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1. Introduction

Many practical problems are governed by initial value problems of second-order ODEs.

We may reformulate such problems to systems of first-order ODEs and then solve them

numerically. Whereas, for saving work, it seems reasonable to solve them directly.

For notational convenience, we denote d r U

dt r by ∂ r
t U . In many literatures, one focused

on finite difference methods for the equation

∂ 2
t U = f (U , t).

Generally, we divide those methods into two classes. In the first class of finite differ-

ence schemes, the coefficients depend on some known periods or frequencies of solutions,

including exponential-fitted and trigonometrically-fitted methods, and linear multi-step

method. In the second class of finite difference schemes, the coefficients are constants,
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such as Runge-Kutta-Nyström method, linear multi-step method, hybrid method, Störmer-

Cowell method and prediction-correction method. Relatively, there have been less existing

results on numerical methods for general equation

∂ 2
t U = f (∂t U , U , t),

for which one often used Runge-Kutta-Nyström method, SDIRKN method and linear multi-

step method.

Another efficient algorithm for solving initial value problems of ODEs is based on vari-

ous collocations. The collocation method for first-order ODEs, could be regarded as Runge-

Kutta method or linear multi-step method, see, e.g., [1, 5, 17–19, 22, 23, 27]. The colloca-

tion method has been also applied successfully to second-order ODEs, which is called as

collocation-based Runge-Kutta-Nyström method in some literatures, see [16, 20, 21] and

the references therein.

As is well known, spectral and pseudospectral methods employ orthogonal systems as

the basis functions, and so usually provide accurate numerical results. Especially, we could

use the Laguerre orthogonal approximation and interpolation to solve differential and in-

tegral equations on the half line, see [2,4,6,7,24–26,28] and the references therein. Some

authors designed Legendre and Laguerre collocation methods for initial value problems of

first-order ODEs, cf. [9–12]. Meanwhile, the authors investigated Legendre and Laguerre

collocation methods for second-order ODEs, see [13, 29]. One of advantages of Laguerre

collocation method is the ability of producing global numerical solution for all time t ≥ 0.

There are two kinds of Laguerre collocation method. In the first class of Laguerre

collocation method, one took the modified Laguerre polynomials as the basis functions.

They are convergent in certain Sobolev space with the weight e−β t ,β > 0, even if the exact

solutions grow very rapidly as t increases. However, it does not ensure the high accuracy

in the C(0,∞)-norm. In other words, even if the global weighted norm of error is small,

the point-wise error might be big for large t. However, if the exact solutions are in the

space L2(0,∞), then we could use the second kind of Laguerre collocation method using

the modified Laguerre functions. In this paper, we propose a new collocation method, in

which we take the modified Laguerre functions as the basis functions and approximate the

solutions of second-order ODEs directly.

The paper is organized as follows. The next section is for preliminary. In Section 3, we

design the new numerical process, which has several merits:

• it provides the global numerical solution directly,

• it is simple to derive efficient algorithm,

• it is easy to be implemented for nonlinear problems,

• it is more natural, if the original problem is well posed in certain space without any

weight.

In Section 4, we develop a multi-step version. More precisely, we first use the Laguerre-

Gauss collocation method with moderate mode to obtain numerical results, and then refine

them step by step. This technique simplifies computation and often leads to more accurate
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numerical results. In Section 5, we present some numerical results demonstrating the

efficiency of suggested methods.

2. Preliminary

Let ωα,β(t) = tαe−β t with α > −1 and β > 0. The modified generalized Laguerre

polynomial of degree l is defined by

L
(α,β)

l
(t) =

1

l!
t−αeβ t∂ l

t (t
l+αe−β t), l = 0,1, · · · .

According to (2.2)-(2.4) of [14], we have

L
(α,β)

l
(0) = L

(α,1)

l
(0) =

Γ(l +α+ 1)

Γ(α+ 1)l!
, l ≥ 0, (2.1)

∂t L
(α,β)

l
(t) = −β L

(α+1,β)

l−1
(t), l ≥ 1, (2.2)

(l + 1)L
(α,β)

l+1
(t) = (2l +α+ 1− β t)L

(α,β)

l
(t)− (l +α)L(α,β)

l−1
(t), l ≥ 1, (2.3)

L
(α,β)

l
(t) = L

(α+1,β)

l
(t)− L

(α+1,β)

l−1
(t) = β−1(∂t L

(α,β)

l
(t)− ∂t L

(α,β)

l+1
(t)), l ≥ 1. (2.4)

The set of modified generalized Laguerre polynomials is a complete L2
ωα,β
(0,∞)-orthogonal

system, namely,

∫ ∞

0

L
(α,β)

l
(t)L(α,β)

m (t)ωα,β(t)d t = γ
(α,β)

l
δl ,m, γ

(α,β)

l
=
Γ(l +α+ 1)

βα+1l!
, (2.5)

where δl ,m is the Kronecker symbol.

We next recall the modified Laguerre-Gauss interpolation. For any positive integer N ,

PN (0,∞) stands for the set of all algebraic polynomials of degree at most N . Let L
(β)

l
(t) =

L
(0,β)

l
(t). We denote by tN

β , j
, 0≤ j ≤ N , the modified Laguerre-Gauss interpolation nodes,

which are the distinct zeros of L
(β)
N+1(t), arranged in ascending order. The corresponding

Christoffel numbers are as follows,

ωN
β , j
=

1

tN
β , j
(∂t L

(β)
N+1
(tN
β , j
))2

, 0≤ j ≤ N .

For any φ ∈ P2N+1(0,∞) (cf. (2.8) of [8]),

∫ ∞

0

φ(t)ωβ (t)d t =

N∑

j=0

ωN
β , jφ(t

N
β , j). (2.6)

We introduce the following discrete inner product and norm,

(u, v)ωβ ,N =

N∑

j=0

u(tN
β , j)v(t

N
β , j)ω

N
β , j , ‖v‖ωβ ,N = (v, v)

1

2

ωβ ,N .
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Due to (2.6), we have

(φ,ψ)ωβ = (φ,ψ)ωβ ,N , ∀φψ ∈ P2N+1(0,∞). (2.7)

We now turn to the approximation using the modified Laguerre functions. The modi-

fied generalized Laguerre functions are defined by

eL(α,β)

l
(t) = e−

1

2
β t L

(α,β)

l
(t) =

1

l!
t−αe

1

2
β t∂ l

t (t
l+αe−β t), α > −1, β > 0, l = 0,1, · · ·.

By (2.1)-(2.3), we have (also see [15])

eL(α,β)

l
(0) = eL(α,1)

l
(0) =

Γ(l +α+ 1)

Γ(α+ 1)l!
, l ≥ 0, (2.8)

(l + 1)eL(α,β)

l+1
(t) = (2l +α+ 1− β t)eL(α,β)

l
(t)− (l +α)eL(α,β)

l−1
(t), l ≥ 1, (2.9)

∂t
eL(α,β)

0
(t) = −

1

2
βeL(α,β)

0
(t), (2.10a)

∂t
eL(α,β)

l
(t) = −βeL(α+1,β)

l−1
(t)−

1

2
βeL(α,β)

l
(t), l ≥ 1. (2.10b)

Moreover, using (2.4), gives

∂t
eL(α,β)

l
(t) = ∂t
eL(α,β)

l−1
(t)−

1

2
βeL(α,β)

l
(t)−

1

2
βeL(α,β)

l−1
(t), l ≥ 1, (2.11)

whence

∂t
eL(α,β)

l
(t) = −

1

2
βeL(α,β)

l
(t)− β

l−1∑

j=0

eL(α,β)

j
(t), l ≥ 1. (2.12)

Let (u, v)tα and ‖v‖tα be the inner product and the norm of the weighted space L2
tα
(0,∞),

respectively. When α= 0, they are denoted by (u, v) and ‖v‖ for simplicity.

Thanks to (2.5), the set of modified generalized Laugerre functions is a complete

L2
tα(0,∞)-orthogonal system, i.e.,

(eL(α,β)

l
,eL(α,β)

m )tα = δl ,mγ
(α,β)

l
,

where γ
(α,β)

l
is the same as in (2.5). Let eL(β)

l
(t) = eL(0,β)

l
(t), l ≥ 0. They form a complete

L2(0,∞)-orthogonal system. Thus, for any v ∈ L2(0,∞),

v(t) =

∞∑

l=0

evβ ,l
eL(β)

l
(t), evβ ,l = β(v,eL(β)

l
). (2.13)

We next deal with the interpolation using the modified Laguerre functions. We set

QN (0,∞) = span
n
eL(β)0 ,eL(β)1 , · · · ,eL(β)N

o
.
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Let tN
β , j

and ωN
β , j

be the same as in (2.6). The nodes and weights of the new interpolation

are as follows,

etN
β , j = tN

β , j , eω
N
β , j =

e
β tN
β , j

tN
β , j
(∂t(e

1

2
β tN
β , jeL(β)N+1(t

N
β , j
)))2

= e
β tN
β , jωN

β , j, 0≤ j ≤ N .

We introduce the discrete inner product and norm as

(u, v)β ,N =

N∑

j=0

u(tN
β , j)v(t

N
β , j) eω

N
β , j , ‖v‖β ,N = (v, v)

1

2

β ,N
.

For any φ j ∈ Qm j
(0,∞), we have φm j

= e
1

2
β tψm j

with ψm j
∈ Pm j

(0,∞). If m1 + m2 ≤
2N + 1, then by (2.7),

(φ1,φ2)β ,N = (ψ1,ψ2)ωβ ,N = (ψ1,ψ2)ωβ = (φ1,φ2). (2.14)

For v ∈ C(0,∞), the new Laguerre-Gauss interpolation eIβ ,N v ∈ QN (0,∞) is deter-

mined uniquely by
eIβ ,N v(tN

β , j) = v(tN
β , j), 0≤ j ≤ N .

By virtue of (2.14), for any φ ∈ QN+1(0,∞),

( eIβ ,N v,φ) = ( eIβ ,N v,φ)β ,N = (v,φ)β ,N . (2.15)

We can expand eIβ ,N v(t) as

eIβ ,N v(t) =

N∑

l=0

edN
β ,l
eL(β)

l
(t).

With the aid of (2.13) and (2.14), we obtain

edN
β ,l = β(
eIβ ,N v,eL(β)

l
) = β( eIβ ,N v,eL(β)

l
)β ,N = β(v,eL(β)

l
)β ,N , 0≤ l ≤ N . (2.16)

Remark 2.1. There is a close relation between Iβ ,N and eIβ ,N . Indeed, by (3.7) of [9],

eIβ ,N v(t) = e−
1

2
β tIβ ,N (e

1

2
β t v(t)).

3. Collocation method using modified Laguerre functions

In this section, we derive the new collocation method using the modified Laguerre

functions. We consider the following model problem,

¨
∂ 2

t U(t) = f (∂t U(t), U(t), t), t > 0,

∂t U(0) = V0, U(0) = U0,
(3.1)
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where V0 and U0 describe the initial states of ∂t U(t) and U(t) respectively, and f (z1, z0, t)

is a given function. We approximate the solution of (3.1) by uN (t) ∈ QN+2(0,∞) such that

∂ 2
t uN (tN

β ,k) = f (∂tu
N (tN

β ,k),u
N (tN

β ,k), tN
β ,k), 0≤ k ≤ N , (3.2a)

∂tu
N (0) = V0, uN (0) = U0. (3.2b)

We now derive an efficient algorithm for solving (3.2). Let

uN (t) =

N+2∑

l=0

euN
β ,l
eL(β)

l
(t). (3.3)

By (2.10a), we deduce that

∂tu
N (t) =

N+2∑

l=0

euN
β ,l∂t
eL(β)

l
(t) = −β

N+2∑

l=1

euN
β ,l
eL(1,β)

l−1
(t)−

β

2

N+2∑

l=0

euN
β ,l
eL(β)

l
(t), (3.4)

∂ 2
t uN (t) = β2

N+2∑

l=2

euN
β ,l
eL(2,β)

l−2
(t) + β2

N+2∑

l=1

euN
β ,l
eL(1,β)

l−1
(t) +

β2

4

N+2∑

l=0

euN
β ,l
eL(β)

l
(t). (3.5)

Clearly, eL(β)
l
(0) = 1 and ∂t

eL(β)
0
(0) = −β/2. Moreover, thanks to (2.8) and (2.10a), we

have ∂t
eL(β)

l
(0) = −β

2
(2l + 1) for l ≥ 1. Thus, with the aid of (3.3)-(3.5), we obtain from

(3.2) that

β2
N+2∑

l=2

euN
β ,l(
eL(2,β)

l−2
(tN
β ,k) +
eL(1,β)

l−1
(tN
β ,k) +

1

4
eL(β)

l
(tN
β ,k))

+ β2euN
β ,1(
eL(1,β)

0
(tN
β ,k) +

1

4
eL(β)

1
(tN
β ,k)) +

β2

4
euN
β ,0
eL(β)

0
(tN
β ,k)

= f (∂tu
N (tN

β ,k),u
N (tN

β ,k), tN
β ,k), 0≤ k ≤ N , (3.6a)

−
β

2

N+2∑

l=0

(2l + 1)euN
β ,l = V0,

N+2∑

l=0

euN
β ,l = U0, (3.6b)

where

uN (tN
β ,k) =

N+2∑

l=0

euN
β ,l
eL(β)

l
(tN
β ,k),

∂tu
N (tN

β ,k) = −β
N+2∑

l=1

euN
β ,l
eL(1,β)

l−1
(tN
β ,k)−

β

2

N+2∑

l=0

euN
β ,l
eL(β)

l
(tN
β ,k).
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The scheme (3.6) can be rewritten as a compact matrix form. To do this, we introduce the

(N + 3)× (N + 3) matrix eAN
β

with the entries eaN
β ,k, j

as follows,

eaN
β ,k, j =





β2(eL(2,β)

j−2
(tN
β ,k
) + eL(1,β)

j−1
(tN
β ,k
) +

1

4
eL(β)

j
(tN
β ,k)), for 0≤ k ≤ N , 2≤ j ≤ N + 2,

β2

4
eL(β)1 (t

N
β ,k) + β

2eL(1,β)
0 (tN

β ,k), for 0≤ k ≤ N , j = 1,

β2

4
eL(β)0 (t

N
β ,k), for 0≤ k ≤ N , j = 0,

−
β

2
(2 j+ 1), for k = N + 1, 0≤ j ≤ N + 2,

1, for k = N + 2, 0≤ j ≤ N + 2,

0, otherwise.

Also, we define the (N + 1)× (N + 3) matrix eBN
β

with the entries:

ebN
β ,k,0

= −
β

2
eL(β)0 (t

N
β ,k
), ebN

β ,k, j
= −β(eL(1,β)

j−1
(tN
β ,k
) +

1

2
eL(β)

j
(tN
β ,k
)), 0≤ k ≤ N , 1≤ j ≤ N + 2,

and the (N + 1)× (N + 3) matrix eCN
β

with the entries:

ecN
β ,k,l =
eL(β)

j
(tN
β ,k), 0≤ k ≤ N , 0≤ j ≤ N + 2.

Further, let euN = (euN
β ,0

,euN
β ,1

, · · · ,euN
β ,N+2

)T , and

efN
β (euN ) = ( f (∂tu

N (tN
β ,0),u

N (tN
β ,0), tN

β ,0), · · · , f (∂tu
N (tN

β ,N ),u
N (tN

β ,N ), tN
β ,N ), V0, U0)

T ,

where ∂tu
N (tN

β ,k
) and uN (tN

β ,k
) are the k′th component of eBN

β
euN and eCN

β
euN , respectively.

Then we obtain from (3.6) that
eAN
βeuN =
efN
β (euN ), (3.7)

or equivalently,

euN = (eAN
β )
−1efN

β (euN ). (3.8)

We set uN = (u
N (tN

β ,0
),uN (tN

β ,1
), · · · ,uN (tN

β ,N
))T . Then by virtue of (3.8),

uN = eCN
β (
eAN
β )
−1efN

β (euN ). (3.9)

Remark 3.1. In actual computation, it requires to compute (eAN
β
)−1 only once. This allows

us to save a significant amount of computational time.

Remark 3.2. When f (z1, z0, t) is nonlinear, we first use certain iteration process to solve

(3.8) and obtain ûN
β ,l

, 0 ≤ l ≤ N + 2. Then, we use (3.3) to obtain the global numerical

solution uN (t), t ≥ 0. This fact shows another advantage of the method (3.2).
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Remark 3.3. We could also use (3.8) and (3.9) to evaluate the values of uN (tN
β ,k
). By

(2.16) of [8], tN
β ,N
∼= 4β−1N . Thus, we obtain the values of numerical solution at large

interpolation nodes, even with moderate mode N . In fact, this is also one of advantages of

this new method.

The proposed method is also available for systems of ordinary differential equations.

Let
−→
U (t) = (U (1)(t), U (2)(t), · · · , U (m)(t)) and

−→
f (∂t

−→
U (t),

−→
U (t), t)

=( f (1)(∂t

−→
U (t),

−→
U (t), t), f (2)(∂t

−→
U (t),

−→
U (t), t), · · · , f (m)(∂t

−→
U (t),

−→
U (t), t)).

We consider the model problem

∂ 2
t

−→
U (t) =

−→
f (∂t

−→
U (t),

−→
U (t), t), t > 0, (3.10a)

∂t

−→
U (0) =

−→
V 0,

−→
U (0) =

−→
U 0. (3.10b)

The corresponding numerical method for solving system (3.10), is to seek
−→
u N (t) ∈

(QN+2(0,∞))m, such that

∂ 2
t
−→
u N (tN

β , j) =
−→
f (∂t
−→
u N (tN

β , j),
−→
u N (tN

β , j), tN
β , j), 0≤ j ≤ N , (3.11a)

∂t
−→
u N (0) =

−→
V 0,

−→
u N (0) =

−→
U 0. (3.11b)

We can derive a compact matrix form of scheme (3.11), which is similar to (3.8).

4. Multi-step version of collocation method

In the last section, we proposed a numerical method for second-order ODEs. Since the

distance between the adjacent nodes tN
β , j

and tN
β , j−1

increases rapidly as N and j increase.

we could use moderate mode N to evaluate the unknown function at the nodes far from the

origin t = 0. However, in actual computation, it is not convenient to use very large mode N .

On the other hand, due to the big distances between large adjacent interpolation nodes,

we may lose some information about the structure of solution which oscillates seriously

between two big nodes. To remedy these deficiencies, we may use scheme (3.2) with

moderate N repeatedly to refine numerical solutions.

Now, let N0 be a moderate positive integer, β0 > 0, and the set of nodes {tN0

0,β0 , j
}N0

j=0
=

{tN0

β0 , j
}N0

j=0
. We use (3.2) to obtain the original numerical solution uN

0 (t) = uN0(t), 0 ≤ t <

∞. In other words,

(
∂ 2

t uN0(t
N0

β0, j
) = f (∂tu

N0(t
N0

β0 , j
),uN0(t

N0

β , j
), t

N0

β0 ,k
), 0≤ j ≤ N0,

∂tu
N0(0) = V0, uN0(0) = U0.
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Then, we consider the auxiliary problem

∂ 2
t U1(t) = f (∂t U1(t), U1(t), t + t

N0

0,β0 ,N0
), t > 0, (4.1a)

∂t U1(0) = ∂tu
N0

0 (t
N0

0,β0,N0
), U1(0) = u

N0

0 (t
N0

0,β0,N0
). (4.1b)

By using the numerical method (3.2) with the parameter β1 and N1 interpolation nodes

{tN1

1,β1 , j
}N1

j=0
, coupled with a shifting transformation, we get the refined numerical solution

u
N1

1 (t) for t
N0

0,β0 ,N0
< t <∞. Repeating the above procedure, we obtain the refined numer-

ical solution u
Nm
m (t) for t

Nm−1

m−1,βm−1 ,Nm−1
< t < ∞. This algorithm saves work and provides

more accurate numerical results oftentimes.

For understanding the above process more clearly, we let t0 = 0, tm = t
Nm−1

m−1,βm−1,Nm−1

for m≥ 1, and Um(t) = U(t + tm). We consider the problem

∂ 2
t Um(t) = f (∂t Um(t), Um(t), t + tm), t > 0, m≥ 0, (4.2a)

∂t U0(0) = V0, U0(0) = U0,

∂t Um(0) = ∂t Um−1(tm), Um(0) = Um−1(tm), m ≥ 1. (4.2b)

Our method is to find a set of local solutions u
Nm
m (t) such that

∂ 2
t

uNm

m
(t

Nm

m,βm,k
) = f (∂tu

Nm

m
(t

Nm

m,βm,k
), uNm

m
(t

Nm

m,βm,k
), t

Nm

m,βm,k
+ tm), 0≤ k ≤ Nm, m ≥ 0, (4.3a)

∂t u
N0

0 (0) = V0, u
N0

0 (0) = U0, (4.3b)

∂t u
Nm

m
(0) = ∂t u

Nm−1

m−1 (tm), uNm

m
(0) = u

Nm−1

m−1 (tm), m≥ 1. (4.3c)

Obviously, the local numerical solution u
Nm
m (t) is a proper approximation to the local exact

solution Um(t) with the approximated initial values ∂tu
Nm−1

m−1
(tm) and u

Nm−1

m−1
(tm). Finally,

the numerical solution of original problem (3.1) is given by

uN (t) = uNm
m (t − tm), tm ≤ t < tm+1, m = 0,1,2, · · · . (4.4)

Remark 4.1. Because of Gibbs phenomena, the numerical errors at the points tm might

be bigger than those at other interpolation nodes. To remedy this trouble, we may take

tm = t
Nm−1

m−1,βm−1,Nm−1−km−1
, km−1 = 0, 1 or 2, in actual computation.

5. Numerical results

In this section, we present some numerical results. We will display the global absolute

error EN
β ,Ga

= ‖U−uN‖β ,N ≃ ‖U−uN‖L2(0,∞), and the point-wise absolute error EN
β ,Pa
(t) =

|U(t)− uN (t)|.

Example 5.1. We use scheme (3.2) (labeled by LAGFC) to solve (3.1) with the nonlinear
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term

f (∂t U(t), U(t), t) =− 45∂tU(t)−
1

2
cos U(t) + e

1

5
sin U(t)

+

�
−

2

3
cos t +

5

9
−

8

9
sin t

�
e−

t

3 + 45

�
cos t −

1

3
(5+ sin t) e−

t

3

�

+
1

2
cos(5+ sin t)e−

t

3 )− e
1

5
sin((5+sin t)e

− t
3 ). (5.1)

The test function used is

U(t) = (5+ sin t)e−
t

3 , (5.2)

which oscillates and decays exponentially as t increases.

In Fig. 1, we plot the values of log10 EN
β ,Ga

vs. the mode N . The parameter β is chosen

as 0.5,1.5, and 2.5. Clearly, the numerical errors decay exponentially as N increases.

In Fig. 2, we plot the point-wise absolute error EN
β ,Pa
(t) with N = 100 and β = 1.5,2,

respectively. It shows the small point-wise absolute errors.
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β=2Figure 2: Point-wise errors of LAGFC methodwith N = 100, β = 1.5 and 2.

Example 5.2. We next use scheme LAGFC method to solve (3.1) with the nonlinear term

f (∂t U(t), U(t), t)

=− ∂t U(t)− U2(t) +
λ(t + 1) cosλt −m sinλt

(t + 1)m+1
+

sin2λt

(t + 1)2m

−
λ2(t + 1)2 sinλt + 2mλ(t + 1) cosλt −m(m+ 1) sinλt

(t + 1)m+2
, m >

1

2
. (5.3)

The test function used is

U(t) =
sinλt

(t + 1)m
, (5.4)
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Figure 4: Point-wise errors of LAGFC methodagainst t, with N = 100 and β = 2.5.
which oscillates and decays algebraically as t increases. In actual computation, we take

λ= 1 and m = 2.

In Fig. 3, we plot the values of log10 EN
β ,Ga

vs. the mode N . The parameter β = 2.5.

As we expected, the numerical errors also decay fast as N increases. In Fig. 4, we plot

the point-wise absolute errors EN
β ,Pa
(t) with N = 100 and β = 2.5. It shows the small

point-wise absolute errors.

For comparison, we also use the method using the modified Laguerre polynomials given

in [29] (labeled by LAGPC method), with the same test functions (4). In Fig. 5, we plot

the point-wise absolute errors EN
β ,Pa
(t) of LAGFC and LAGPC methods, with N = 20 and

β = 2.5. It indicates that for solution decaying as t increases, LAGFC method provides

more accurate numerical approximations.
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Figure 5: Comparison of the point-wise errors of LAGFC and LAGPC methods, with N = 20 and β = 2.5.
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6. Concluding remarks

In this paper, we proposed a new collocation method and its multi-step version for

solving initial value problems of second-order ordinary differential equations, by taking

the modified Laguerre functions as the basis functions. This approach is applicable for

solutions decaying to zero as t increases, and simplifies computation.

The numerical results demonstrated the high efficiency of suggested method. Indeed,

unlike the Runge-Kutta-Nyström method, we used the modified Laguerre interpolation
eIβ ,N , which is stable even for large N . Moreover, the largest node of the interpolation

eIβ ,N is about 4

β
N . Thus we could use larger time step size τ to save computational time.

Although we only considered a model problem in this paper, the main techniques de-

veloped in this work are also useful for other related problems, such as space-time spectral

approximations to various nonlinear evolutionary partial differential equations.

How to estimate the errors of numerical solutions of the suggested method, is an inter-

esting and still open problem so far.
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