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Abstract. This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-

Galerkin approaches for the second kind Volterra integro-differential equations. The

Gauss-Legendre quadrature formula is used to approximate the integral operator and

the inner product based on the Jacobi weight is implemented in the weak formulation

in the numerical implementation. For some spectral and pseudo-spectral Jacobi-Petrov-

Galerkin methods, a rigorous error analysis in both L2

ωα,β and L∞ norms is given pro-

vided that both the kernel function and the source function are sufficiently smooth.

Numerical experiments validate the theoretical prediction.
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1. Introduction

This paper is concerned with the following second-kind Volterra integro-differential

equation with initial condition, i.e.,





u′(x)+
∫ x

−1

k(x , s)u(s)ds = g(x), x ∈ [−1,1],

u(−1) = 0,

(1.1)

where the kernel function k(x , s) and the source function g(x) are given smooth functions,

u(x) is the unknown function.
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Actually any second-kind Volterra integro-differential equation with smooth kernel and

initial condition can be transformed into (1.1) by a simple linear transformation used

in [12]. As a result, our approach can be generalized to the second-kind Volterra integro-

differential equations with initial condition defined in any interval, where the kernel is

smooth. We will consider the case that the solutions of (1.1) are sufficiently smooth. Con-

sequently it is natural to implement very high-order numerical methods such as spectral

methods for the solutions of (1.1). It is known that there are many numerical approaches

for solving (1.1), such as collocation methods, finite element methods, see, e.g., [1] and

references therein. Nevertheless, few works touched the spectral approximations to (1.1).

In [9], Chebyshev spectral methods are proposed to solve nonlinear Volterra-Hammerstein

integral equations. Then Chebyshev spectral methods are investigated in [10] for the first

kind Fredholm integral equations under multiple-precision arithmetic. Nevertheless, no

theoretical results are provided to justify the high accuracy numerically obtained. Some

efforts are made to implement the spectral methods to solve the second-kind Volterra in-

tegral equations. In [14], a spectral method is suggested, but spectral accuracy is not

observed for most of the computations. Tang and Xu in [12] develop a novel spectral

Legendre-collocation method. Actually this is the first spectral approach for which the

spectral accuracy can be justified both theoretically and numerically. Inspired by the work

in [12], Chen and Tang [4] implement the spectral Chebyshev-collocation method to solve

the second kind Volterra integral equation with weakly singular kernel (t − s)−
1

2 k(t, s),

where k(t, s) is a smooth function. Then they [5] extend the approach in [4] to the second

kind Volterra integral equation with more general weakly singular kernel (t − s)αk(t, s),

where −1 < α ≤ 0 and k(t, s) is a smooth function. The spectral accuracy of these ap-

proaches is verified both theoretically and numerically in [4] and [5]. Xie and Tang [7]

develop spectral and pseudo-spectral Galerkin methods based on the general Jacobi weight

to solve the second-kind Volterra integral equation. They give a rigorous proof of the spec-

tral convergence in L2

ωα,β and L∞ norms. Actually, the success of the spectral method for

the second-kind Volterra integral equations is the main motivation for our work in the

second-kind integro-differential equations.

Unlike the standard spectral and pseudo-spectral Galerkin methods, the spectral and

pseudo-spectral Petrov-Galerkin methods allow the trial and test function spaces to be

different. Lin et.al, in [8] introduce the Petrov-Galerkin finite element (PGFE) method

for Volterra integro-differential equations. It is proved that the PGFE solution uh and its

derivative u′
h

have optimal convergence rates O (hm+1) and O (hm) in L∞ norm, respec-

tively. After using some postprocessing techniques, the convergence rate of uh reaches

O (h2m) at the nodes of the mesh. Tang [13] discusses the collocation method to solve

the first-order Volterra integro-differential equation with a singular kernel function (t −
s)−αk(t, s,u(s))(0 < α < 1). For grading exponents r > m

2−α of the graded mesh, the

collocation solution has the convergence rate O (N−m) in L∞ norm. Besides, Brunner,

et.al, in [2] present the hp−discontinuous Galerkin method for Volterra integro-differential

equations with singular kernels. It is proved both theoretically and numerically that the

DG solution based on geometrically graded meshes has the exponential convergence rate

in L2 and L∞ norms. Inspired by these works, we will show that both spectral and pseudo-
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spectral Petrov-Galerkin methods for Eq. (1.1) could produce numerical solutions with

exponential convergence accuracy.

The purpose of this work is to provide numerical methods for the second-kind Volterra

integro-differential equations with initial condition based on spectral and pseudo-spectral

Petrov-Galerkin approaches. For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin

approaches, a rigorous error analysis which theoretically justifies the spectral rate of con-

vergence of our approaches is provided. This paper is organized as follows. In Section 2,

we demonstrate the implementation of the spectral and pseudo-spectral Petrov-Galerkin

approaches for the underlying equation. Some lemmas useful for the convergence analysis

will be provided in Section 3. The convergence analysis for both spectral and pseudo-

spectral Jacobi-Petrov-Galerkin methods in L2

ωα,β and L∞ norms, with some assumptions

on the weight function ωα,β(x), will be given in Section 4 and Section 5, respectively.

Numerical experiments are carried out in Section 6, which will be used to validate the

theoretical results in Section 4 and Section 5.

2. The implementation of the spectral and pseudo-spectral Petrov-Galerkin

methods

By introducing the integral operator K defined as

Ku(x) =

∫ x

−1

k(x , s)u(s)ds,

Eq. (1.1) can be reformulated as

¨
u′(x)+ Ku(x) = g(x), x ∈ [−1,1],

u(−1) = 0.
(2.1)

We will adopt the spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods to solve

this underlying problem.

Let us demonstrate the numerical implementation of the spectral Jacobi-Petrov-Galerkin

approach first. Denote PN a space consisting of polynomials defined on [−1,1] with de-

gree at most N , φ j(x) is the j−th Jacobi polynomial corresponding to the weight function

ωα,β(x) = (1− x)α(1+ x)β , with α,β > −1, j = 0,1, · · · , N . As a result,

PN = span{φ0(x),φ1(x), · · · ,φN (x)}.

Define the polynomial space VN as follows,

VN = {u : u ∈ PN ,u(−1) = 0}.

Our aim is to find uN ∈ VN such that

(u′N , vN )ωα,β + (KuN , vN )ωα,β = (g, vN )ωα,β , ∀vN ∈ PN−1, (2.2)
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where

(u, v)ωα,β =

∫ 1

−1

ωα,β(x)u(x)v(x)d x

is the continuous inner product. Set

uN (x) =

N−1∑

j=0

û j(φ j(x)+ s jφ j+1(x)),

where s j is a constant chosen by the condition

φ j(−1)+ s jφ j+1(−1) = 0.

It is worthwhile to point out, when φi(x) is the Legendre or Chebyshev polynomial, ob-

viously s j = 1, j = 0,1, · · · , N − 1. Substituting it into (2.2) and taking vN = φi(x), i =

0,1, · · · , N − 1, we obtain

N−1∑

j=0

(φi ,φ
′
j + s jφ

′
j+1)ωα,β û j +

N−1∑

j=0

(φi , K(φ j + s jφ j+1))ωα,β û j = (φi , g)ωα,β , (2.3)

which leads to an equation of the matrix form

(A+ B)ÛN−1 = gN−1, (2.4)

where

ÛN−1 = [û0, û1, · · · , ûN−1]
T , A(i, j) = (φi,φ

′
j + s jφ

′
j+1)ωα,β ,

B(i, j) = (φi , K(φ j + s jφ j+1))ωα,β , gN−1(i) = (φi, g)ωα,β .

Now we turn to describe the pseudo-spectral Jacobi-Petrov-Galerkin method. For this

purpose, set s = s(x ,θ) = x−1

2
+ x+1

2
θ ,θ ∈ [−1,1]. It is clear that

Ku(x) =

∫ x

−1

k(x , s)u(s)ds =

∫ 1

−1

ek(x , s(x ,θ))u(s(x ,θ))dθ (2.5)

with ek(x , s(x ,θ)) = x+1

2
k(x , s(x ,θ)). Using N−point Gauss-Legendre quadrature formula

to approximate (2.5) yields

Ku(x) =

∫ 1

−1

ek(x , s(x ,θ))u(s(x ,θ))dθ ≈
N−1∑

n=0

ek(x , s(x ,θn))u(s(x ,θn))νn, (2.6)

where {θn}N−1
n=0 are the N -degree Legendre-Gauss points, and {νn}N−1

n=0 are the correspond-

ing Legendre weights. On the other hand, instead of the continuous inner product, the

discrete inner product will be implemented in (2.2) and (2.3), i.e.,

(u, v)ωα,β ≈ (u, v)ωα,β ,N−1 =

N−1∑

m=0

u(xm)v(xm)ω
α,β
m , (2.7)
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where {xm}N−1
m=0 and {ωα,β

m }N−1
m=0 are the N−degree Jacobi-Gauss points and their corre-

sponding Jacobi weights, respectively. As a result,

(u, v)ωα,β = (u, v)ωα,β ,N−1, if uv ∈ P2N−1.

If we substitute (2.6) and (2.7) into (2.2) and (2.3), respectively, then the pseudo-

spectral Jacobi-Petrov-Galerkin method is to find

u
(1)
N (x) =

N−1∑

j=0

û
(1)

j
(φ j(x)+ s jφ j+1(x)) ∈ VN , (2.8)

such that

(u
(1)
N

′
, vN )ωα,β ,N−1+

 
N−1∑

n=0

ek(x , s(x ,θn))u
(1)
N (s(x ,θn))νn, vN

!

ωα,β ,N−1

=(g, vN )ωα,β ,N−1, ∀vN ∈ PN−1, (2.9)

where {û(1)
j
}N−1

j=0
are determined by

N−1∑

j=0

(φi,φ
′
j + s jφ

′
j+1)ωα,β ,N−1û

(1)

j

+

N−1∑

j=0

 
φi ,

N−1∑

n=0

ek(x , s(x ,θn))(φ j(s(x ,θn)) + s jφ j+1(s(x ,θn)))νn

!

ωα,β ,N−1

û
(1)

j

=(φi, g)ωα,β ,N−1, i = 0,1, · · · , N − 1. (2.10)

Denoting Û
(1)
N−1
= [û

(1)
0

, û
(1)
1

, · · · , û(1)
N−1
]T , (2.10) yields an equation of the matrix form

(A(1) + B(1))Û
(1)
N−1 = g

(1)
N−1, (2.11)

where

A(1)(i, j) = (φi,φ
′
j + s jφ

′
j+1)ωα,β ,N−1,

B(1)(i, j) =

 
φi ,

N−1∑

n=0

ek(x , s(x ,θn))(φ j(s(x ,θn)) + s jφ j+1(s(x ,θn)))νn

!

ωα,β ,N−1

,

g
(1)
N−1(i) = (φi , g)ωα,β ,N−1.

It is worthwhile to point out that the known recurrence formula for Jacobi polynomials

can be used to calculate φi(x) in the two approaches mentioned above.
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3. Some useful lemmas

Define a weighted space as

L2

ωα,β (I) =
n

v : v is measureable and ‖v‖ωα,β <∞
o

,

where

‖v‖ωα,β =

�∫

I

ωα,β(x)v2(x)d x

�1

2

.

Further, define

Hm

ωα,β (I) =
n

v : Dkv ∈ L2

ωα,β (I), 0≤ k ≤ m
o

,

equipped with the norm

‖v‖m,ωα,β =

 
m∑

k=0

‖Dkv‖2
ωα,β

! 1

2

,

with Dkv = dkv

d xk . When ωα,β(x) = 1, L2

ωα,β (I), Hm

ωα,β (I) and ‖ · ‖ωα,β are denoted simply by

L2(I), Hm(I) and ‖ · ‖, respectively.

First we define the orthogonal projection π
α,β
N : L2

ωα,β (I) → PN such that, for any u ∈
L2

ωα,β (I),

(π
α,β
N u, vN )ωα,β = (u, vN )ωα,β , ∀vN ∈ PN . (3.1)

Secondly, I
α,β
N denotes the interpolation operator of u based on N+1−degree Jacobi-Gauss

points corresponding to the weight function ωα,β(x) with α,β > −1.

In the following, we will give some useful lemmas which play a significant role in the

convergence analysis later.

According to [3], we have the following lemmas.

Lemma 3.1. Suppose that v ∈ Hm

ωα,β (I).

(i) If α,β > −1, then for any l such that 1≤ l ≤ m:

‖v −πα,β
N v‖ωα,β ≤ CN−m‖Dmv‖ωα,β , (3.2)

‖v −πα,β
N v‖H l

ωα,β
(I) ≤ CN2l− 1

2
−m‖Dmv‖ωα,β . (3.3)

(ii) If −1< α,β ≤ 0, then

‖v −πα,β
N v‖L∞(I) ≤ CN

3

4
−m‖Dmv‖ωα,β . (3.4)

Proof. The conclusion in (i) is a classical one, so we only prove (ii). It is straightforward

that

‖w‖ ≤ C‖w‖ωα,β , ‖w‖H1(I) ≤ C‖w‖H1

ωα,β
, (3.5)
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when −1 < α,β ≤ 0. Consequently, the implementation of the Sobolev inequality ([3], p.

490)

‖w‖L∞(I) ≤ C‖w‖1/2‖w‖1/2
H1(I)

(3.6)

and (3.5) leads to

‖w‖L∞(I) ≤ C‖w‖1/2
ωα,β ‖w‖1/2H1

ωα,β (I)

(3.7)

for −1< α,β ≤ 0. In terms of the estimates in (i), we have, for −1< α,β ≤ 0,

‖v−πα,β
N v‖L∞(I) ≤ CN

3

4
−m‖Dmv‖ωα,β . (3.8)

This completes the proof. �

Lemma 3.2. Suppose that v ∈ Hm

ωα,β (I).

(i) If α,β > −1, then

‖v − I
α,β
N v‖ωα,β ≤ CN−m‖Dmv‖ωα,β . (3.9)

(ii) If ωα,β is the Legendre weight, i.e., α = β = 0, then for any l such that 1≤ l ≤ m:

‖v − I
0,0
N v‖H l (I) ≤ CN2l− 1

2
−m‖Dmv‖, (3.10)

‖v − I
0,0
N v‖L∞(I) ≤ CN

3

4
−m‖Dmv‖. (3.11)

(iii) If ωα,β is the Chebyshev weight, i.e., α= β = −1

2
, then

‖v − I
− 1

2
,− 1

2

N v‖L∞(I) ≤ CN
1

2
−m‖Dmv‖

ω−
1
2 ,− 1

2
. (3.12)

Proof. The conclusion in (i) is also a classical one. The first estimate in (ii) can be

found in [3] (p. 289) and leads to the second estimate in (ii), by using (i) and the Sobolev

inequality (3.6). The estimate in (iii) can be seen in [3] (p. 297). �

Lemma 3.3. If v ∈ Hm
ω(I) with α,β > −1, m≥ 1 and φ ∈ PN , then we have

|(v,φ)ωα,β − (v,φ)ωα,β ,N | ≤ CN−m‖Dmv‖ωα,β ‖φ‖ωα,β .

Proof. As the discrete inner product is based on the N + 1-degree Jacobi-Gauss points

corresponding to the weight function ωα,β(x), we have

(v,φ)ωα,β ,N = (I
α,β
N v,φ)ωα,β ,N = (I

α,β
N v,φ)ωα,β .

Therefore,

|(v,φ)ωα,β − (v,φ)ωα,β ,N | = |(v− I
α,β
N v,φ)ωα,β | ≤ ‖v − I

α,β
N v‖ωα,β‖φ‖ωα,β ,

which, combined with Lemma 3.2, implies the conclusion. �
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Lemma 3.4. For each bounded function v(x), there exists a constant C, independent of v,

such that

sup
N

‖Iα,β
N v‖ωα,β ≤ C‖v‖∞,

where I
α,β
N v =

∑N

n=0 v(xn)hn(x) is the interpolation of v, with hn(x), the Lagrange interpola-

tion basis functions based on (N + 1)-degree Jacobi-Gauss points corresponding to the weight

function ωα,β(x) with α,β > −1.

Proof. As the (N + 1)-points Jacobi-Gauss quadrature formulas are accurate for the

polynomials with degree no more than 2N + 1, direct calculation shows that

‖Iα,β
N v‖ωα,β =

∫ 1

−1

ωα,β(x)
�

I
α,β
N v

�2

d x =

N∑

n=0

v2(xn)ω
α,β
n

≤ ‖v‖2∞
N∑

n=0

ωα,β
n = γ0‖v‖2∞,

where γ0 = (φ0,φ0)ωα,β . As a consequence,

sup
N

‖Iα,β
N v‖ωα,β ≤ C‖v‖∞,

with C =
p
γ0. �

Lemma 3.5. (Gronwall inequality) If a non-negative integrable function E(x) satisfies

E(x)≤ C1

∫ x

−1

E(s)ds+ G(x), −1≤ x ≤ 1, (3.13)

where G(x) is an integrable function, then

‖E‖Lp

ωα,β
(I) ≤ C‖G‖Lp

ωα,β
(I), p ≥ 1, (3.14)

where ‖E‖Lp

ωα,β
(I) =

�∫ 1

−1
ωα,β |E|pd x

�1/p
with α,β > −1. In particular,

‖E‖L∞(I) ≤ C‖G‖L∞(I). (3.15)

Remark 3.1. The proof of Lemmas 3.1-3.4 has been shown in [7]. For completeness, we

just list it above.

4. Convergence analysis for spectral Jacobi-Petrov-Galerkin method

According to (2.2) and the definition of the projection operator π
α,β
N , the spectral

Jacobi-Petrov-Galerkin solution uN satisfies

u′N +π
α,β
N−1KuN = π

α,β
N−1 g. (4.1)
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Theorem 4.1. Suppose that uN is the spectral Jacobi-Petrov-Galerkin solution determined by

(2.2) with α and β satisfying one of the following conditions, i.e., (i) −1 < α,β < 1; (ii)

α = 0,β > −1; (iii) α > −1,β = 0; (iv) α > −1,−1 < β ≤ 0, then we have the following

error estimate

‖u− uN‖ωα,β ≤ CN−m‖Dm+1u‖ωα,β .

Proof. First we prove the existence and uniqueness of the spectral Petrov-Galerkin

solution. When g = 0, (4.1) can be written as

u′N +π
α,β
N−1KuN = 0.

In terms of the fact that

u′N +π
α,β
N−1KuN = u′N + KuN − (KuN −πα,β

N−1KuN ),

it is clear that, by integrating on [−1, x], x ∈ (−1,1), we have

uN = −
∫ x

−1

KuN ds+

∫ x

−1

(KuN −πα,β
N−1KuN )ds, (4.2)

where uN (−1) = 0 is used. On the other hand, as the kernel function k(x , s) is smooth, we

obtain

���
∫ x

−1

Kuds

���≤
∫ x

−1

∫ s

−1

|k(s, t)u(t)|d tds

≤C

∫ x

−1

∫ s

−1

|u(t)|d tds ≤ C

∫ x

−1

|u(s)|ds. (4.3)

The combination of (4.2) and (4.3) leads to

|uN | ≤ C

∫ x

−1

|uN (s)|ds+

�����

∫ x

−1

J1ds

����� ,

with J1 = KuN −πα,β
N−1KuN . This, combined with Lemma 3.5, leads to

‖uN‖ωα,β ≤ C



∫ x

−1

J1ds


ωα,β

. (4.4)

We will use the claim that



∫ x

−1

u(s)ds



2

ωα,β

≤ C‖u‖2
ωα,β , (4.5)
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when α and β satisfy one of (i)-(iv). Actually, when α and β satisfy one of the assumptions

(i)-(iii), (4.5) holds according to [6] (p. 239). On the other hand, if α and β satisfy (iv),

then



∫ x

−1

u(s)ds



2

ωα,β

=

∫ 1

−1

ωα,β(x)

�∫ x

−1

u(s)ds

�2

d x

≤C

∫ 1

−1

ωα,β(x)

∫ x

−1

u2(s)dsd x

=C

∫ 1

−1

u2(s)

∫ 1

s

(1− x)α(1+ x)βd xds

≤C

∫ 1

−1

u2(s)(1+ s)β
∫ 1

s

(1− x)αd xds

≤C

∫ 1

−1

(1− s)α(1+ s)βu2(s)ds = C‖u‖2
ωα,β . (4.6)

In virtue of Lemma 3.1 and (4.5),



∫ x

−1

J1ds


ωα,β

≤C‖J1‖ωα,β ≤ CN−1

k(x , x)uN(x)+

∫ x

−1

∂x k(x , s)uN (s)ds


ωα,β

≤CN−1

 
‖uN‖ωα,β +



∫ x

−1

uN (s)ds


ωα,β

!
≤ CN−1‖uN‖ωα,β . (4.7)

The combination of (4.4) and (4.7) leads to

‖uN‖ωα,β ≤ CN−1‖uN‖ωα,β ,

which implies, when N is large enough such that C/N < 1, uN = 0. Hence, the spectral

Petrov-Galerkin solution uN is existent and unique as VN is finite-dimensional.

Subtracting (4.1) from (2.1) yields

u′− u′N + Ku−πα,β
N−1KuN = g −πα,β

N−1 g. (4.8)

Set e = u− uN . Direct computation shows that

Ku−πα,β
N−1

KuN

=Ku−πα,β
N−1Ku+π

α,β
N−1K(u− uN )

=Ku−πα,β
N−1Ku+ K(u− uN )−

�
K(u− uN )−πα,β

N−1K(u− uN )
�

=(g − u′)−πα,β
N−1
(g − u′) + Ke− (Ke−πα,β

N−1
Ke)

=g −πα,β
N−1 g − (u′ −πα,β

N−1u′) + Ke− (Ke−πα,β
N−1Ke). (4.9)
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Inserting (4.9) into (4.8) yields

e′ + Ke− (u′−πα,β
N−1

u′)− (Ke−πα,β
N−1

Ke) = 0. (4.10)

By integrating on [−1, x], x ∈ (−1,1), we obtain

e(x) = −
∫ x

−1

Keds+

∫ x

−1

(u′ −πα,β
N−1u′)ds+

∫ x

−1

(Ke−πα,β
N−1Ke)ds, (4.11)

where e(−1) = 0 is used. Therefore,

|e| ≤
�����

∫ x

−1

Keds

�����+

�����

∫ x

−1

(u′ −πα,β
N−1

u′)ds

�����+

�����

∫ x

−1

(Ke−πα,β
N−1

Ke)ds

����� , (4.12)

which, together with (4.3), leads to

|e| ≤ C

∫ x

−1

|e|ds+

�����

∫ x

−1

J2ds

�����+

�����

∫ x

−1

J3ds

����� , (4.13)

with J2 = u′ −πα,β
N−1u′, J3 = Ke−πα,β

N−1Ke.

By (4.13), (4.6) and Lemma 3.5, we have

‖e‖ωα,β ≤ C

 

∫ x

−1

J2ds


ωα,β

+



∫ x

−1

J3ds


ωα,β

!
≤ C

�
‖J2‖ωα,β + ‖J3‖ωα,β

�
. (4.14)

By Lemma 3.1 and (4.5),

‖J2‖ωα,β = ||u′−πα,β
N−1u′||ωα,β ≤ CN−m‖Dm+1u‖ωα,β , (4.15)

‖J3‖ωα,β ≤ CN−1
k(x , x)e(x)+

∫ x

−1

∂x k(x , s)e(s)ds


ωα,β

≤ CN−1

�
‖e‖ωα,β + ‖

∫ x

−1

|e|ds‖ωα,β

�

≤ CN−1‖e‖ωα,β , (4.16)

under the assumptions on α and β above. Combining (4.14)–(4.16), we obtain, when N

is large enough such that C/N < 1,

‖e‖ωα,β = ‖u− uN‖ωα,β ≤ CN−m‖Dm+1u‖ωα,β .

This completes the proof. �

Now we investigate the L∞-error estimate.
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Theorem 4.2. Suppose that uN is the spectral Jacobi-Petrov-Galerkin solution determined by

(2.2) with −1< α,β ≤ 0. Then we have the following error estimate

‖u− uN‖L∞ ≤ CN
3

4
−m‖Dm+1u‖ωα,β . (4.17)

Proof. In terms of Lemma 3.5 and (4.13),

‖e‖L∞ ≤ C

 

∫ x

−1

J2ds


L∞
+



∫ x

−1

J3ds


L∞

!
≤ C

�
‖J2‖L∞ + ‖J3‖L∞

�
. (4.18)

By Lemma 3.1,

‖J2‖L∞(I) ≤CN
3

4
−m‖Dm+1u‖ωα,β , (4.19)

‖J3‖L∞(I) ≤CN−
1

4

k(x , x)e(x)+

∫ x

−1

∂x k(x , s)e(s)ds


ωα,β

≤CN−
1

4 ‖e‖L∞(I). (4.20)

Combining (4.18)-(4.20), we obtain, when N is large enough such that CN−1/4 < 1, the

desired result (4.17). �

5. Convergence analysis for pseudo-spectral Jacobi-Petrov-Galerkin method

As I
α,β
N−1

is the interpolation operator which is based on the N -degree Jacobi-Gauss

points, in terms of (2.9), the pseudo-spectral Petrov-Galerkin solution u
(1)
N ∈ VN satisfies

 
I
α,β
N−1

N−1∑

n=0

ek(x , s(x ,θn))u
(1)
N (s(x ,θn))νn, vN

!

ωα,β

+ (u
(1)
N

′
, vN )ωα,β

=(I
α,β
N−1 g, vN )ωα,β , ∀vN ∈ PN−1, (5.1)

where

N−1∑

n=0

ek(x , s(x ,θn))u
(1)
N (s(x ,θn))νn

=

∫ 1

−1

ek(x , s(x ,θ))u
(1)
N (s(x ,θ))dθ

−
 ∫ 1

−1

ek(x , s(x ,θ))u
(1)
N (s(x ,θ))dθ −

N−1∑

n=0

ek(x , s(x ,θn))u
(1)
N (s(x ,θn))νn

!

=

∫ x

−1

k(x , s)u
(1)
N (s)ds−Q(x) = Ku

(1)
N −Q(x), (5.2)
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with

Q(x) =

∫ 1

−1

ek(x , s(x ,θ))u
(1)
N (s(x ,θ))dθ −

N−1∑

n=0

ek(x , s(x ,θn))u
(1)
N (s(x ,θn))νn

=
�
ek(x , s(x , ·)),u(1)N (s(x , ·))

�
−
�
ek(x , s(x , ·)),u(1)N (s(x , ·))

�
N−1

, (5.3)

in which (·, ·) represents the continuous inner product with respect to θ and (·, ·)N−1 is the

corresponding discrete inner product defined by the N -degree Gauss-Legendre quadrature

formula. The combination of (5.1) and (5.2), yields

(u
(1)
N

′
, vN )ωα,β + (I

α,β
N−1Ku

(1)
N − I

α,β
N−1Q, vN )ωα,β

=(I
α,β
N−1

g, vN )ωα,β , ∀vN ∈ PN−1, (5.4)

which gives rise to

u
(1)
N

′
+ I
α,β
N−1Ku

(1)
N − I

α,β
N−1Q = I

α,β
N−1 g. (5.5)

By the discussion above, (2.9), (5.1) and (5.5) are equivalent.

We first consider an auxiliary problem, i.e., we want to find RNu ∈ VN such that

((RNu)′, vN )ωα,β ,N−1+ (KRNu, vN )ωα,β ,N−1 = (g, vN )ωα,β ,N−1, ∀vN ∈ PN−1. (5.6)

In terms of the definition of I
α,β
N−1

, (5.6) can be written as

((RNu)′, vN )ωα,β + (I
α,β
N−1KRNu, vN )ωα,β = (I

α,β
N−1 g, vN )ωα,β , ∀vN ∈ PN−1, (5.7)

which is equivalent to

(RNu)′+ I
α,β
N−1KRNu = I

α,β
N−1 g. (5.8)

Lemma 5.1. Suppose RNu is determined by (5.6).

(i) If α and β satisfy one the following assumptions, i.e., −1 < α,β < 1, or α = 0,β > −1,

or α > −1,β = 0, or −1< β ≤ 0,α > −1, we have

‖u− RNu‖ωα,β ≤ CN−m‖Dm+1u‖ωα,β .

(ii) If ωα,β(x) is the Legendre weight, i.e., α= β = 0, then we have

‖u− RN u‖L∞ ≤ CN
3

4
−m‖Dm+1u‖.

If ωα,β(x) is the Chebyshev weight, i.e., α = β = −1

2
, then we have

‖u− RNu‖L∞ ≤ CN
1

2
−m‖Dm+1u‖

ω−
1
2 ,− 1

2
.
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Proof. (i) The existence and uniqueness of RNu and the L2

ωα,β error estimate of u−RN u

can be verified in a similar way as those for the spectral Jacobi-Petrov-Galerkin solution uN

in the proof of Theorem 4.1, with π
α,β
N−1

replaced by I
α,β
N−1

. For simplicity, we omit it here.

(ii) Subtracting (5.8) from (2.1), yields

u′ − (RNu)′+ Ku− I
α,β
N−1KRNu = g − I

α,β
N−1 g. (5.9)

Set ε= u− RNu. Direct computation shows that

Ku− I
α,β
N−1

KRNu

=Ku− I
α,β
N−1Ku+ I

α,β
N−1K(u− RNu)

=Ku− I
α,β
N−1Ku+ K(u− RNu)−

�
K(u− RN u)− I

α,β
N−1K(u− RNu)

�

=(g − u′)− I
α,β
N−1(g − u′) + Kε− (Kε− I

α,β
N−1Kε)

=g − I
α,β
N−1 g − (u′− I

α,β
N−1u′) + Kε− (Kε− I

α,β
N−1Kε). (5.10)

Inserting (5.10) into (5.9) yields

ε′− (u′ − I
α,β
N−1u′) + Kε− (Kε− I

α,β
N−1Kε) = 0. (5.11)

By integrating on [−1, x], x ∈ (−1,1), we obtain

ε = −
∫ x

−1

Kεds+

∫ x

−1

J4ds+

∫ x

−1

J5ds,

which implies

|ε| ≤
���
∫ x

−1

Kεds

���+
���
∫ x

−1

J4ds

���+
���
∫ x

−1

J5ds

���

≤
∫ x

−1

|ε|ds+

���
∫ x

−1

J4ds

���+
���
∫ x

−1

J5ds

���, (5.12)

where J4 = u′ − I
α,β
N−1u′, J5 = Kε− I

α,β
N−1Kε. Here (4.3) and ε(−1) = 0 is used. By Lemma

3.5,

‖ε‖L∞ ≤ C
�
∫ x

−1

J4ds


L∞
+


∫ x

−1

J5ds


L∞

�
≤ C

�
‖J4‖L∞ + ‖J5‖L∞

�
. (5.13)

Actually, by Lemma 3.2,

‖J4‖L∞ ≤ CNθ−m‖Dm+1u‖ωα,β , (5.14)

where θ = 3

4
when ωα,β is the Legendre weight, and θ = 1

2
when ωα,β is the Chebyshev

weight. Besides,

‖J5‖L∞ ≤ CN−γ
k(x , x)ε(x)+

∫ x

−1

∂x k(x , s)ε(s)ds


ωα,β
≤ CN−γ‖ε‖L∞, (5.15)
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where γ = 1

4
when ωα,β is the Legendre weight, and γ = 1

2
when ωα,β is the Chebyshev

weight. Combining (5.13), (5.14) and (5.15), when N is big enough such that CN−γ < 1,

we obtain

‖ε‖L∞ ≤ CNθ−m‖Dm+1u‖ωα,β .

�

Subtracting (5.5) from (5.8), leads to

(RNu)′ − u
(1)
N

′
+ I
α,β
N−1K(RNu− u

(1)
N ) + I

α,β
N−1Q = 0,

which can be simplified as, by setting E = RNu− u
(1)
N ,

E′+ I
α,β
N−1

KE + I
α,β
N−1

Q = 0. (5.16)

Theorem 5.1. Suppose that the solution of (2.1) is sufficiently smooth. For the pseudo-

spectral Jacobi-Petrov-Galerkin solution u
(1)
N satisfying (2.9), the following results hold:

(i) if −1< α,β ≤ 0, we have

‖u− u
(1)
N ‖ωα,β ≤ CN−m‖Dm+1u‖ωα,β + C MmN−m‖u‖ωα,β .

(ii) if 0< α = β < 1, we have

‖u− u
(1)
N ‖ωα,β ≤ CN−m‖Dm+1u‖ωα,β + C MmN−m+α‖u‖ωα,β ,

where Mm =maxx∈I (
x+1

2
)m(
∫ x

−1
|∂ m

s k(x , s)|2ds)
1

2 .

Proof. We first prove the existence and uniqueness of the pseudo-spectral Jacobi-Petrov-

Galerkin solution. As the dimension of VN is finite and (2.9) and (5.5) are equivalent, we

only need to prove that the solution of (5.5) is u
(1)
N = 0 when g = 0. For this purpose, we

consider the equation

u
(1)
N

′
+ I
α,β
N−1

Ku
(1)
N − I

α,β
N−1

Q = 0,

which can be written as

u
(1)
N

′
+ Ku

(1)
N − I

α,β
N−1Q− (Ku

(1)
N − I

α,β
N−1Ku

(1)
N ) = 0.

Set

J6 = I
α,β
N−1Q, J7 = Ku

(1)
N − I

α,β
N−1Ku

(1)
N .

Using the same technique in the proof of Theorem 4.1, leads to

|u(1)N (x)| ≤ C

∫ x

−1

|u(1)N |ds+

���
∫ x

−1

J6ds

���+
���
∫ x

−1

J7ds

���.
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By Lemma 3.5 and (4.5), under the assumptions on α and β above, we have

‖u(1)N ‖ωα,β ≤C
�
∫ x

−1

J6ds


ωα,β
+


∫ x

−1

J7ds


ωα,β

�

≤C
�
‖J6‖ωα,β + ‖J7‖ωα,β

�
. (5.17)

On the other hand, according to Lemma 3.4,

‖J6‖ωα,β = ‖Iα,β
N−1Q(x)‖ωα,β ≤ C‖Q(x)‖L∞(I). (5.18)

By the expression of Q(x) in (5.3) and Lemma 3.3, we have

|Q(x)| ≤ CN−m
x + 1

2
‖∂ m
θ k(x , s(x , ·))‖‖u(1)N (s(x , ·))‖

≤ CN−m
� x + 1

2

�m�∫ x

−1

|∂ m
s k(x , s)|2ds

� 1

2
�∫ x

−1

|u(1)N (s)|2ds
� 1

2
.

Set Mm =maxx∈I (
x+1

2
)m(
∫ x

−1
|∂ m

s k(x , s)|2ds)
1

2 . Therefore,

‖Q(x)‖L∞(I) ≤ C MmN−m‖u(1)N ‖, (5.19)

which, together with (5.18), yields

‖J6‖ωα,β ≤ C MmN−m‖u(1)N ‖. (5.20)

If −1< α,β ≤ 0, obviously, we have

‖u(1)N ‖ ≤ C‖u(1)N ‖ωα,β .

Therefore,

‖J6‖ωα,β ≤ C MmN−m‖u(1)N ‖ωα,β . (5.21)

On the other hand, according to ([3], p. 282),

‖φ‖ ≤ CNα‖φ‖ωα,α , ∀φ ∈ PN ,

where ωα,α(x) = (1− x2)α with α ≥ 0 and C is a positive constant independent of N .

Hence, when 0< α = β < 1,

‖J6‖ωα,β ≤ C MmN−m+α‖u(1)N ‖ωα,β . (5.22)

The implementation of Lemma 3.2 implies

‖J7‖ωα,β ≤CN−1

k(x , x)u
(1)
N (x)+

∫ x

−1

∂x k(x , s)u
(1)
N (s)ds


ωα,β

≤CN−1

 
‖u(1)N ‖ωα,β +



∫ x

−1

u
(1)
N (s)ds


ωα,β

!

≤CN−1||u(1)N ||ωα,β , (5.23)
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where (4.5) is used again under the assumptions on α and β . Based on (5.17), (5.21) and

(5.23), when −1 < α,β ≤ 0 and C(N−1 + MmN−m) < 1, u
(1)
N = 0. On the other hand, by

(5.17), (5.22) and (5.23), when 0 < α = β < 1 and C(N−1 + MmN−m+α) < 1, u
(1)
N = 0.

As a result, the existence and uniqueness of the pseudo-spectral Jacobi-Petrov-Galerkin

solution u
(1)
N is proved.

Now we turn to the L2

ωα,β error estimate. Actually (5.16) can be transformed into

E′+ KE + I
α,β
N−1

Q− (KE − I
α,β
N−1

KE) = 0,

which yields

|E| ≤ C

∫ x

−1

|E(s)|ds+

���
∫ x

−1

J6ds

���+
���
∫ x

−1

J8ds

���, (5.24)

with J8 = KE − I
α,β
N−1KE. By Lemma 3.5 and (4.5), under the assumptions on α and β , we

have

‖E‖ωα,β ≤C
�
∫ x

−1

J6ds


ωα,β
+


∫ x

−1

J8ds


ωα,β

�

≤C
�
‖J6‖ωα,β + ‖J8‖ωα,β

�
. (5.25)

By Lemma 3.2 and (4.5),

‖J8‖ωα,β ≤CN−1

k(x , x)E(x)+

∫ x

−1

∂x k(x , s)E(s)ds


ωα,β

≤CN−1‖E‖ωα,β . (5.26)

In terms of (5.21), (5.25) and (5.26), when −1< α,β ≤ 0, we have

‖E‖ωα,β ≤ C MmN−m‖u(1)N ‖ωα,β ≤ C MmN−m
�
‖e(1)‖ωα,β + ‖u‖ωα,β

�
, (5.27)

when C/N < 1. By (5.22), (5.25) and (5.26), when 0< α = β < 1, we have

‖E‖ωα,β ≤ C MmN−m+α‖u(1)N ‖ωα,β ≤ C MmN−m+α
�
‖e(1)‖ωα,β + ‖u‖ωα,β

�
. (5.28)

when C/N < 1. By the triangular inequality,

‖u− u
(1)
N ‖ωα,β ≤ ‖u− RNu‖ωα,β + ‖RNu− u

(1)
N ‖ωα,β , (5.29)

together with Lemma 5.1, (5.27) and (5.28), the desired conclusions can be obtained when

C MmN−m < 1 or C MmN−m+α < 1 for −1< α,β ≤ 0 or 0< α= β < 1, respectively. �
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Theorem 5.2. Suppose that the solution of (2.1) is sufficiently smooth. For the pseudo-

spectral Jacobi-Petrov-Galerkin solution u
(1)
N , such that (2.9) holds, we have the following

estimates:

(i) when ωα,β is the Legendre weight,

‖u− u
(1)
N ‖L∞ ≤ CN

3

4
−m‖Dm+1u‖ωα,β + C MmN

1

2
−m‖u‖;

(ii) when ωα,β is the Chebyshev weight,

‖u− u
(1)
N ‖L∞ ≤ CN

1

2
−m‖Dm+1u‖ωα,β + C MmN−m log N‖u‖,

where Mm =max
x∈I
( x+1

2
)m(
∫ x

−1
|∂ m

s k(x , s)|2ds)
1

2 .

Proof. Implementing Lemma 3.5 and (5.24), we have

‖E‖L∞ ≤ C

�
∫ x

−1

J6ds


L∞
+


∫ x

−1

J8ds


L∞

�
≤ C

�
‖J6‖L∞ + ‖J8‖L∞

�
. (5.30)

On the other hand,

‖J6‖L∞(I) = ‖Iα,β
N Q(x)‖L∞(I)

≤ max
0≤n≤N

|Q(xn)|max
I

N∑

n=0

|hn(x)|

≤ C MmN−m LN (α,β)‖u(1)N ‖,

(5.31)

with LN (α,β) = LN (0,0) = O (N 1

2 ) for the Legendre case and LN (α,β) = LN (−1

2
,−1

2
) =

O (log N) for the Chebyshev case. According to Lemma 3.2,

‖J8‖L∞ ≤ CN−η
k(x , x)E(x)+

∫ x

−1

∂x k(x , s)E(s)ds


ωα,β
≤ CN−η‖E‖L∞ , (5.32)

with η = 1

4
when ωα,β(x) is the Legendre weight and η = 1

2
when ωα,β(x) is the Cheby-

shev weight. Combining (5.30)–(5.32) yields

‖E‖L∞ ≤ C MmN−m LN (α,β)
�
‖u‖+ ‖e(1)‖L∞

�
, (5.33)

provided that CN−η < 1. By the triangular inequality,

‖u− u
(1)
N ‖L∞ ≤ ‖u− RNu‖L∞ + ‖RNu− u

(1)
N ‖L∞ . (5.34)

Implementing Lemma 5.1, (5.33) and (5.34), we have

‖u− u
(1)
N ‖L∞ ≤ CNγ−m‖Dm+1u‖ωα,β + C MmN−m LN (α,β)

�
‖u‖+ ‖e(1)‖L∞

�
,
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where

γ=
3

4
, LN (α,β) = LN (0,0) = O (N 1

2 )

for the Legendre case and

γ=
1

2
, LN (α,β) = LN

�
− 1

2
,−1

2

�
= O (log N)

for the Chebyshev case. As a result, we obtain

‖u− u
(1)
N ‖L∞ ≤ CN

3

4
−m‖Dm+1u‖ωα,β + C MmN

1

2
−m‖u‖,

when ωα,β(x) is the Legendre weight and C MmN
1

2
−m < 1, and

‖u− u
(1)
N ‖L∞ ≤ CN

1

2
−m‖Dm+1u‖ωα,β + C MmN−m log N‖u‖,

when ωα,β(x) is the Chebyshev weight and C MmN−m log N < 1. �

6. Numerical experiments

The efficiency of spectral or pseudo-spectral Legendre-Petrov-Galerkin methods and

Chebyshev-Petrov-Galerkin methods will be demonstrated in the following as two special

cases of the spectral or pseudo-spectral Jacobi-Petrov-Galerkin approaches.

Example 6.1. Consider the Volterra integro-differential equation (1.1) with k(x , s) =
9

4
exp(

9(1+x)(1+s)

4
). The corresponding exact solution is given by u(x) = e

3

2
(1+x) − 1.

First we implement the numerical scheme (2.3) based on the spectral Legendre-Petrov-

Galerkin and Chebyshev-Petrov-Galerkin methods to solve this example. Table 1 illustrates

the L∞ and L2 errors of the spectral Legendre-Petrov-Galerkin method which are also

shown in Fig. 1. Next the L∞ and L2

ωα,β errors of the spectral Chebyshev-Petrov-Galerkin

method are demonstrated in Table 2 and Fig. 2. Clearly the desired spectral accuracy is

obtained in these approaches.Table 1: The errors of spetral Legendre-Petrov-Galerkin method.
N 4 6 8 10 12 14

L∞-error 4.80e-2 8.48e-4 8.47e-6 5.28e-8 2.21e-10 6.86e-13

L2-error 2.67e-2 3.41e-4 2.61e-6 1.32e-8 4.74e-11 2.86e-13Table 2: The errors of spetral Chebyshev-Petrov-Galerkin method.
N 4 6 8 10 12 14

L∞-error 4.20e-2 5.56e-4 5.20e-6 2.93e-8 1.11e-10 1.97e-12

L2
ω-error 4.40e-2 5.61e-4 4.12e-6 2.10e-8 7.37e-11 1.85e-12
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Figure 1: L∞ and L2 errors of spetral Legendre-Petrov-Galerkin method versus N . 4 6 8 10 12 14
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Figure 2: L∞ and L2

ωα,β errors of spetralChebyshev-Petrov-Galerkin method versus N .
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Figure 3: L∞ and L2 errors of pseudo-spetralLegendre-Petrov-Galerkin method versus N . 4 6 8 10 12 14
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Figure 4: L∞ and L2

ωα,β errors of pseudo-spetralChebyshev-Petrov-Galerkin method versus N .Table 3: The errors of pseudo-spetral Legendre-Petrov-Galerkin method.
N 4 6 8 10 12 14

L∞-error 2.20e-1 1.39e-3 1.80e-5 1.35e-7 5.12e-10 2.37e-11

L2-error 1.35e-1 7.50e-4 3.52e-6 2.08e-8 7.06e-11 2.85e-12Table 4: The errors of pseudo-spetral Chebyshev-Petrov-Galerkin method.
N 4 6 8 10 12 14

L∞-error 2.68e-1 1.84e-3 8.28e-6 8.07e-8 2.21e-10 2.73e-11

L2
ω-error 2.73e-1 1.66e-3 5.33e-6 3.82e-8 1.07e-10 1.13e-11

Next we turn to the numerical scheme (2.10) based on the pseudo-spectral Legendre-

Petrov-Galerkin and Chebyshev-Petrov-Galerkin methods to solve the example above. Ta-

ble 3 illustrates the L∞ and L2 errors of the pseudo-spectral Legendre-Petrov-Galerkin

method which are also shown in Fig. 3. Next the L∞ and L2

ωα,β errors of the pseudo-
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spectral Chebyshev-Petrov-Galerkin method are demonstrated in Table 4 and Fig 4. Once

again the desired spectral accuracy is obtained.
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[2] H. BRUNNER AND D. SCHöTZAU, hp-Discontinous Galerkin time-stepping for Volterra integrodif-

ferential equations, SIAM Numer. Anal., 44 (2006), pp. 224–245.

[3] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI, AND T. A. ZANG, Spectral Methods: Fundamentals

in Single Domains, Springer-Verlag, 2006.

[4] Y. P. CHEN AND T. TANG, Spectral methods for weakly singular Volterra integral equations with

smooth solutions, J. Comput. Appl. Math., 233 (2009), pp. 938–950.

[5] Y. P. CHEN AND T. TANG, Convergence analysis for the Jacobi spectral-collocation methods for

Volterra integral equations with a weakly singular kernel, Math. Comput., 79 (2010), pp. 147–

167.

[6] B. Y. GUO AND L. L. WANG, Jacobi interpolation approximations and their applications to singu-

lar differential equations, Adv. Comp. Math., 14 (2001), pp. 227–276.

[7] Z. Q. XIE, X. J. LI, AND T. TANG, Convergence analysis of spectral Galerkin methods for Volterra

type integral equations, submitted to J. Sci. Comput..

[8] T. LIN, Y.P. LIN, M. RAO, AND S.H. ZHANG, Petrov-Galerkin methods for linear Volterra integro-

differential equations, SIAM. J. Numer. Anal., 38 (2000), pp. 937–963.

[9] G. N. ELNAGAR AND M. KAZEMI, Chebyshev spectral solution of nonlinear Volterra-Hammerstein

integral equations, J. Comput. Appl. Math., 76 (1996), pp. 147–158.

[10] H. FUJIWARA, High-accurate numerical method for integral equations of the first kind under

multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.

[11] J. SHEN AND T. TANG, Spectral and High-Order Methods with Applications, Science Press,

Beijing, 2006.

[12] T. TANG, X. XU, AND J. CHEN, On spectral methods for Volterra type integral equations and the

convergence analysis, J. Comp. Math., 26 (2008), pp. 825–837.

[13] T. TANG, Superconvergence of numerical solutions to weakly singular Volterra integro-differential

equations, J. Numer. Math., 61 (1992), pp. 373–382.

[14] H. C. TIAN, Spectral method for Volterra integral equation, MSc Thesis, Simon Fraser Univer-

sity, 1995.


