A Compact Difference Scheme for an Evolution Equation with a Weakly Singular Kernel

Hongbin Chen ${ }^{1}$ and $\mathrm{Da} \mathrm{Xu}{ }^{2, *}$
${ }^{1}$ Institute of Mathematics and Physics, College of Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
${ }^{2}$ Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha, 410081, Hunan, China.

Received 14 September 2011; Accepted (in revised version) 21 February 2012
Available online 22 August 2012

Abstract

This paper is concerned with a compact difference scheme with the truncation error of order $3 / 2$ for time and order 4 for space to an evolution equation with a weakly singular kernel. The integral term is treated by means of the second order convolution quadrature suggested by Lubich. The stability and convergence are proved by the energy method. A numerical experiment is reported to verify the theoretical predictions.

AMS subject classifications: 45K05, 65M06, 65M12, 65M15
Key words: Evolution equation, weakly singular kernel, compact difference scheme, stability, convergence, numerical experiment.

1. Introduction

We shall consider a compact difference scheme for the numerical solution of an evolution equation [2, 9, 12, 13, 15, 19]

$$
\begin{equation*}
u_{t}(x, t)-\int_{0}^{t} \beta(t-s) u_{x x}(x, s) d s=f(x, t), \quad 0<x<1,0<t \leq T \tag{1.1}
\end{equation*}
$$

where the kernel $\beta(t)=(\pi t)^{-1 / 2}$ is singular at $t=0$, with the boundary condition

$$
\begin{equation*}
u(0, t)=u(1, t)=0, \quad 0<t \leq T \tag{1.2}
\end{equation*}
$$

and the initial condition

$$
\begin{equation*}
u(x, 0)=v(x), \quad 0 \leq x \leq 1 \tag{1.3}
\end{equation*}
$$

[^0]Recall that, for $\gamma>0$, the γ-th integral $I^{(\gamma)} f(t)$ is defined by the Riemann-Liouville operator (see [14]) as

$$
I^{(\gamma)} f(t)=\frac{1}{\Gamma(\gamma)} \int_{0}^{t}(t-s)^{\gamma-1} f(s) d s, \quad t>0
$$

Thus, the integral term can be viewed as the $1 / 2$-th integral of $u_{x x}(x, \cdot)$, equation (1.1) is intermediate between the diffusion and the wave equation [4,5], and it can be termed a fractional partial differential equation of $3 / 2$-order in time. Equations similar to (1.1) can be found in the modelling of wave propagation involving viscoelastic forces, heat conduction in materials with memory and anomalous diffusion processes [1, 4, 5, 14]. They have recently attracted increasing interest in the physical, chemical and engineering literature (see the numerous papers citing [14]).

A number of people have studied the evolution equation. e.g., Chen, Thomee and Wahlbin [1] used backward Euler scheme in time, piecewise linear finite element method in space, the integral term by means of product integration, and gave the regularity and error boundness of the solution. Lopez-Marcos [9] studied a nonlinear partial integrodifferential equation, used one order full discrete difference scheme. Mclean, Thomee [12] employed backward Euler, Crank-Nicolson and second order backward difference scheme, Galerkin finite element method for spatial variables and gave the regularity, stability and error estimate of (1.1)-(1.3). Sanz-Serna [15] studied this type of equations, used backward Euler scheme in time and one order convolution to the integral term, drove error boundedness for smooth and nonsmooth initial value. Xu [19] considered backward Euler and Crank-Nicolson scheme, with one and second order convolution quadrature to the integral term respectively, drove long time error boundness with weights. A practical difficulty of time discretization is that all $\mathbf{U}^{n}(1 \leq n \leq N)$ need be stored as they all enter the subsequent equations, which need much memory requirement. In order to conquer this problem, Huang [6] put forward an iterative scheme and reduced the memory requirement. Sloan, Thomee [16] proposed more economical schemes by using quadrature rules with higher order truncation errors.

It is well known that the Crank-Nicolson scheme has $O\left(k^{2}+h^{2}\right)$ order accuracy and is unconditionally stable for any step-size ratio k / h^{2} for the heat equation. However, it is not an optimum scheme. The six-point implicit difference scheme with minimum truncation error is $\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right) / 12=\left(\delta_{x}^{2} U_{j}^{n}+\delta_{x}^{2} U_{j}^{n-1}\right) / 2$, whose truncation error is $O\left(k^{2}+h^{4}\right)$ [17]. In this paper, we will consider the scheme for the evolution equation with a weakly singular kernel.

Throughout the paper, for $0 \leq t \leq T, 0 \leq x \leq 1$, we assume that there exists a positive constant C such that (see $[9,(1.7)]$)

$$
\begin{array}{ll}
\left|u_{t t}(x, t)\right| \leq C t^{-1 / 2}, & \left|u_{t t t}(x, t)\right| \leq C t^{-3 / 2} \\
\left|u_{x x t}(x, 0)\right| \leq C, & \left|u_{x x t t}(x, t)\right| \leq C t^{-1 / 2} \tag{1.4}
\end{array}
$$

Remark 1.1. For sufficiently smooth $v(x)$ and $f(x, t)$, (1.1)-(1.3) exists a unique solution
and satisfies the following regularities (see [1])

$$
\begin{aligned}
& u \in C\left([0, T] ; H^{2} \cap H_{0}^{1}\right) \\
& u_{t} \in C\left([0, T] ; L_{2}\right) \cap L_{1}\left([0, T] ; H^{2} \cap H_{0}^{1}\right) \\
& u_{t t} \in L_{1}\left([0, T] ; L_{2}\right)
\end{aligned}
$$

Remark 1.2. The regularity for the homogeneous equation of (1.1) was shown in [12, Theorem 5.5] and expressed in the terms of the semi-norm

$$
\begin{align*}
& |v|_{r}=\left\|A^{r / 2} v\right\|, \quad r \in \mathscr{R}, \quad \text { where } \quad A=-\frac{\partial^{2}}{\partial x^{2}} \\
& |u(\cdot, t)|_{r+2 \theta} \leq C(\alpha) t^{-(\alpha+1) \theta}|v|_{r}, \quad t \geq 0, \quad 0 \leq \theta \leq 1 \tag{1.5}
\end{align*}
$$

and similarly the time derivatives $D_{t}^{m} u(\cdot, t)(m \geq 1)$ satisfy

$$
\begin{equation*}
\left|D_{t}^{m} u(\cdot, t)\right|_{r+2 \theta} \leq C(m, \alpha) t^{-(\alpha+1) \theta-m}|v|_{r}, \quad t \geq 0,-1 \leq \theta \leq 1 \tag{1.6}
\end{equation*}
$$

If appropriate θ, r in (1.5) and (1.6) are chosen respectively, we have the following regularities $\left(\|\cdot\|_{0}\right.$ is continuous L^{2}-norm) (see [19, (7.12)])

$$
\begin{array}{ll}
\left\|u_{t t}(x, t)\right\|_{0} \leq C t^{-1 / 2}, & \left\|u_{t t t}(x, t)\right\|_{0} \leq C t^{-3 / 2} \\
\left\|u_{x x t}(x, 0)\right\|_{0} \leq C, & \left\|u_{x x t t}(x, t)\right\|_{0} \leq C t^{-1 / 2} \\
& \text { for } 0 \leq t \leq T, 0 \leq x \leq 1 \tag{1.7}
\end{array}
$$

An overview of the paper follows. In Section 2, a compact finite difference scheme is introduced. Section 3 is devoted to the analysis of the stability and convergence of the scheme. In Section 4, a numerical example that is in total agreement with our analysis is reported. Concluding remark is in final section.

2. A compact finite difference scheme for the evolution equation

We introduce a grid $x_{j}=j h, j=0,1, \cdots, J$, with $h=1 / J$ and J a positive integer. The step-length in time is denoted by k and a superscript n refers to the time level $t_{n}=n k$, $n=0,1, \cdots, N(N=[T / k])$.

Let

$$
V_{h}=\left\{\mathbf{U} \mid \mathbf{U}=\left(U_{0}, U_{1}, \cdots, U_{J-1}, U_{J}\right), U_{0}=U_{J}=0\right\}
$$

be the space of grid functions. Define the grid function

$$
U_{j}^{n}=u\left(x_{j}, t_{n}\right), \quad 0 \leq j \leq J, 0 \leq n \leq N
$$

For any grid functions $\mathbf{U}, \mathbf{W} \in V_{h}$, denote

$$
\begin{array}{ll}
\delta_{t} U_{j}^{n}=\frac{1}{k}\left(U_{j}^{n}-U_{j}^{n-1}\right), & \delta_{x} U_{j}=\frac{1}{h}\left(U_{j+1}-U_{j}\right), \\
\delta_{x}^{2} U_{j}=\frac{1}{h^{2}}\left(U_{j+1}-2 U_{j}+U_{j-1}\right), & (U W)_{j}=U_{j} W_{j}, \\
\|U\|_{\infty}=\max _{1 \leq j \leq J-1}\left|U_{j}\right|, & \langle\mathbf{U}, \mathbf{W}\rangle=h \sum_{j=1}^{J-1} U_{j} W_{j}, \quad\|\mathbf{U}\|^{2}=\langle\mathbf{U}, \mathbf{U}\rangle . \tag{2.1}
\end{array}
$$

We will introduce the following second order convolution quadrature formula employed by Lubich (see [10, 19])

$$
\begin{equation*}
q_{n}(\varphi)=k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \varphi^{n-p}+w_{n 0} \varphi^{0} \tag{2.2}
\end{equation*}
$$

where β_{p} are the coefficients of their generating power series

$$
\begin{equation*}
\tilde{\beta}\left(\frac{(1-z)(3-z)}{2}\right)=\left[\frac{(1-z)(3-z)}{2}\right]^{-\frac{1}{2}}=\sum_{p=0}^{\infty} \beta_{p^{2}} z^{p} \tag{2.3}
\end{equation*}
$$

Here $\tilde{\beta}(s)=\$[\beta(t)]=\int_{0}^{\infty} \beta(t) e^{-s t} d t$ denotes the Laplace transform of $\beta(t)$. To approximate the integral formally to second order and we take the correction quadrature weights $w_{n 0}$ so that the quadrature formula becomes exact for polynomial $\varphi=1$, namely

$$
k^{1 / 2} \sum_{p=0}^{n} \beta_{p}+w_{n 0}=\int_{0}^{t_{n}} \beta\left(t_{n}-s\right) d s=2\left(\frac{t_{n}}{\pi}\right)^{\frac{1}{2}}
$$

We will give the quadrature error of $\varepsilon(\varphi)\left(t_{n}\right)=q_{n}(\varphi)-I^{(1 / 2)} \varphi\left(t_{n}\right)$, where $q_{n}(\varphi)$ is defined in (2.2).

Lemma 2.1 ([19]). If $\beta(t)=(\pi t)^{-1 / 2}$, then for any $n \geq 1$

$$
\begin{aligned}
& \left|\varepsilon(\varphi)\left(t_{n}\right)\right| \\
\leq & C k^{2} t_{n}^{-1 / 2}\left|\varphi_{t}(0)\right|+C k^{3 / 2} \int_{t_{n-1}}^{t_{n}}\left|\varphi_{t t}(s)\right| d s+C k^{2} \int_{0}^{t_{n-1}}\left(t_{n}-s\right)^{-1 / 2}\left|\varphi_{t t}(s)\right| d s
\end{aligned}
$$

The boundness of $\varepsilon\left(u_{x x}\right)\left(t_{n}\right)=q_{n}\left(u_{x x}\right)-I^{(1 / 2)} u_{x x}\left(\cdot, t_{n}\right) d s$ will be given.
Lemma 2.2 ([2]). Let $u_{x x}$ be real, continuously differentiable function in $0 \leq t \leq T$, and $u_{x x t t}$ continuous and integrable in $0<t<T$. There exists a positive constant C that depends only on T, such that

$$
\left|\varepsilon\left(u_{x x}\right)\left(t_{n}\right)\right|=\left|q_{n}\left(u_{x x}\right)-I^{\left(\frac{1}{2}\right)} u_{x x}\left(\cdot, t_{n}\right) d s\right| \leq C k(k / n)^{1 / 2}, 1 \leq n \leq N
$$

In this article, we will present the compact difference scheme for (1.1)-(1.3) as follows

$$
\begin{aligned}
& \frac{1}{12}\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right)-q_{n-1 / 2}\left(\delta_{x}^{2} U_{j}\right) \\
= & \frac{1}{12}\left(f_{j-1}^{n-1 / 2}+10 f_{j}^{n-1 / 2}+f_{j+1}^{n-1 / 2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& q_{n-1 / 2}\left(\delta_{x}^{2} U_{j}\right)=\frac{1}{2}\left(q_{n}\left(\delta_{x}^{2} U_{j}\right)+q_{n-1}\left(\delta_{x}^{2} U_{j}\right)\right) \\
& f_{j}^{n-1 / 2}=\frac{1}{2}\left(f\left(x_{j}, t_{n}\right)+f\left(x_{j}, t_{n-1}\right)\right), \quad j=1, \cdots, J-1, n=1, \cdots, N
\end{aligned}
$$

Consequently,

$$
\begin{align*}
& \frac{1}{12}\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right) \\
& -\frac{1}{2}\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} U_{j}^{n-p}+\omega_{n 0} \delta_{x}^{2} U_{j}^{0}+k^{1 / 2} \sum_{p=0}^{n-1} \beta_{p} \delta_{x}^{2} U_{j}^{n-1-p}+\omega_{n-1,0} \delta_{x}^{2} U_{j}^{0}\right) \\
= & \frac{1}{12}\left(f_{j-1}^{n-1 / 2}+10 f_{j}^{n-1 / 2}+f_{j+1}^{n-1 / 2}\right), \quad j=1, \cdots, J-1, n=1, \cdots, N . \tag{2.4}
\end{align*}
$$

Furthermore

$$
\begin{array}{ll}
U_{0}^{n}=U_{J}^{n}=0, & n=0,1, \cdots, N \\
U_{j}^{0}=v\left(x_{j}\right), & j=1, \cdots, J-1 \tag{2.6}
\end{array}
$$

Remark 2.1. In this paper, we use a two-level six-point difference scheme for the time derivative, second order difference scheme in space, second order convolution quadrature formula for the integral term. And we will show that the proposed method is stable and convergent with the convergence order $O\left(k^{3 / 2}+h^{4}\right)$ in the L^{2}-norm. However, Chen and Xu [2] used second order backward difference scheme for the time derivative, second order difference scheme in space, and the second order convolution quadrature formula for the integral term, they only obtained $O\left(k^{3 / 2}+h^{2}\right)$ order convergence.

3. Analysis of the compact difference scheme

3.1. Stability

We first introduce the following lemmas which will be used in the stability analysis.
Lemma 3.1 ([2]). 1) Let $\mathbf{U}, \mathbf{W} \in V_{h}$. We have

$$
\left\langle\delta_{x}^{2} \mathbf{U}, \mathbf{W}\right\rangle=-h \sum_{j=0}^{J-1}\left(\delta_{x} U_{j}\right)\left(\delta_{x} W_{j}\right)
$$

2) Let $\mathbf{U}^{m}, \mathbf{U}^{n} \in V_{h}$. We have

$$
\left|\left\langle\delta_{x}^{2} \mathbf{U}^{m}, \mathbf{U}^{n}\right\rangle\right| \leq \frac{4}{h^{2}}\left\|U^{m}\right\| \cdot\left\|U^{n}\right\|
$$

We will give a general result on the nonnegative character of certain real quadratic form with convolution structure. In order to treat more general choices, we say that q_{n} is β_{0}-positive $[11,12]$ if

$$
Q_{N}(\Phi)=k \sum_{n=0}^{N} q_{n}(\varphi) \varphi^{n} \geq-\beta_{0}\left(\varphi^{0}\right)^{2}, \quad \forall N \geq 1, \quad \Phi=\left(\varphi^{0}, \cdots, \varphi^{N}\right)^{T}
$$

Lemma 3.2 ($[9,19])$. If $\left\{a_{0}, a_{1}, \cdots, a_{n}, \cdots\right\}$ is a real-valued sequence such that $\hat{a}(z)=$ $\sum_{n=0}^{\infty} a_{n} z^{n}$ is analytic in $D=\{z \in \mathscr{C}:|z| \leq 1\}$, then for any positive integer N and for any $\left(U^{0}, U^{1}, \cdots, U^{N}\right) \in \mathbb{R}^{N+1}$,

$$
\sum_{n=0}^{N}\left(\sum_{p=0}^{n} a_{p} U^{n-p}\right) U^{n} \geq 0
$$

if and only if

$$
\Re \hat{a}(z) \geq 0, \quad \text { for } \quad z \in D
$$

We know easily $\beta(t)$ is positive type, viz. $\Re \tilde{\beta}(s) \geq 0$, when $\Re(s) \geq 0$. If $|z|<1$, we have $\Re\left(3 / 2-2 z+1 / 2 z^{2}\right)>0$ (see [11, Lemma 4.1]). So for $|z|<1, \Re \tilde{\beta}(((1-z)(3-z)) / 2)=$ $\Re\left(3 / 2-2 z+1 / 2 z^{2}\right)>0$, the generating function (2.3) satisfies the conditions of Lemma 3.2.

We can now establish the stability of the scheme by means of the energy method.
Lemma 3.3. Let $\mathbf{U}^{n}=\left(U_{1}^{n}, U_{2}^{n}, \cdots, U_{J-1}^{n}\right)$ be the solution of

$$
\begin{align*}
& \frac{1}{12}\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right)-\frac{1}{2}\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} U_{j}^{n-p}+\omega_{n 0} \delta_{x}^{2} U_{j}^{0}\right. \\
& \left.+k^{1 / 2} \sum_{p=0}^{n-1} \beta_{p} \delta_{x}^{2} U_{j}^{n-1-p}+\omega_{n-1,0} \delta_{x}^{2} U_{j}^{0}\right)=g_{j}^{n} \\
& \quad j=1, \cdots, J-1, \quad n=1, \cdots, N, \tag{3.1}
\end{align*}
$$

where

$$
\begin{align*}
& U_{0}^{n}=U_{J}^{n}=0, \quad n=0,1, \cdots, N \tag{3.2}\\
& \mathrm{U}^{0}=\left(v\left(x_{1}\right), v\left(x_{2}\right), \cdots, v\left(x_{J-1}\right)\right) \quad \text { given } . \tag{3.3}
\end{align*}
$$

Then for $N \geq 1$, we have

$$
\begin{equation*}
\left\|\mathbf{U}^{N}\right\| \leq C(T)\left\|\mathbf{U}^{0}\right\|+3 k \sum_{n=1}^{N}\left\|\mathbf{g}^{n}\right\| \tag{3.4}
\end{equation*}
$$

Proof. We denote

$$
\begin{array}{ll}
\bar{U}_{j}^{n}=\frac{1}{2}\left(U_{j}^{n}+U_{j}^{n-1}\right), & \Gamma_{j}^{n}=\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n} \\
\omega_{n}=\omega_{n 0}+\omega_{n-1,0}, & j=1, \cdots, J-1, \quad n=1, \cdots, N . \tag{3.5}
\end{array}
$$

Then (3.1) is identity to the following expression

$$
\begin{gather*}
\frac{1}{12}\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right)-\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} \bar{U}_{j}^{n-p}+\omega_{n} \delta_{x}^{2} \bar{U}_{j}^{0}\right)=g_{j}^{n} \\
j=1, \cdots, J-1, \quad n=1, \cdots, N . \tag{3.6}
\end{gather*}
$$

Multiplication by $h \bar{U}_{j}^{n}$ each side in (3.6) and summation in $j(1 \leq j \leq J-1)$ yield

$$
\begin{equation*}
\left\langle\frac{1}{12} \Gamma^{n}, \bar{U}^{n}\right\rangle-k^{1 / 2} \sum_{p=0}^{n} \beta_{p}\left\langle\delta_{x}^{2} \bar{U}^{n-p}, \bar{U}^{n}\right\rangle-\omega_{n}\left\langle\delta_{x}^{2} \bar{U}^{0}, \bar{U}^{n}\right\rangle=\left\langle g^{n}, \bar{U}^{n}\right\rangle . \tag{3.7}
\end{equation*}
$$

When $N \geq 1$, we have

$$
\begin{align*}
& k \sum_{n=1}^{N}\left\langle\frac{1}{12} \Gamma^{n}, \bar{U}^{n}\right\rangle \\
= & k^{3 / 2} \sum_{n=1}^{N} \sum_{p=0}^{n} \beta_{p}\left\langle\delta_{x}^{2} \bar{U}^{n-p}, \bar{U}^{n}\right\rangle+k \sum_{n=1}^{N} \omega_{n}\left\langle\delta_{x}^{2} \bar{U}^{0}, \bar{U}^{n}\right\rangle+k \sum_{n=1}^{N}\left\langle g^{n}, \bar{U}^{n}\right\rangle . \tag{3.8}
\end{align*}
$$

Now each term will be estimated. First, we have

$$
\begin{align*}
\frac{1}{12} k\left\langle\Gamma^{n}, \bar{U}^{n}\right\rangle & =\frac{k}{12} h \sum_{j=1}^{J-1}\left(\delta_{t} U_{j-1}^{n}+10 \delta_{t} U_{j}^{n}+\delta_{t} U_{j+1}^{n}\right) \bar{U}_{j}^{n} \\
& =k h \sum_{j=1}^{J-1}\left(\delta_{t} U_{j}^{n}+\frac{h^{2}}{12} \delta_{x}^{2} \delta_{t} U_{j}^{n}\right) \bar{U}_{j}^{n} \\
& =k\left(\delta_{t} U^{n}, \bar{U}^{n}\right)+\frac{k h^{2}}{12}\left(\delta_{x}^{2} \delta_{t} U^{n}, \bar{U}^{n}\right) \\
& =\frac{1}{2}\left(\left\|U^{n}\right\|^{2}-\left\|U^{n-1}\right\|^{2}\right)-\frac{k h^{2}}{12}\left(\left\|\delta_{x} U^{n}\right\|^{2}-\left\|\delta_{x} U^{n-1}\right\|^{2}\right) \\
& =\frac{1}{2}\left[\left(\left\|U^{n}\right\|^{2}-\frac{h^{2}}{12}\left\|\delta_{x} U^{n}\right\|^{2}\right)-\left(\left\|U^{n-1}\right\|^{2}-\frac{h^{2}}{12}\left\|\delta_{x} U^{n-1}\right\|^{2}\right)\right] \tag{3.9}
\end{align*}
$$

where

$$
\left\|\delta_{x} U^{n}\right\|^{2}=h \sum_{j=0}^{J-1}\left|\delta_{x} U_{j}^{n}\right|^{2}
$$

It follows from

$$
\left\|\delta_{x} U^{n}\right\|^{2} \leq \frac{4}{h^{2}}\left\|U^{n}\right\|^{2}
$$

that

$$
\frac{2}{3}\left\|U^{n}\right\|^{2} \leq\left\|U^{n}\right\|^{2}-\frac{h^{2}}{12}\left\|\delta_{x} U^{n}\right\|^{2} \leq\left\|U^{n}\right\|^{2} .
$$

Consequently,

$$
\begin{align*}
k \sum_{n=1}^{N}\left\langle\frac{1}{12} \Gamma^{n}, \bar{U}^{n}\right\rangle & =\frac{1}{2}\left[\left(\left\|U^{N}\right\|^{2}-\frac{h^{2}}{12}\left\|\delta_{x} U^{N}\right\|^{2}\right)-\left(\left\|U^{0}\right\|^{2}-\frac{h^{2}}{12}\left\|\delta_{x} U^{0}\right\|^{2}\right)\right] \\
& \geq \frac{2}{3}\left\|U^{N}\right\|^{2}-\left\|U^{0}\right\|^{2} \tag{3.10}
\end{align*}
$$

Secondly, the first term of the right equality is β_{0}-positive (see $[11,12]$). This follows from Lemma 3.1, on permuting the summation indices and using, for each fixed j, and Lemma 3.2:

$$
\begin{align*}
\sum_{n=1}^{N} \sum_{p=0}^{n} \beta_{p}\left\langle\delta_{x}^{2} \bar{U}^{n-p}, \bar{U}^{n}\right\rangle & =-\sum_{n=1}^{N} \sum_{p=0}^{n} \beta_{p} \sum_{j=0}^{J-1} h\left(\delta_{x} \bar{U}_{j}^{n-p}\right)\left(\delta_{x} \bar{U}_{j}^{n}\right) \\
& =-h \sum_{j=0}^{J-1} \sum_{n=1}^{N} \sum_{p=0}^{n} \beta_{p}\left(\delta_{x} \bar{U}_{j}^{n-p}\right)\left(\delta_{x} \bar{U}_{j}^{n}\right) \\
& =-h \sum_{j=0}^{J-1}\left[\sum_{n=0}^{N} \sum_{p=0}^{n} \beta_{p}\left(\delta_{x} \bar{U}_{j}^{n-p}\right)\left(\delta_{x} \bar{U}_{j}^{n}\right)-\beta_{0}\left(\delta_{x} \bar{U}_{j}^{0}\right)^{2}\right] \\
& \leq \beta_{0} \sum_{j=0}^{J-1} h\left(\delta_{x} \bar{U}_{j}^{0}\right)^{2} \leq \frac{2}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|^{2} . \tag{3.11}
\end{align*}
$$

Then using (3.10), (3.11), Lemma 3.1 and Cauchy-Schwarz inequality, we obtain

$$
\begin{align*}
& \frac{1}{3}\left\|U^{N}\right\|^{2}-\frac{1}{2}\left\|U^{0}\right\|^{2} \leq 2 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|^{2}+k \sum_{n=1}^{N} \omega_{n}\left\langle\delta_{x}^{2} \bar{U}^{0}, \bar{U}^{n}\right\rangle+\sum_{n=1}^{N} k\left\langle g^{n}, \bar{U}^{n}\right\rangle \\
\leq & \left.2 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|^{2}+\frac{4 k}{h^{2}} \sum_{n=1}^{N} \right\rvert\, \omega_{n}\left\|\bar{U}^{0}\right\|\left\|\bar{U}^{n}\right\|+\sum_{n=1}^{N} k\left\|g^{n}\right\|\left\|\bar{U}^{n}\right\|, \tag{3.12}
\end{align*}
$$

so we have

$$
\left.\left\|U^{N}\right\|^{2} \leq \frac{3}{2}\left\|U^{0}\right\|^{2}+6 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|^{2}+12 \frac{k}{h^{2}} \sum_{n=1}^{N} \right\rvert\, \omega_{n}\left\|\bar{U}^{0}\right\|\left\|\bar{U}^{n}\right\|+3 \sum_{n=1}^{N} k\left\|g^{n}\right\|\left\|\bar{U}^{n}\right\| .
$$

Now, choosing M so that $\left\|U^{M}\right\|=\max _{0 \leq n \leq N}\left\|U^{n}\right\|$, gives

$$
\left.\left\|U^{M}\right\|^{2} \leq \frac{3}{2}\left\|U^{0}\right\|^{2}+6 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|^{2}+12 \frac{k}{h^{2}} \sum_{n=1}^{M} \right\rvert\, \omega_{n}\left\|\bar{U}^{0}\right\|\left\|\bar{U}^{n}\right\|+3 \sum_{n=1}^{M} k\left\|g^{n}\right\|\left\|\bar{U}^{n}\right\|
$$

so

$$
\begin{aligned}
\left\|U^{M}\right\|^{2} \leq & \frac{3}{2}\left\|U^{0}\right\|\left\|U^{M}\right\|+6 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|\left\|U^{M}\right\| \\
& \left.+12 \frac{k}{h^{2}} \sum_{n=1}^{M} \right\rvert\, \omega_{n}\| \| \bar{U}^{0}\| \| U^{M}\left\|+3 \sum_{n=1}^{M} k\right\| g^{n}\| \| U^{M} \| .
\end{aligned}
$$

Therefore, for $N \geq 1$, we obtain

$$
\begin{equation*}
\left.\left\|U^{N}\right\| \leq\left\|U^{M}\right\| \leq \frac{3}{2}\left\|U^{0}\right\|+6 \frac{k^{3 / 2}}{h^{2}} \beta_{0}\left\|\bar{U}^{0}\right\|+12 \frac{k}{h^{2}} \sum_{n=1}^{N} \right\rvert\, \omega_{n}\left\|\bar{U}^{0}\right\|+3 \sum_{n=1}^{N} k\left\|g^{n}\right\| . \tag{3.13}
\end{equation*}
$$

Because of $w_{n 0}=O\left(k^{1 / 2} n^{-1 / 2}\right)$ (see [11, Theorem 2.4.(1)]) ($1 \leq n \leq N$), we have

$$
\begin{equation*}
\sum_{n=1}^{N}\left|w_{n 0}\right| \leq C \sum_{n=1}^{N}\left(k^{1 / 2} n^{-1 / 2}\right) \leq C(N k)^{1 / 2} \leq C(T) \tag{3.14}
\end{equation*}
$$

Using (3.13) and (3.14), we finish the proof.

3.2. Convergence

The following lemmas will be used in the derivation of the convergence of compact difference scheme.
Lemma 3.4 ([20]). Let $y \in C^{3}\left[t_{n-1}, t_{n}\right]$. It holds that

$$
\begin{aligned}
& \frac{1}{2}\left[y^{\prime}\left(t_{n}\right)+y^{\prime}\left(t_{n-1}\right)\right]-\frac{1}{k}\left[y\left(t_{n}\right)-y\left(t_{n-1}\right)\right] \\
= & \frac{k^{2}}{16} \int_{0}^{1}\left[y^{(3)}\left(t_{n-\frac{1}{2}}+\frac{s k}{2}\right)+y^{(3)}\left(t_{n-\frac{1}{2}}-\frac{s k}{2}\right)\right]\left(1-s^{2}\right) d s \\
= & \frac{k^{2}}{12} y^{(3)}\left(t_{n}+\eta_{n} k\right), \quad \eta_{n} \in(-1,1),
\end{aligned}
$$

where $t_{n-1 / 2}=(n-1 / 2) k$.
Lemma 3.5 ([18]). Suppose $p(x) \in C^{6}\left[x_{j-1}, x_{j+1}\right]$, and $\zeta(s)=5(1-s)^{3}-3(1-s)^{5}$, we have

$$
\begin{aligned}
& \frac{1}{12}\left[p^{\prime \prime}\left(x_{j-1}\right)+10 p^{\prime \prime}\left(x_{j}\right)+p^{\prime \prime}\left(x_{j+1}\right)\right]-\frac{1}{h^{2}}\left[p\left(x_{j-1}\right)-2 p\left(x_{j}\right)+p\left(x_{j+1}\right)\right] \\
= & \frac{h^{4}}{360} \int_{0}^{1}\left[p^{(6)}\left(x_{j}-s h\right)+p^{(6)}\left(x_{j}+s h\right)\right] \zeta(s) d s \\
= & \frac{h^{4}}{240} p^{(6)}\left(x_{j}+\theta_{j} h\right), \quad \theta_{j} \in(-1,1) .
\end{aligned}
$$

We can derive the convergence of the numerical method (2.4)-(2.6) as a direct consequence of Lemma 3.3.

Theorem 3.1. Assume that the solution u of (1.1)-(1.3) satisfies the smoothness requirements listed in the hypothesis (1.4), and that $\left(U^{0}, \cdots, U^{N}\right)(N=[T / k])$ are solutions of (2.4)(2.6). Then for sufficiently smooth data $v(x)$ and $f(x, t)$, we have

$$
\begin{equation*}
\max _{0 \leq n \leq N}\left\|U^{n}-u^{n}\right\|=C(T)\left(k^{3 / 2}+h^{4}\right) \tag{3.15}
\end{equation*}
$$

Proof. Let $e_{j}^{n}=U_{j}^{n}-u_{j}^{n}$, where $u_{j}^{n}=u\left(x_{j}, t_{n}\right)$. Then

$$
\begin{aligned}
& \frac{1}{12}\left(\delta_{t} e_{j-1}^{n}+10 \delta_{t} e_{j}^{n}+\delta_{t} e_{j+1}^{n}\right)-\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} \bar{e}_{j}^{n-p}+w_{n} \delta_{x}^{2} \bar{e}_{j}^{0}\right) \\
= & \frac{1}{12}\left(\bar{f}_{j-1}^{n}+10 \bar{f}_{j}^{n}+\bar{f}_{j+1}^{n}\right)-\frac{1}{12}\left(\delta_{t} u_{j-1}^{n}+10 \delta_{t} u_{j}^{n}+\delta_{t} u_{j+1}^{n}\right) \\
& -\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} \bar{u}_{j}^{n-p}+w_{n} \delta_{x}^{2} \bar{u}_{j}^{0}\right), \quad j=1, \cdots, J-1, \quad n=1, \cdots, N,
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{t}\left(x_{j}, t_{n}\right)-\int_{0}^{t_{n}} \beta\left(t_{n}-s\right) u_{x x}\left(x_{j}, s\right) d s=f\left(x_{j}, t_{n}\right) \\
& u_{t}\left(x_{j}, t_{n-1}\right)-\int_{0}^{t_{n-1}} \beta\left(t_{n-1}-s\right) u_{x x}\left(x_{j}, s\right) d s=f\left(x_{j}, t_{n-1}\right)
\end{aligned}
$$

Therefore the error equation can be obtained as follows

$$
\frac{1}{12}\left(\delta_{t} e_{j-1}^{n}+10 \delta_{t} e_{j}^{n}+\delta_{t} e_{j+1}^{n}\right)-\left(k^{1 / 2} \sum_{p=0}^{n} \beta_{p} \delta_{x}^{2} \bar{e}_{j}^{n-p}+w_{n} \delta_{x}^{2} \bar{e}_{j}^{0}\right)=\tau_{1 j}^{n}-\tau_{2 j}^{n}
$$

where

$$
\begin{aligned}
\tau_{1 j}^{n}= & \frac{1}{12}\left[\left[\frac{1}{2}\left(u_{t}\left(x_{j-1}, t_{n}\right)+u_{t}\left(x_{j-1}, t_{n-1}\right)\right)-\delta_{t} u_{j-1}^{n}\right]\right. \\
& +10\left[\frac{1}{2}\left(u_{t}\left(x_{j}, t_{n}\right)+u_{t}\left(x_{j}, t_{n-1}\right)\right)-\delta_{t} u_{j}^{n}\right] \\
& \left.+\left[\frac{1}{2}\left(u_{t}\left(x_{j+1}, t_{n}\right)+u_{t}\left(x_{j+1}, t_{n-1}\right)\right)-\delta_{t} u_{j+1}^{n}\right]\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \tau_{2 j}^{n}=\frac{1}{24}\left(\left[\int_{0}^{t_{n}} \beta\left(t_{n}-s\right)\left(u_{x x}\left(x_{j-1}, s\right)+10 u_{x x}\left(x_{j}, s\right)+u_{x x}\left(x_{j+1}, s\right)\right) d s-12 q_{n}\left(\delta_{x}^{2} u_{j}\right)\right]\right. \\
& \left.+\left[\int_{0}^{t_{n-1}} \beta\left(t_{n-1}-s\right)\left(u_{x x}\left(x_{j-1}, s\right)+10 u_{x x}\left(x_{j}, s\right)+u_{x x}\left(x_{j+1}, s\right)\right) d s-12 q_{n-1}\left(\delta_{x}^{2} u_{j}\right)\right]\right)
\end{aligned}
$$

Using Lemma 3.3, we have

$$
\begin{equation*}
\left\|e^{n}\right\| \leq C(T)\left\|e^{0}\right\|+3 k \sum_{n=1}^{N}\left\|\tau_{1}^{n}-\tau_{2}^{n}\right\| \leq 3 k \sum_{n=1}^{N}\left(\left\|\tau_{1}^{n}\right\|+\left\|\tau_{2}^{n}\right\|\right) \tag{3.16}
\end{equation*}
$$

First, using Lemma 3.4, we obtain

$$
\left|\frac{1}{2}\left(u_{t}\left(x_{j}, t_{n}\right)+u_{t}\left(x_{j}, t_{n-1}\right)\right)-\delta_{t} u_{j}^{n}\right|=\frac{k^{2}}{12}\left|u_{t t t}\left(x_{j}, t_{n}+\eta_{n} k\right)\right|, \quad \eta_{n} \in(-1,1)
$$

Using hypothesis (1.4), we have

$$
\begin{equation*}
\sum_{n=1}^{N} k\left\|\tau_{1}^{n}\right\| \leq \sum_{n=1}^{N} k\left(\sum_{j=1}^{J-1} h\left|\tau_{1 j}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C k^{3 / 2} \tag{3.17}
\end{equation*}
$$

Next, using Lemmas 2.2 and 3.5 yields

$$
\begin{aligned}
&\left|\int_{0}^{t_{n}} \beta\left(t_{n}-s\right) \frac{1}{12}\left(u_{x x}\left(x_{j-1}, s\right)+10 u_{x x}\left(x_{j}, s\right)+u_{x x}\left(x_{j+1}, s\right)\right) d s-q_{n}\left(\delta_{x}^{2} u_{j}\right)\right| \\
& \leq\left|\int_{0}^{t_{n}} \beta\left(t_{n}-s\right)\left(\delta_{x}^{2} u\left(x_{j}, s\right)+\frac{h^{4}}{240} u_{x^{6}}\left(x_{j}+\theta_{j} h, s\right)\right) d s-q_{n}\left(\delta_{x}^{2} u_{j}\right)\right| \\
& \leq\left|\int_{0}^{t_{n}} \beta\left(t_{n}-s\right)\left(\frac{h^{4}}{240} u_{x^{6}}\left(x_{j}+\theta_{j} h, s\right)\right) d s+\int_{0}^{t_{n}} \beta\left(t_{n}-s\right) \delta_{x}^{2} u\left(x_{j}, s\right) d s-q_{n}\left(\delta_{x}^{2} u_{j}\right)\right| \\
& \leq\left|\int_{0}^{t_{n}} \beta\left(t_{n}-s\right)\left(\frac{h^{4}}{240} u_{x^{6}}\left(x_{j}+\theta_{j} h, s\right)\right) d s\right|+C k(k / n)^{1 / 2} \\
& \leq C(T)\left(h^{4}+k\left(\frac{k}{n}\right)^{\frac{1}{2}}\right) .
\end{aligned}
$$

Consequently, we have

$$
\begin{equation*}
\sum_{n=1}^{N} k\left\|\tau_{2}^{n}\right\| \leq \sum_{n=1}^{N} k\left(\sum_{j=1}^{J-1} h\left|\tau_{2 j}^{n}\right|^{2}\right)^{\frac{1}{2}} \leq C(T)\left(h^{4}+k^{3 / 2}\right) \tag{3.18}
\end{equation*}
$$

Using (3.16), (3.17) and (3.18) completes the proof.
Remark 3.1. Although we employ second order method in time and spatial, because of the lack of smoothness of the exact solution $u(x, t)$ at $t=0$, second order accuracy could not be obtained in time if we use a uniform time step k. However, an improvement over the first-order method (see [9]) is manifest.

To obtain second-order accurate in time, we can employ a family of non-uniform meshes that concentrate the time levels near $t=0$ to compensate for the singular behavior of the exact solution at $t=0$ (see [13]).

4. Numerical example

In this section, the coefficients β_{p} in the second order convolution quadrature formula (2.2) will be confirmed, and the results of some computations using discretization (2.4)(2.6) will be described, together with second order convolution quadrature formula (2.2).

The main difficulty is to confirm the coefficients β_{p} in the process of computations. One order convolution quadrature formula have been gave and its coefficients c_{p} be confirmed by Sanz-Serna [15]

$$
\begin{equation*}
(1-z)^{-1 / 2}=\sum_{p=0}^{\infty} c_{p} z^{p} \tag{4.1}
\end{equation*}
$$

where $c_{p}=(-1)^{p}\binom{-1 / 2}{p}=\frac{(2 p-1)!!}{(2 p)!!}$ (see [12, p.49]), furthermore

$$
\begin{equation*}
\sum_{p=0}^{n-1} c_{p}=2 n c_{n}=2 n^{1 / 2} \pi^{-1 / 2}+O\left(n^{-1 / 2}\right) \tag{4.2}
\end{equation*}
$$

Following we will confirm β_{p}, which are the coefficients of the generating power series

$$
\begin{aligned}
\sum_{p=0}^{\infty} \beta_{p} z^{p} & =\tilde{\beta}\left(\frac{(1-z)(3-z)}{2}\right)=\left(\frac{(1-z)(3-z)}{2}\right)^{-1 / 2} \\
& =2^{1 / 2}(1-z)^{-1 / 2}(3-z)^{-1 / 2}=\frac{6^{1 / 2}}{3}(1-z)^{-1 / 2}\left(1-\frac{z}{3}\right)^{-1 / 2} \\
& =\frac{6^{1 / 2}}{3}\left(\sum_{p=0}^{\infty} c_{p} z^{p}\right)\left(\sum_{p=0}^{\infty} c_{p}\left(\frac{z}{3}\right)^{p}\right)=\frac{6^{1 / 2}}{3} \sum_{p=0}^{\infty}\left(\sum_{n=0}^{p} c_{n} c_{p-n} / 3^{p-n}\right) z^{p}
\end{aligned}
$$

By comparing there coefficients, we can obtain

$$
\begin{equation*}
\beta_{p}=\frac{\sqrt{6}}{3} \sum_{n=0}^{p} c_{n} \frac{c_{p-n}}{3^{p-n}}, \quad p=0,1, \cdots, N \tag{4.3}
\end{equation*}
$$

In our example, the exact solution is given by ([13])

$$
\begin{equation*}
u(x, t)=\sin \pi x-\frac{4 t^{\frac{3}{2}}}{3 \sqrt{\pi}} \sin 2 \pi x \tag{4.4}
\end{equation*}
$$

so the initial data is $v(x)=\sin \pi x$ and the inhomogeneous term is

$$
\begin{equation*}
f(x, t)=\frac{2 t^{\frac{1}{2}}}{\sqrt{\pi}}\left(\pi^{2} \sin \pi x-\sin 2 \pi x\right)-2 \pi^{2} t^{2} \sin 2 \pi x \tag{4.5}
\end{equation*}
$$

In the calculation we set $T=1$. In Table, we list the errors ($\max _{1 \leq n \leq N}\left\|e^{n}\right\|$) and computed rates of convergence in time. The numerical results reflect a convergence rate $\approx 3 / 2$ in time. There are in good agreement with the theoretical prediction of Theorem 3.1. Numerical result is computed by Matlab 7.0.

Table 1: Errors and convergence rates in time, $J=50$.

N	Error	Rate
10	$4.58 \mathrm{D}-2$	
20	$1.74 \mathrm{D}-2$	1.3963
40	$6.62 \mathrm{D}-3$	1.3942
80	$2.46 \mathrm{D}-3$	1.4282

5. Concluding remark

The numerical scheme can be slightly readjusted to cater to the weakly singular equation obtained from (1.1) by replacing the integral term $I^{\left(\frac{1}{2}\right)} u_{x x}$ by

$$
\begin{equation*}
I^{(\alpha)} u_{x x}(x, t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} u_{x x}(x, s) d s, \quad 0<\alpha<1 \tag{5.1}
\end{equation*}
$$

An analysis for stability and convergence can be obtained for (5.1) in a similar way.
Furthermore, the scheme can be extended $[9,15]$ to cover general integral terms with convolution structure

$$
\int_{0}^{t} a(t-s) u_{x x}(x, s) d s
$$

The stability and convergence of the numerical method will be preserved provided that the convolution quadrature employed satisfies the requirement that its associated quadratic form is nonnegative or β_{0}-positive.

Acknowledgements I am grateful to Professor Zhi-zhong Sun and the referees for many helpful suggestions. This project is supported by the National Natural Science Foundation of China (10971062) and the Scientific Research Foundation of Central South University of Forestry and Technology.

References

[1] C. Chen, V. Thomée and L. B. Wahlbin , Finite element approximation of a parabolic integrodifferential equation with a weakly singular kernel, Math. Comp., 58, (1992), pp. 587-602.
[2] H. Chen, C. Chen and D. Xu, A second-order fully discrete difference scheme for a partial integrodifferential equation (in Chinese), Math. Numer. Sinica, 28, (2006), pp. 141-154.
[3] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comp. Phys., 228, (2009), pp. 7792-7804.
[4] X.-F. Feng, Z.-L. Li and Z.-H. Qiao, High order compact finite difference schemes for The Helmholtz equation With Discontinuous Coefficients, J. Comp. Math., 29 (2011), pp. 324-340.
[5] Y. Fuista, Integro-differential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27 (1990), pp. 319-327.
[6] Y. Fujita, Integro-differential equation which interpolates the heat equation and the wave equation (II), Osaka J. Math., 27 (1990), pp. 797-804.
[7] Y.-Q. Huang, Time discretization scheme for an integro-differential equation of parabolic type, J. Comp. Math., 12 (1994), pp. 259-263.
[8] M. K. Jain, R. K. Jain and R. K. Mohanty, A fourth order difference method for the onedimensional general quasilinear parabolic partial differential equation, Numer. Methods Partial Differential Eqs., 6 (1990), pp. 311-319.
[9] X.-J. Li and C.-J. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys., 8 (2010), pp. 1016-1051.
[10] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comp. Phys., 225 (2007), pp. 1533-1552.
[11] J. C. Lopez-Marcos, A difference scheme for a nonlinear partial integro-differential equation, SIAM. J. Numer. Anal., 27 (1990), pp. 20-31.
[12] C. Lubich, Discretized fractional calculus, SIAM. J. Math. Anal., 17 (1986), pp. 704-719.
[13] C. Lubich, I. H. Sloan and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp., 65 (1996), pp. 1-17.
[14] W. Mclean and V. Thomée, Numerical solution of an evolution equation with a positive type memory term, J. Austral. Math. Soc. Ser., B35, (1993), pp. 23-70.
[15] W. Mclean and K. Mustapha, A second-order accurate numerical method for a fractional wave equation, Numer. Math., 105 (2006), pp. 481-510.
[16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[17] J. M. Sanz-Serna, A Numerical method for a partial integro-differential equation, SIAM. J. Numer. Anal., 25 (1988), pp. 319-327.
[18] I. H. Sloan and V. Thomee, Time discretization of an integro-differential equation of parabolic type, SIAM. J. Numer. Anal., 23 (1986), pp. 1052-1061.
[19] Z. Sun, An unconditionally stable and $O\left(\tau^{2}+h^{4}\right)$ order L_{∞}-convergent difference scheme for linear parabolic equations with variable coefficients, Numer. Methods Partial Differential Eqs., 17 (2001), pp. 619-631.
[20] Z. Sun, On the compact difference schemes for heat equation with Neumann boundary conditions, Numer. Methods Partial Differential Eqs., 25 (2009), pp. 1320-1341.
[21] D. Xu, The global behavior of time discretization for an abstract Volterra equation in Hilbert space, CALCOLO, 34 (1997), pp. 71-104.
[22] Y. Zhang, Z. Sun and H. Wu, Error estimates of Crank-Nicolson type difference schemes for the sub-diffusion equation, SIAM. J. Numer. Anal., 49 (2011), pp. 2302-2322.

[^0]: ${ }^{*}$ Corresponding author. Email addresses: chb8080@eyou. com (H. Chen), daxu@hunnu.edu.cn (D. Xu)

