bound (Theorem 3.1) yields

‖∇(Ui − u)‖2Ω +µη
2
Ti
(Ui)≤
�

1+µC−1
L

��

‖∇(Ui − u)‖2Ω + osc2
Ti
(Ui)
�

, 0≤ i ≤ k− 1,

where µ is the constant appearing in Theorem 4.2. Using Lemmas 6.3 and 6.2 it follows
that

#Tk −#T0 ≤ CS

k−1
∑

i=0

#Mi ≤ CS

�

2CECA

νcA

�
1
2s

|u|
1
s
s

k−1
∑

i=0

�

‖∇(Ui − u)‖2Ω + osc2
Ti
(Ui)
�− 1

2s

≤ CS

�

2CECA

νcA

�
1
2s

|u|
1
s
s

�

1+µC−1
L

�
1
2s

k−1
∑

i=0

�

‖∇(Ui − u)‖2Ω +µη
2
Ti
(Ui)
�− 1

2s . (6.3)

Since we do not have a contraction for the quantity
�

‖∇(Ui−u)‖2Ω+µη
2
Ti
(Ui)
�

as happens
in the linear problem case, we now proceed as follows. We define

z2
i := [F (Ui)−F (u)] +µη

2
Ti
(Ui),

the contraction property (Theorem 4.2) yields zi+1 ≤ ρzi and thus, z
− 1

s

i
≤ ρ

1
s z
− 1

s

i+1. Since
ρ < 1, taking into account (4.8), we obtain that§

k−1
∑

i=0

�

‖∇(Ui − u)‖2Ω +µη
2
Ti
(Ui)
�− 1

2s

≤(CA/2)
1
2s

k−1
∑

i=0

z
− 1

s

i
≤ (CA/2)

1
2s

∞
∑

i=1

(ρ
1
s )iz
− 1

s

k
= (CA/2)

1
2s

ρ
1
s

1−ρ
1
s

z
− 1

s

k

≤(CAc−1
A )

1
2s

ρ
1
s

1−ρ
1
s

�

‖∇(Uk− u)‖2Ω +µη
2
Tk
(Uk)
�− 1

2s .

Using the last estimation in (6.3), it follows that

#Tk −#T0

≤CS

�

2CECA

νcA

�
1
2s

|u|
1
s
s

�

1+µC−1
L

�
1
2s (CAc−1

A )
1
2s

ρ
1
s

1−ρ
1
s

�

‖∇(Uk − u)‖2Ω +µη
2
Tk
(Uk)
�− 1

2s ,

§In this estimation we assume for simplicity that cA and CA are chosen so that cA ≤ 2 ≤ CA.



Quasi-optimal convergence rate of an AFEM 155

and using that oscTk
(Uk)≤ ηTk

(Uk) and raising to the s-power we have that

(#Tk −#T0)
s

≤
C s

SCA

cA

�

2CE

ν

�
1
2
�

1+µC−1
L

�
1
2

ρ

(1−ρ
1
s )s
|u|s
�

‖∇(Uk − u)‖2Ω +µosc2
Tk
(Uk)
�− 1

2 .

Finally, from the last estimate the assertion (6.2) follows, and the proof is concluded. �
We conclude this article with a few remarks.

Remark 6.1 The problem given by (1.1) is a particular case of the more general problem

¨

−∇ ·
�

α( · , |∇u|2A )A∇u
�

= f inΩ

u = 0 on∂Ω,

where α : Ω × R+ → R+ and f ∈ L2(Ω) satisfy the properties assumed in the previous
sections, and A : Ω→ Rd×d is such that A (x) is a symmetric matrix, for all x ∈ Ω, and
uniformly elliptic, i.e., there exist constants a, a > 0 such that

a|ξ|2 ≤A (x)ξ · ξ ≤ a|ξ|2, ∀ x ∈ Ω, ξ ∈ Rd .

If A is piecewise constant over an initial conforming mesh T0 of Ω, then the convergence
and optimality results previously presented also hold for this problem.

Remark 6.2 We have assumed the use of linear finite elements for the discretization
(see (3.1)), which is customary in nonlinear problems. It is important to notice that the
only place where we used this is for proving (3.17), which is one of the key issues of our
argument. The rest of the steps of the proof hold regardless of the degree of the finite
element space.
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