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Abstract. In this paper, the finite element approximation of a class of semilinear
parabolic optimal control problems with pointwise control constraint is studied. We
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1. Introduction

Optimal control problems have been widely studied and applied in science and engi-
neering numerical simulation. The finite element method seems to be the most widely
used numerical methods in computing optimal control problems. More recently, there
have been extensively studies in the finite element approximation of the general optimal
control problems, see, for example, [3–5,11–18] and the references cited therein. How-
ever, it is impossible to give even a very brief review here. Systematic introductions of
the finite element method for PDEs and optimal control problems can be found in, for
example, [1,2,7–10].

In this work, we focus our attention on the finite element approximation of the follow-
ing semilinear parabolic optimal control problems:

min
u∈K

(

∫ T

0

(g(y) + h(u)) d t

)

, (1.1)
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subject to the state equation






yt − div(A∇y)+φ(y) = f + Bu, in Ω× (0, T],
y(x , t) = 0, on ∂Ω× (0, T],
y(x , 0) = y0(x), in Ω,

(1.2)

where g(·) and h(·) are two given convex functionals, K denotes the admissible set of the
control variable u, and B is a linear continuous operator. The details will be specified later
on. Problems (1.1)-(1.2) appears, for example, in temperature control problems, see [6].

In this paper, we aim to derive a L2-norm error estimates for both the control and
state approximations in space variables. Either piecewise constant elements (m = 0) or
piecewise linear discontinuous elements (m = 1) for the control approximation is adopted.

It is proved that these approximations have convergence order O (h1+m/2
U +h2+∆t), where

hU and h are the spatial mesh-sizes for the control and state, respectively, and ∆t is the
time increment.

The remainder of this paper is organized as follows. In Section 2, we shall briefly
discuss the finite element approximation for the semilinear parabolic control problems.
In Section 3 some a priori error estimates are derived for both the control and state ap-
proximations. The paper ends with results from some numerical experiments in Section
4.

Throughout this work, we employ the usual notion for Lebesgue and Sobolev spaces,
see [1, 2] for details. In addition, c or C denotes a generic positive constant independent
of the discrete parameters.

2. Finite element approximation of optimal control problems

In this section, we study the finite element approximation of problems (1.1)–(1.2). To
describe it, let Ω and ΩU be bounded open convex polygons in Rn (n ≤ 3), with Lipschitz
boundaries ∂Ω and ∂ΩU . Let I = (0, T] be the time interval, and partition it by T =

NT∆t, NT ∈ Z, with t i = i∆t for 1 ≤ i ≤ NT . Let f i = f (x , t i). We define, for 1 ≤ q <∞,
the discrete time-dependent norms

‖ f ‖lq(I ;W m,p(Ω)) =

 

NT
∑

i=1

∆t‖ f i‖qm,p

!
1
q

,

and the standard modification for q =∞. Let

lq(I; W m,p(Ω)) :=
¦

f : ‖ f ‖lq(I ;W m,p(Ω)) <∞
©

, 1≤ q ≤∞.

We shall take the state space W = L2(I; V ) with V = H1
0(Ω), the control space X =

L2(I; U) with U = L2(ΩU), and H = L2(Ω) to fix the idea. Let B be a linear continuous
operator from X to L2(I; V ′), and K be a closed convex set in X . Let g(·) be a convex
functional which is continuous differentiable on the observation space H = L2(Ω), and
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h(·) be a strictly convex continuous differentiable functional on U . We further assume that
h(u) → +∞ as ‖u‖U → ∞, and that the functional g(·) is bounded below. Let A(x) =

(ai, j(·))n×n ∈ (W
1,∞(Ω))n×n be symmetric and positive definite. Besides, for any R > 0,

the function φ(·) ∈W 1,∞(−R,R), φ′(y) ∈ L2(Ω) for any y ∈ L2(I; H1(Ω)), and φ′(y)≥ 0.
We recast the state equation (1.2) as the following weak formula: For given f ,u and

y0, find y(u) ∈ H1(I; L2(Ω))∩W such that

�

yt(u), w
�

+ a(y(u), w) + (φ(y(u)), w) = ( f + Bu, w), ∀w ∈ V, t ∈ I , (2.1a)

y(u)(x , 0) = y0(x), x ∈ Ω, (2.1b)

where a(v, w) = (A∇v,∇w). It is clear that under the above assumptions problem (2.1)
has a unique weak solution for any u ∈ K .

Let
K =

n

v ∈ X : v(x , t)≥ 0, a.e. in ΩU× I
o

.

Then the above convex optimal control problems can be restated as follows, which we shall
label (QC P):

min
u∈K

(

∫ T

0

J(u) d t

)

, (2.2)

where J(u) = g(y(u)) + h(u), and y(u) ∈W subject to
¨
�

yt(u), w
�

+ a(y(u), w) + (φ(y(u)), w) = ( f + Bu, w), ∀w ∈ V,
y(u)(x , 0) = y0(x).

Hereafter, we assume that

h(u) =

∫

ΩU

j(u),

where j(·) is a convex continuous differential function on R. Then it is easy to see that

(h′(u), v)U = ( j
′(u), v)U =

∫

ΩU

j′(u)v.

It is well known (see, e.g., [7, 9]) that the control problems (QC P) has a solution (y,u),
and that a pair (y,u) is the solution of (QC P) if there is a co-state p ∈ W such that the
triplet (y, p,u) satisfies the following optimality conditions: (QC P −OPT )

¨
�

yt , w
�

+ a(y, w) + (φ(y), w) = ( f + Bu, w), ∀w ∈ V,
y(0) = y0,

(2.3)

¨

−
�

pt ,q
�

+ a(q, p) + (φ′(y)p,q) = (g′(y),q), ∀q ∈ V,
p(T ) = 0,

(2.4)

∫ T

0

( j′(u) + B∗p, v − u)U d t ≥ 0, ∀v ∈ K ⊂ X = L2(I; U), (2.5)
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where B∗ is the adjoint operator of B, g′(·) and h′(·) are the derivatives of g(·) and h(·),
which have been viewed as functions in H = L2(Ω) and U = L2(ΩU), respectively, and
(·, ·)U is the inner product of U .

Let T h and T h
U be regular triangulations of Ω and ΩU , respectively, so that Ω̄ = ∪τ∈T hτ̄,

Ω̄U = ∪τU∈T
h

U
τ̄U . Let h = maxτ∈T h hτ, hU = maxτU∈T

h
U

hτU
, where hτ and hτU

denote the

diameter of the element τ and τU , respectively.
Let V h ⊂ V = H1

0(Ω) consist of continuous, piecewise linear functions on T h of Ω,
and Uh ⊂ U = L2(ΩU) consist of piecewise constant functions (m = 0) or piecewise linear
discontinuous functions (m = 1) on T h

U of ΩU . Here there is no requirement for the
continuity of the optimal control. Let Kh be a closed convex set in Uh such that Kh = K∩Uh.

Now we are in a position to consider the fully discrete approximation for the control
problems (QC P) by using backward Euler scheme.

Let dtϕ
i = (ϕi −ϕi−1)/∆t, then a fully discrete approximate scheme of (QC P), which

will be labeled as (QC P)hk, is to find (y i
h
,ui

h
) ∈ V h× Kh, i = 1,2, · · · , NT , such that

min
ui

h
∈Kh

NT
∑

i=1

∆tJh(u
i
h), (2.6)

where Jh(u
i
h
) = g(y i

h
) + h(ui

h
), and y i

h
∈ V h subject to

�

dt y i
h
, wh

�

+ a
�

y i
h
, wh

�

+ (φ(y i
h
), wh) = ( f (x , t i) + Bui

h
, wh), ∀wh ∈ V h,

y0
h
(x) = yh

0(x), x ∈ Ω,

where yh
0 ∈ V h is an approximation of y0 which is determined by the following elliptic

projection (3.26).
The control problems (QC P)hk again has a solution (Y i

h
, U i

h
), and that a pair (Y i

h
, U i

h
) ∈

V h × Kh, is the solution of (QC P)hk if there is a co-state P i−1
h
∈ V h, such that the triplet

(Y i
h
, P i−1

h
, U i

h
) ∈ V h×V h×Kh, satisfies the following optimality conditions: (QC P−OPT )hk

(dt Y
i

h
, wh) + a

�

Y i
h
, wh

�

+ (φ(Y i
h
), wh) = ( f

i + BU i
h
, wh), ∀wh ∈ V h, i = 1, · · · , NT ,

Y 0
h
(x) = yh

0 (x), x ∈ Ω, (2.7)

− (dt P
i
h,qh) + a

�

qh, P i−1
h

�

+ (φ′(Y i
h)P

i−1
h

,qh) = (g
′(Y i

h),qh), ∀qh ∈ V h, i = NT , · · · , 1,

P
NT

h
(x) = 0, x ∈ Ω, (2.8)

( j′(U i
h
) + B∗P i−1

h
, vh− U i

h
)U ≥ 0, ∀vh ∈ Kh = K ∩ Uh, i = 1, · · · , NT . (2.9)

3. Convergence analysis and error estimates

In this section, we are able to derive some a priori error estimates for the finite ele-
ment approximation of the optimal control problems (QC P). We show that the conver-
gence order is optimal in l2(I; L2(ΩU))-norm for the control approximation error and in
l∞(I; L2(Ω))-norm for the state and co-state approximation errors.
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In many applications, J(·) is uniform convex near the solution u. The convexity of J(·)
is closely related to the second order sufficient conditions of the control problems, which
are assumed in many studies on numerical methods of the problem. For instance, in many
applications, g(·) is convex, see [8] for some examples. Thus if h(·) is uniformly convex
(e.g., h(u) =

∫

ΩU
u2, which is frequently met), then there is a constat c > 0, independent

of h(·), such that
(J ′(u)− J ′(v),u− v)≥ c‖u− v‖2U ,

where u, v ∈ X . Then for sufficiently small h, we have

(J ′h(u)− J ′h(v),u− v)≥ c‖u− v‖2U . (3.1)

Throughout this work we shall assume the above inequality.
Let

Ω∗U(t) =
�

∪τU : τU ⊂ ΩU ,u(·, t)|τU
> 0
	

,
Ωc

U(t) =
�

∪τU : τU ⊂ ΩU ,u(·, t)|τU
≡ 0
	

,
Ωb

U(t) = ΩU \ (Ω
∗
U(t)∪Ω

c
U(t)).

It is easy to check that the three parts do not intersect on each other, and ΩU = Ω
∗
U(t) ∪

Ωc
U(t)∪Ω

b
U(t). In this paper we assume that u and T h

U are regular such that meas(Ωb
U(t))≤

ChU (see [16,17]). Moreover, set

Ω∗∗U (t) =
�

x ∈ ΩU ,u(x , t) > 0
	

.

Then it is easy to see that Ω∗U(t) ⊂ Ω
∗∗
U (t).

Define J(·) and Jh(·) as before. It is a matter of calculation to show that

(J ′(u), v)U = ( j
′(u) + B∗p, v)U ,

(J ′h(U
i
h), v)U = ( j

′(U i
h) + B∗P i−1

h
, v)U ,

(J ′h(u
i), v)U = ( j

′(ui) + B∗P i−1
h
(u), v)U ,

where P i−1
h
(u) ∈ V h, i = 1,2, · · · , NT is the solution of the following auxiliary problems:

�

dt Y
i

h
(u), wh

�

+ a
�

Y i
h
(u), wh

�

+ (φ(Y i
h
(u)), wh) = ( f

i + Bui , wh), ∀wh ∈ V h,

Y 0
h
(u) = yh

0(x), x ∈ Ω, (3.2)

−
�

dt P
i
h(u),qh

�

+ a
�

qh, P i−1
h
(u)
�

+ (φ′(Y i
h(u))P

i−1
h
(u),qh) = (g

′(Y i
h(u)),qh), ∀qh ∈ V h,

P
NT

h
(u) = 0, x ∈ Ω. (3.3)

For simplicity of illustration, in the rest of the paper we use the symbols

θ i = Y i
h
− Y i

h
(u), ηi = y i − Y i

h
(u), i = 0,1, · · · , NT ,

ζi = P i
h
− P i

h
(u), ξi = pi − P i

h
(u), i = NT , · · · , 1,0.

It is clear that θ0 = 0 and ζNT = 0.
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Lemma 3.1. Let (Yh, Ph) and (Yh(u), Ph(u)) be the solutions of (2.7)–(2.8) and (3.2)–(3.3),
respectively. Assume that g′(·) and φ′(·) are Lipschitz continuous in a neighborhood of y.

Then

‖Yh− Yh(u)‖l∞(I ;L2(Ω)) + ‖Yh− Yh(u)‖l2(I ;H1(Ω)) ≤ C‖u− Uh‖l2(I ;L2(ΩU ))
, (3.4)

‖Ph− Ph(u)‖l∞(I ;L2(Ω)) + ‖Ph− Ph(u)‖l2(I ;H1(Ω)) ≤ C‖u− Uh‖l2(I ;L2(ΩU ))
. (3.5)

Proof. We first prove (3.4). We subtract (3.2) from (2.7) to obtain that

(dtθ
i , wh)+ a

�

θ i , wh

�

= (B(U i
h
−ui), wh)+ (φ(Y

i
h
(u))−φ(Y i

h
), wh), ∀wh ∈ V h. (3.6)

Select wh = θ
i as a test function. The inequality a(a− b)≥ 1

2
(a2 − b2) shows that

(dtθ
i ,θ i)≥

1

2∆t

�

‖θ i‖2 −‖θ i−1‖2
�

. (3.7)

Incorporate (3.7) into (3.6) and multiply both sides of (3.6) by 2∆t and sum over i

from 1 to N (1 ≤ N ≤ NT ), we then derive from the continuous property of B and φ(·)
that

‖θN‖2 + 2
N
∑

i=1

∆t‖θ i‖2a ≤ C

N
∑

i=1

∆t‖θ i‖2 + C

N
∑

i=1

∆t‖ui − U i
h‖

2
U , (3.8)

where we denote ‖v‖2a = a(v, v). Thus (3.4) follows immediately from (3.8), Poincáre’s
inequality and the discrete Gronwall’s lemma for sufficiently small ∆t.

Then for (3.5). It follows from the co-state equations (2.8) and (3.3) that

− (dtζ
i,qh) + a(qh,ζi−1) =

�

g′(Y i
h
)− g′(Y i

h
(u)),qh

�

+
�

φ′(Y i
h
(u))(P i−1

h
(u)− P i−1

h
),qh

�

+
�

(φ′(Y i
h(u))−φ

′(Y i
h))P

i−1
h

,qh

�

, ∀qh ∈ V h. (3.9)

Similarly, select qh = ζ
i−1 as a test function. We first see from the Lipschitz continuous of

g′(·) and Cauchy-Schwarz inequality that
�

�

�

�

g′(Y i
h
)− g′(Y i

h
(u)),ζi−1

�

�

�

� ≤ C‖θ i‖2 + C‖ζi−1‖2. (3.10)

Moreover, note that φ(·) ∈ l∞(I; W 1,∞(−R,R)) and φ′(·) is Lipschitz continuous in a
neighborhood of y, thus

�

�

�

�

φ′(Y i
h
(u))(P i−1

h
(u)− P i−1

h
),ζi−1

�

�

�

�

≤‖φ′(Y i
h(u))‖0,∞‖P

i−1
h
(u)− P i−1

h
‖‖ζi−1‖ ≤ C‖ζi−1‖2, (3.11)

�

�

�

�

(φ′(Y i
h(u))−φ

′(Y i
h))P

i−1
h

,ζi−1
�

�

�

�

≤‖φ′(Y i
h
(u))−φ′(Y i

h
)‖0,4‖P

i−1
h
‖‖ζi−1‖0,4

≤C‖P i−1
h
‖2‖φ′(Y i

h
(u))−φ′(Y i

h
)‖21+ Cδ‖ζi−1‖21

≤C‖θ i‖21 + Cδ‖ζi−1‖2a, (3.12)
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where δ is an arbitrary small positive number and C(δ) depends on 1/δ. In the estimate of
(3.12), we have used the embedding ‖v‖0,4 ≤ C‖v‖1 and the property ‖P i−1

h
‖ ≤ C (see [1],

for example).

Insert the above estimates (3.10)–(3.12) into (3.9), multiply both sides of (3.9) by 2∆t

and sum over i from NT to M + 1 (0≤ M ≤ NT − 1), we have

‖ζM‖2 +
NT
∑

i=M+1

∆t‖ζi−1‖2a ≤ C

NT
∑

i=M+1

∆t‖ζi−1‖2 + C

NT
∑

i=M+1

∆t‖θ i‖21. (3.13)

Thus we obtain from (3.13), Poincáre’s inequality and the discrete Gronwall’s lemma that
for sufficiently small ∆t

‖ζ‖l∞(I ;L2(Ω)) + ‖ζ‖l2(I ;H1(Ω)) ≤ C‖Yh− Yh(u)‖l2(I ;H1(Ω)). (3.14)

Then (3.5) follows from (3.14) and the proved result (3.4). Therefore we complete the
proof of Lemma 3.1. �

Lemma 3.2. Let (y, p,u) and (Yh, Ph, Uh) be the solutions of (QC P − OPT ) and (QC P −
OPT )hk, respectively. Assume that u ∈ l2(I; H1(ΩU)), p ∈ l2(I; H1(Ω)), Kh ⊂ K and j′(·) is

locally Lipschitz continuous. Let Uh be the piecewise constant element space (m = 0). Then

we have

‖u− Uh‖l2(I ;L2(ΩU ))
≤ C

�

hU +∆t + ‖p− Ph(u)‖l2(I ;L2(Ω))

�

, (3.15)

where Ph(u) is defined in (3.3).

Furthermore, let Uh be the piecewise linear element space (m = 1). Assume that u ∈
l2(I; W 1,∞(ΩU)), p ∈ l2(I; W 1,∞(Ω)), u(t) ∈ H2(Ω∗∗U (t)), where Ω∗∗U (t) is defined above.

Then we have

‖u− Uh‖l2(I ;L2(ΩU ))
≤ C

�

h
3
2
U +∆t + ‖p− Ph(u)‖l2(I ;L2(Ω))

�

. (3.16)

Proof. From the definitions of J(·) and Jh(·), we have

(J ′(u),u− v)U = ( j
′(u) + B∗p,u− v)U ≤ 0, ∀v ∈ K ,

(J ′h(U
i
h
), U i

h
− vh)U = ( j

′(U i
h
) + B∗P i−1

h
, U i

h
− vh)U ≤ 0, ∀vh ∈ Kh = K ∩ Uh. (3.17)

Let Πhui ∈ Kh be an approximation of u(t i), then we obtain from inequalities (3.1) and
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(3.17) that

c‖u− Uh‖
2
l2(I ;L2(ΩU ))

≤
NT
∑

i=1

∆t(J ′h(u
i)− J ′h(U

i
h
),ui − U i

h
)U

=

NT
∑

i=1

∆t( j′(ui) + B∗P i−1
h
(u),ui − U i

h)U +

NT
∑

i=1

∆t( j′(U i
h) + B∗P i−1

h
, U i

h− ui)U

=

NT
∑

i=1

∆t( j′(ui) + B∗pi ,ui − U i
h
)U +

NT
∑

i=1

∆t( j′(U i
h
) + B∗P i−1

h
, U i

h
−Πhui)U

+

NT
∑

i=1

∆t( j′(U i
h) + B∗P i−1

h
,Πhui − ui)U +

NT
∑

i=1

∆t(B∗(P i−1
h
(u)− pi),ui − U i

h)U

≤
NT
∑

i=1

∆t( j′(U i
h
) + B∗P i−1

h
,Πhui − ui)U +

NT
∑

i=1

∆t(B∗(P i−1
h
(u)− pi),ui − U i

h
)U . (3.18)

Note that the first term on the right-hand side of (3.18) can be expressed as

NT
∑

i=1

∆t( j′(U i
h) + B∗P i−1

h
,Πhui − ui)U

=

NT
∑

i=1

∆t( j′(ui) + B∗pi ,Πhui − ui)U +

NT
∑

i=1

∆t(B∗pi − B∗pi−1,Πhui − ui)U

+

NT
∑

i=1

∆t( j′(U i
h)− j′(ui),Πhui − ui)U +

NT
∑

i=1

∆t(B∗P i−1
h
− B∗P i−1

h
(u),Πhui − ui)U

+

NT
∑

i=1

∆t(B∗P i−1
h
(u)− B∗pi−1,Πhui − ui)U . (3.19)

Thus we conclude by Lemma 3.1, Cauchy-Schwarz inequality and the above equations
(3.18)–(3.19) that

c‖u− Uh‖
2
l2(I ;L2(ΩU ))

≤
NT
∑

i=1

∆t( j′(ui) + B∗pi,Πhui − ui)U + C‖u−Πhu‖2
l2(I ;L2(ΩU ))

+ C‖p− Ph(u)‖
2
l2(I ;L2(Ω))

+ C∆t2


pt





2

L2(I ;L2(Ω))
+

c

2
‖u− Uh‖

2
l2(I ;L2(ΩU ))

. (3.20)

First let us consider the case that Uh is the piecewise constant element space. Let Πh

be the L2-projection from U = L2(ΩU) to Uh such that for any v ∈ U

(v−Πhv,φ) = 0, ∀φ ∈ Uh.

It is easy to prove that Πhui ∈ Kh, and it follows from [1,2] that for u ∈ l2(I; H1(ΩU))

‖u−Πhu‖l2(I ;L2(ΩU ))
≤ ChU‖u‖l2(I ;H1(ΩU ))

. (3.21)
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Moreover, if u ∈ l2(I; H1(ΩU)) and p ∈ l2(I; H1(Ω)), we have

NT
∑

i=1

∆t( j′(ui) + B∗pi ,Πhui − ui)U

=

NT
∑

i=1

∆t
∑

τU∈T
h

U

∫

τU

�

j′(ui) + B∗pi −Πh( j
′(ui) + B∗pi)

�

(Πhui − ui)

≤‖ j′(u)+ B∗p−Πh( j
′(u) + B∗p)‖l2(I ;L2(ΩU ))

‖Πhu− u‖l2(I ;L2(ΩU ))

≤Ch2
U

�

‖u‖2
l2(I ;H1(ΩU ))

+ ‖p‖2
l2(I ;H1(Ω))

�

≤ Ch2
U . (3.22)

Then the conclusion (3.15) follows from (3.20)–(3.22).

Next we consider the case that Uh is the piecewise linear element space. Let Πhui ∈ Uh

be the standard Lagrange interpolation of u such that Πhui(z) = u(z, t i) for any vertex z.
It is clear that Πhui ∈ Kh, and for u ∈ l2(I; W 1,∞(ΩU)), u(t) ∈ H2(Ω∗∗U (t)) we have

‖ui −Πhui‖0,Ω∗U (ti)
≤ Ch2

U‖u
i‖2,Ω∗U (ti)

, ‖ui −Πhui‖0,∞,Ωb
U (ti)
≤ ChU‖u

i‖1,∞,Ωb
U (ti)

.

Note that Πhu= u on Ωc
U(t), then it follows that

‖u−Πhu‖2
l2(I ;L2(ΩU ))

=

NT
∑

i=1

∆t

∫

ΩU

(ui −Πhui)2

=

NT
∑

i=1

∆t

 

∫

Ω∗U (ti)

(ui −Πhui)2 +

∫

Ωc
U (ti)

(ui −Πhui)2+

∫

Ωb
U (ti)

(ui −Πhui)2

!

≤Ch4
U

NT
∑

i=1

∆t‖ui‖22,Ω∗U (ti)
+ 0+ Ch2

U

NT
∑

i=1

∆t‖ui‖2
1,∞,Ωb

U (ti)
meas(Ωb

U(t i))

≤Ch4
U

NT
∑

i=1

∆t‖ui‖22,Ω∗U (ti)
+ Ch3

U

NT
∑

i=1

∆t‖ui‖2
1,∞,Ωb

U
(ti)

≤Ch3
U

�

‖u‖2
l2(I ;H2(Ω∗∗

U
(t)))
+ ‖u‖2

l2(I ;W1,∞(ΩU ))

�

≤ Ch3
U . (3.23)

Moreover, it follows from (2.5) that j′(u) + B∗p = 0 on Ω∗U(t). Besides, we conclude
from the definition of Ωb

U(t) that for any element τU ⊂ Ω
b
U(t), there is a x0 such that

u(x0, t) > 0, and hence ( j′(u) + B∗p)(x0) = 0. Therefore for any τU ⊂ Ω
b
U(t) we have

‖ j′(u) + B∗p‖0,∞,τU
=‖ j′(u) + B∗p− ( j′(u) + B∗p)(x0)‖0,∞,τU

≤ChU‖ j
′(u) + B∗p‖1,∞,τU

.
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Then

NT
∑

i=1

∆t( j′(ui) + B∗pi ,Πhui − ui)U

=

NT
∑

i=1

∆t

∫

Ω∗U (ti)

( j′(ui) + B∗pi)(Πhui − ui) +

NT
∑

i=1

∆t

∫

Ωc
U (ti)

( j′(ui) + B∗pi)(Πhui − ui)

+

NT
∑

i=1

∆t

∫

Ωb
U
(ti )

( j′(ui) + B∗pi)(Πhui − ui)

=0+ 0+
NT
∑

i=1

∆t

∫

Ωb
U (ti)

( j′(ui) + B∗pi)(Πhui − ui)

≤
NT
∑

i=1

∆t‖ j′(ui) + B∗pi‖0,∞,Ωb
U (ti)
‖Πhui − ui‖0,∞,Ωb

U (ti)
meas(Ωb

U(t i))

≤Ch3
U

�

‖u‖2
l2(I ;W 1,∞(ΩU ))

+ ‖p‖2
l2(I ;W1,∞(Ω))

�

≤ Ch3
U . (3.24)

Thus the conclusion (3.16) is proved by inserting (3.23)–(3.24) into (3.20). �

Before obtaining the final main error estimates, the following lemma is also needed.

Lemma 3.3. Let (y, p) and (Yh(u), Ph(u)) be the solutions of (2.3)–(2.4) and (3.2)–(3.3),
respectively. Assume that the conditions in Lemmas 3.1–3.2 are valid. Besides, we assume

y, p ∈ l∞(I; H1
0 (Ω) ∩ H2(Ω)) ∩ H1(I; H2(Ω)) ∩ H2(I; L2(Ω)). Then the following estimate

holds

‖y − Yh(u)‖l∞(I ;L2(Ω)) + ‖p− Ph(u)‖l∞(I ;L2(Ω)) ≤ C(h2+∆t), (3.25)

where C depends on some spatial and temporal derivatives of y and p.

Proof. These estimates are basically similar to those of Lemma 3.1, thus here we only
give a rough description.

We decompose the error η = y−Yh(u) as η = (y−Θy)+(Θy−Yh(u)) = µ+ϑ, where
Θy(t) ∈ V h is defined to be the elliptic projection of y(t) ∈ V which satisfies

a(y(t)−Θy(t), wh) = 0, ∀wh ∈ V h, t ∈ I . (3.26)

Similarly, the error ξ = p − Ph(u) can be split as ξ = (p −Θp) + (Θp − Ph(u)) = ρ + π,
where Θp(t) ∈ V h is the elliptic projection of p(t) ∈ V which satisfies

a(qh, p(t)−Θp(t)) = 0, ∀qh ∈ V h, t ∈ I . (3.27)

As in [19], the following estimates can be proved for v = y or p that

‖v −Θv‖l∞(I ;L2(Ω)) + h‖v−Θv‖l∞(I ;H1(Ω)) ≤ Ch2‖v‖l∞(I ;H2(Ω)),

‖(v −Θv)t‖L2(I ;L2(Ω)) + h‖(v −Θv)t‖L2(I ;H1(Ω)) ≤ Ch2‖v‖H1(I ;H2(Ω)). (3.28)
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Since the estimates for µ and ρ are known, we need only to derive estimates for ϑ and
π. Thus, we subtract (3.2) from (3.26) and choose wh = ϑ

i to obtain an error equation on
ϑ = Θy − Yh(u):

(dtϑ
i,ϑi) + a(ϑi,ϑi) = −(dtµ

i,ϑi)− (y i
t − dt y i ,ϑi) + (φ(Y i

h
(u))−φ(y i),ϑi). (3.29)

Besides, Eqs. (3.3) and (3.27) can be differenced with qh = π
i−1 to obtain an error

equation on π= Θp− Ph(u):

− (dtπ
i ,πi−1) + a(πi−1,πi−1)

=(dtρ
i,πi−1)+ (pi−1

t − dt p
i ,πi−1) + (g′(y i)− g′(Y i

h
(u)),πi−1)

+ (g′(y i−1)− g′(y i),πi−1) + (φ′(Y i
h
(u))(P i−1

h
(u)− pi−1),πi−1)

+ ((φ′(Y i
h
(u))−φ′(y i))pi−1,πi−1) + ((φ′(y i)−φ′(y i−1))pi−1,πi−1). (3.30)

Similar to the proof in Lemma 3.1, we derive from (3.29) and (3.30) that

‖ϑ‖l∞(I ;L2(Ω)) + ‖ϑ‖l2(I ;H1(Ω))

≤C∆t‖yt t‖L2(I ;L2(Ω)) + Ch2
�

‖y‖H1(I ;H2(Ω)) + ‖y‖l2(I ;H2(Ω))

�

, (3.31)

and

‖π‖l∞(I ;L2(Ω)) + ‖π‖l2(I ;H1(Ω)) ≤C∆t

 

∑

v=y,p

‖vt t‖L2(I ;L2(Ω)) + ‖yt‖L2(I ;L2(Ω))

!

+ Ch2
∑

v=y,p

�

‖v‖H1(I ;H2(Ω)) + ‖v‖l2(I ;H2(Ω))

�

. (3.32)

We then gather the results (3.31)–(3.32) with the well-known estimates for µ and ρ to
finish the assertion of Lemma 3.3. �

Combing the bounds given by Lemmas 3.1–3.3 together, we can easily establish the
following main result.

Theorem 3.1. Suppose that {y, p,u} and {Yh, Ph, Uh} are the solutions of (2.3)–(2.5) and

(2.7)–(2.9), respectively. Assume that all conditions of Lemmas 3.1–3.3 are valid. Then for

m=0, 1, we have

‖y − Yh‖l∞(I ;L2(Ω)) + ‖p− Ph‖l∞(I ;L2(Ω)) + ‖u− Uh‖l2(I ;L2(ΩU ))

≤C(h
1+m

2
U + h2 +∆t), (3.33)

where C depends on some spatial and temporal derivatives of y, p and u.

Proof. It follows from (3.15)–(3.16) and (3.25) that

‖u− Uh‖l2(I ;L2(ΩU ))
≤C

�

h
1+m

2
U +∆t + ‖p− Ph(u)‖l2(I ;L2(Ω))

�

≤C(h
1+m

2
U + h2 +∆t). (3.34)
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Moreover, it follows from Lemma 3.1, Lemma 3.3 and (3.34) that

‖y − Yh‖l∞(I ;L2(Ω)) + ‖p− Ph‖l∞(I ;L2(Ω))

≤‖Yh− Yh(u)‖l∞(I ;L2(Ω)) + ‖Ph− Ph(u)‖l∞(I ;L2(Ω)) + ‖y − Yh(u)‖l∞(I ;L2(Ω))

+ ‖p− Ph(u)‖l∞(I ;L2(Ω))

≤C‖u− Uh‖L2(I ;L2(ΩU ))
+ C(h2+∆t)

≤C(h
1+m

2
U + h2+∆t). (3.35)

Thus we finish the proof of Theorem 3.1. �

4. Numerical experiments

In this section, we carry out two numerical examples to validate the a priori er-
ror estimates for the control, state and co-state. To solve the optimal control prob-
lems numerically, we use the C++ software package: AFEPack. It is freely available athttp://dse.pku.edu.n /~rli/.

In our numerical test, we consider the following optimal control problems:

min
u(t)∈K

1

2

∫ T

0

�

‖y − yd‖
2 + ‖u− ud‖

2
�

d t, (4.1)

subject to a well-posed semilinear parabolic equation:

¨

yt −∆y + y3 = f + u, in Ω× I ,
y(x , 0) = y0(x), in Ω,

(4.2)

and the co-state equation is

¨

− pt −∆p+ 3y2p = y − yd , in Ω× I ,
p(x , T ) = 0, in Ω.

(4.3)

Both Eqs. (4.2) and (4.3) are combined with homogeneous Dirichlet boundary conditions.
In this work, we choose the domain Ω = [0,1]× [0,1] and T = 1. We adopt the same

mesh partition for the state and control such that ∆t = h all along. The convergence order
is computed by the following formula:

Rate ≃
log(Ei)− log(Ei+1)

log(hi)− log(hi+1)
,

where i responds to the spatial partition, and Ei denote the l∞(I; L2(Ω))-norm for the state
and co-state approximations and l2(I; L2(Ω))-norm for the control approximation.
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Example 4.1. For the first example, the control is approximated by piecewise constant
elements. The data and solutions under testing are as follows:

p(x , t) = 0,

ud(x , t) =max(4π2sin(2πx1)sin(2πx2)sin(2πt), 0),

u(x , t) = ud ,

y(x , t) = sin(2πx1)sin(2πx2)sin(2πt),

where the functions f (x , t) and yd(x , t) are determined by inserting the known functions
y(x , t), p(x , t), and u(x , t) into (4.2)–(4.3).

In Table 1 numerical results are presented on a series of uniformly triangular meshes
with h= 1
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Figure 1: The ontrol solution and its ontour-line at t = 0.25.
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Figure 2: The state solution and its ontour-line at t = 0.25.



502 H. Fu and H. RuiTable 1: Example 4.1 with pieewise onstant approximation for the ontrol.
h ‖y − yh‖E Rate ‖p− ph‖E Rate ‖u− uh‖E Rate
1
10

4.8944e-02 —— 3.3402e-03 —— 1.7702e+00 ——
1
20

1.5918e-02 1.6204 1.8669e-03 0.8393 8.8903e-01 0.9936
1
40

5.6093e-03 1.5048 9.6802e-04 0.9475 4.4870e-01 0.9865
1
80

2.1603e-03 1.3766 4.9053e-04 0.9807 2.2342e-01 1.0060

control at t = 0.25 with h= 1
80

. Fig. 2 is the surface of the approximate state solution and

its contour-line at t = 0.25 with h= 1
80
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Figure 3: The ontrol solution and its ontour-line at t = 0.5
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Figure 4: The state solution and its ontour-line at t = 0.5.
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Example 4.2. For the second example, the control is approximated by piecewise linear ele-
ments. Let the desired functions f (x , t) and yd(x , t) be chosen such that the corresponding
analytical solutions for problems (4.1)–(4.3) are:

y(x , t) = x1 x2 sin(πx1) sin(πx2) sin(πt),

p(x , t) = 0.5x1 x2 sin(πx1) sin(πx2) sin(πt),

ud(x , t) = 1.0− sin(πx1)− sin(πx2),

u(x , t) =max(ud − p, 0).

Table 2 contains the same data as in Example 4.1 documenting the convergence rate
versus the spatial mesh-sizes h, and in Figs. 3–4 we also display the profiles of the solutions
for the control and state at t = 0.5 with h= 1

80
, respectively.Table 2: Example 4.2 with pieewise linear approximation for the ontrol.

h ‖y − yh‖E Rate ‖p− ph‖E Rate ‖u− uh‖E Rate
1
10

5.2366e-03 —— 1.6768e-02 —— 1.0496e-02 ——
1
20

2.0882e-03 1.3264 9.4314e-03 0.8302 3.9105e-03 1.4244
1
40

9.0622e-04 1.2043 4.9122e-03 0.9411 1.4739e-03 1.4077
1
80

4.2094e-04 1.1062 2.4889e-03 0.9809 5.4954e-04 1.4233

From the above numerical results, we can see that the convergence order obtained
agrees very well with the a priori error estimates displayed in Theorem 3.1. The finite
element method for the approximation of semilinear parabolic optimal control is effective
and reliable.
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