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Abstract. In this work we consider the problem of shape reconstruction from an unor-
ganized data set which has many important applications in medical imaging, scientific
computing, reverse engineering and geometric modelling. The reconstructed surface
is obtained by continuously deforming an initial surface following the Partial Differen-
tial Equation (PDE)-based diffusion model derived by a minimal volume-like variational
formulation. The evolution is driven both by the distance from the data set and by the
curvature analytically computed by it. The distance function is computed by implicit
local interpolants defined in terms of radial basis functions. Space discretization of the
PDE model is obtained by finite co-volume schemes and semi-implicit approach is used
in time/scale. The use of a level set method for the numerical computation of the sur-
face reconstruction allows us to handle complex geometry and even changing topology,
without the need of user-interaction. Numerical examples demonstrate the ability of
the proposed method to produce high quality reconstructions. Moreover, we show the
effectiveness of the new approach to solve hole filling problems and Boolean operations
between different data sets.

AMS subject classifications: 65D18, 65F10, 65N08
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1. Introduction

The shape reconstruction problem has several applications in areas that include com-
puter visualization, data analysis, biomedical imaging, virtual simulation, computer graph-
ics, etc. Surface reconstruction consists of finding out the original surface shape from
partial information that can include points, pieces of curves, or surfaces. In this paper
we consider implicit surface reconstruction from unorganized, eventually incomplete data
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sets. The reconstruction of a 3D model is usually obtained from scattered data points sam-
pled from the surface of the physical 3D object. The acquisition of the data is in general
realized through 3D scanning systems which are able to capture a dense sampling usually
organized into range images, i.e. sets of distances to the data. The problem is ill-posed,
i.e. there is no unique solution. Furthermore the problem can become quite challenging
if the topology of the real surface is complicated or even unknown. A good reconstruction
algorithm should be able to deal with non-uniform and incomplete data set in order to
construct an arbitrary topology surface with a controlled hole filling strategy, smoothness
and a right behavior for deformation, animation and other dynamical operation.

In general, the techniques for reconstructing a surface from unorganized data sets,
can be divided into two main classes according to the way used to represent the surface:
implicit (non-parametric approach) or explicit (parametric approach). Explicit surfaces in
R

3 are defined as the set of points {x(u, v), y(u, v), z(u, v)} where the parameters u, v ∈ R.
Very popular parametric approaches are based on spline patches which give rise to

smooth reconstructed surface. However these approaches require a nice parametrization
and arbitrary topologies have to be handled by patching of different surface pieces, which
can be very difficult for surface reconstruction from arbitrary data in three or higher di-
mensions [3,14,26].

Several algorithms of shape reconstruction follow a computational geometry approach
and are mainly based on Delaunay triangulations and Voronoi diagrams. These methods
construct a collection of simplexes that form a shape from a set of unorganized points.
These approaches are versatile, but it’s not trivial to handle non-uniform and noisy data
[1].

Recently, implicit methods have captured a lot of attention. In the implicit representa-
tion, the geometry and topology of the surface is defined as a particular iso-contour of a
scalar implicit function over R3. The implicit approaches reconstruct an implicit function
such that a certain level set of this function fits the data best. The iso-contour represents
the reconstructed surface. The advantages of these techniques are the topological flexibil-
ity, the possibility to easily capture geometry property of the surface, and to realize in a
simple way the classical Boolean operations, while it is a challenge to deal with open or
incomplete surfaces, [21].

Approaches based on moving least-squares technique have been used widely for the
reconstruction of point-set surfaces, see [2,16,34].

A particularly powerful approach for implicit surface reconstruction based on Radial
Basis Functions (RBF) has been relatively recently introduced to deal with large scattered
data sets without relying on a priori knowledge of the object topology [4,5,8,30]. The im-
plicit signed distance function is constructed by approximation or interpolation of surface
and exterior constraint points defined by the data set. The coefficients of the reconstructed
function are determined by solving linear systems of equations. The computational cost is
very high for large data sets, when the construction is global. These approaches are not
particularly robust in the presence of holes and low sampling density, ad hoc techniques
and a priori knowledge on the surface topology should be inferred to obtain a faithful
reconstruction [7].
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The shape reconstruction problem is a well-known fundamental problem in computer
vision and image processing fields where it is better known as segmentation process and it
represents a base component in automated vision systems and medical applications [12].
Medical imaging modalities such as magnetic resonance imaging, computed tomography,
ultrasound scans produce large volumes of scalar or vector measurements that are in gen-
eral corrupted by noise and often, large parts of the structure boundary are missing. From
these discrete data, given on two-dimensional or three-dimensional uniform grids, some
information, such as, for example, the morphology of specific body structures, has to be
extracted.

Several variational formulations and PDEs methods have been proposed to extract ob-
jects of interest from 3D images such as the well known geodesic active contour model
defined by Caselles et al. [9] and widely used in different image processing applications.
In a more recent segmentation approach introduced in [29], the authors present a PDE ge-
ometric model for boundary completion, providing interesting results in recovering struc-
tures from 2D and 3D medical images. In [32] a weighted minimal surface model based
on variational formulations is proposed. The unsigned distance function to the data set is
computed by solving on a fixed grid the Eikonal equation, and the reconstructed surface
is then obtained by solving with a time-explicit scheme a non-linear parabolic equation or,
alternatively, a convection model.

In this work we are interested in extending some previous work on PDE-based models
aimed at segmenting 3D objects from 3D uniform grids [10], to the challenging case of
large unorganized set of points. We propose a two steps strategy where the first step
computes the distance function to the data set, while the second step reconstructs the
implicit continuous surface to obtain a watertight 3D model. We combine the accuracy
of an RBF local reconstruction for the first step, with the efficiency in the second step of a
semi-implicit scheme for the surface deformation based on a geometric model for boundary
completion [10]. Moreover, we devise a strategy to accelerate the linear system solver for
the obtained discretization problem.

In the present context, we consider the acquisition of the data realized typically by 3D
scanning systems which are able to capture a huge amount of data, sometimes noisy data,
and eventually with some missing parts. Moreover, we assume no a priori knowledge about
the topology of the surface to be reconstructed. As input our method requires a collection
of constraint points that specify where the surface to be reconstructed is located. Most of
the constraint points come directly from the input data and, in addition, some points have
to be explicitly identified as being outside the surface. The use of a priori knowledge about
the scanning acquisition system lets us define automatically the constraint points that lie
outside the object.

The main goal is to reconstruct the shape of arbitrary topology objects with a controlled
hole filling strategy using implicit surface representation.

At this aim, a preliminary computation is required to locally approximate the signed
distance function to the data set by using local implicit interpolation. Using the signed
distance function to compute the shape indicator, then the surface is recovered by continu-
ously deforming the level sets of an initial 3D manifold towards the object boundaries. The
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evolution is driven both by the distance to the data set and by the curvature analytically
computed by it.

The deformation model is based on a diffusion-advection PDE model which governs
the 3D manifold evolutions. To easily deal with arbitrary topology data set, we use the
level set methodology for the deformation of the 3D manifold.

The level set approach has been introduced by Osher and Sethian [22, 25], to solve
problems of surface evolution and it is a powerful numerical technique that allows for
cusps, corners, and automatic topological changes and provides easy discretizations on the
Cartesian grid.

This paper is organized as follows. Section 2 introduces the 3D manifold evolution and
related PDE-model which has been used to evolve the level sets surfaces towards the object
boundaries. Section 3 discusses some numerical aspects involved in the reconstruction
algorithm, such as the approximation of the distance function by local implicit interpolants
based on radial basis functions, and the discretization of the proposed PDE model for the
solution of the 3D manifold evolution. Numerical examples in Section 4 illustrate the
performance of the reconstruction method when applied to real and synthetic data sets
and Section 5 contains concluding remarks.

2. A weighted 3D manifold evolution

A parametric 3D manifold in 4D space is the natural extension to a parametric surface
in 3D space defined as the set of point {x(u, v), y(u, v), z(u, v)}, where (u, v) belongs to a
parametric domain in IR2.

The graph of a trivariate function φ mapping an open set Ω ⊂ IR3 into IR, can be
considered as a special 3D manifold using the parameterization

X(u) = {u, v, w,φ(u, v, w)}, (u, v, w) ∈ Ω⊂ IR3. (2.1)

The normal n(u) of the 3D manifold at X(u) is given by

n(u) =
(−φu,−φv ,−φw , 1)
p

1+φ2
u +φ

2
v +φ

2
w

. (2.2)

Considering a fixed parametric domain, the evolution of the 3D manifold in Ω corresponds
to local variations in the φ function. Along a given v vector field defined on Ω, the mean
curvature flow for the points X(u) = {u, v, w,φ}, is the following:

∂ X

∂ t
=

H

n · v
· v, (2.3)

with H the mean curvature and n the unit normal vector given by (2.2) [11]. Let us
consider the vector field v= (0,0,0,1), then

1

n · v
· v=
p

1+ ‖∇φ‖2(0,0,0,1), (2.4)
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and we can rewrite (2.3) as
∂ X

∂ t
=
�

0,0,0,
∂ φ

∂ t

�
. (2.5)

Thus for tracking the evolving 3D manifold is sufficient to follow the evolution of φ via

∂ φ

∂ t
= H
p

1+ ‖∇φ‖2. (2.6)

Replacing in (2.6) the mean curvature H defined as function of φ as

H = div

�
∇φ
p

1+ ‖∇φ‖2

�
, (2.7)

the mean curvature flow for φ is then given by

∂ φ

∂ t
=
p

1+ ‖∇φ‖2div

�
∇φ
p

1+ ‖∇φ‖2

�
, (2.8)

with initial condition, considered, for example, as the function φ0 = 1/D, where D is the
distance function from a fixed point inside the region of interest for reconstruction.

It is interesting to notice that Eq. (2.8) can be also derived as the steepest descent of
the volume of the 3D manifold

V :=

∫

Ω

dV, dV =
p

1+ ‖∇φ‖2d xd ydz. (2.9)

Let us consider a new metric g applied to the space. For example, if P denotes the
data set which in general can include points, curves or pieces of surfaces in IR3, we define
the new metric g as follows

g(x) = d(x)e‖k(x)‖, (2.10)

where x= (x1, x2, x3) ∈ IR3, d(x) =dist(x,P ) is the distance function to P and k(x) is the
normalized mean curvature of d(x) evaluated at x. The metric g acts as a shape indicator
on the data set which approaches to zero when d(x) approaches to zero, that is near the
object boundaries, it is zero for d(x) = 0, on the object boundaries, and it is increased near
boundaries characterized by high mean curvatures, thus avoiding early stops.

Then, according to the metric g defined by (2.10) in Ω the weighted volume on Ω is
given by

Vg :=

∫

Ω

g(x)dV, dV =
p

1+ ‖∇φ‖2d xd ydz. (2.11)

The local minimizer for the volume functional (2.11) which is attracted to the data
set, with a more important attraction where the curvature is larger, is determined by the
steepest descent of (2.11), namely

∂ φ

∂ t
=
p

1+ ‖∇φ‖2∇.


g(x)

∇φ
p

1+ ‖∇φ‖2


 , (2.12)
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or, equivalently, in advection-diffusion form

∂ φ

∂ t
= g(x)∇.


 ∇φ
p

1+ ‖∇φ‖2


+∇g · ∇φ. (2.13)

The PDE model (2.13) represents the mean curvature motion of the 3D manifold in 4D
space with metric g. The metric g in (2.13) is the shape indicator function appropriately
chosen so that the object boundaries act as attractors under a particular flow. This term
allows us to extract sharp features, such as edges, corners, spikes, and to accelerate the
deformation of the initial function. In Section 4 Example 4.2 we demonstrate the effec-
tiveness of the g metric. In the evolution of φ according (2.13) the 3D manifold assumes
constant values for most regions far from the boundaries. The first term in (2.13) corre-
sponds to a minimal volume regularization weighted by the function g, while the second
term corresponds to the attraction to the data, given by the distance and curvature field.
The advection term in Eq. (2.13) introduces a driving force which moves the level surfaces
towards the object boundaries.

More details about the use of the Riemann mean curvature flow of graphs and about
the role of this model in image segmentation and completing missing boundary can be
found in Sarti et al. [29].

In [10] the authors proposed a variant of the segmentation PDE equation for dealing
with the boundary completion problem introducing a parameter ǫ. The hole filling strategy
we propose for the object boundary reconstruction problem is based on this idea, thus the
PDE model (2.12) takes the form:

∂ φ

∂ t
=
p
ǫ2 + ‖∇φ‖2∇.


g(x)

∇φ
p
ǫ2 + ‖∇φ‖2


 , (2.14)

where the variability in the parameter ǫ provides both a regularization effect and a hole
filling strategy. The role of ǫ parameter as a regularization has been proposed by Evans
and Spruck in [15] as a tool to prove existence of a viscosity solution of equations of mean
curvature flow type. In [10] the ǫ parameter is interpreted as a modelling parameter
which helps in speed up the reconstruction process in case of noisy data and also helps
to complete missing boundaries. If ǫ is close to 1 then the behavior of the flow is mostly
diffusive. When instead we decrease ǫ, i.e. we stay closer to the level set flow (2.15), we
close larger gaps, see examples in Section 4.

The PDE model (2.14) reduces to (2.12) for ǫ = 1, while for ǫ = 0 and g(x) = d(x) we
obtain the PDE model proposed by Zhao et al. in [31] for surface reconstruction using a
level set approach, namely

∂ φ

∂ t
= ‖∇φ‖∇ ·
�

g
∇φ

‖∇φ‖

�

= ‖∇φ‖
�
∇g
∇φ

‖∇φ‖
+ g∇ ·

∇φ

‖∇φ‖

�
, (2.15)
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where φ(x, t), represents the surface Γ as the set where φ(x, t) = 0. In particular, the
level set function φ(x, t) is negative inside Γ and positive outside Γ. Thus the surface is
captured for each time step, by merely locating the set Γ(t) for which φ vanishes. Instead
of tracking the zero level set as in (2.15), in the proposed equation (2.14) the evolution
moves all the iso-surfaces towards the object boundaries thus topological changes such as
breaking and merging can be easily handled. The PDE model (2.15) has been obtained by
minimizing the surface energy functional

E(Γ) =

∫

Γ

d(x)ds, (2.16)

where ds is the surface element. As derived in [32] the gradient flow of the energy func-
tional (2.16) is

dΓ

d t
= −
�
∇g(x) · n+ g(x)H

�
n, (2.17)

where g(x) = d(x), and the minimizer solution of the gradient flow satisfies the Euler-
Lagrange equation �

∇g(x) · n+ g(x)H
�
= 0, (2.18)

where
n=∇φ/|∇φ|

is the unit outward normal and
H =∇ ·∇φ/|∇φ|

is the mean curvature of Γ.
The time evolution PDE for the level set function is defined such that the zero level set

has the same motion law as the moving surface, i.e., Γ(t) = {x : φ(x, t) = 0}:

dφ(Γ(t), t)

d t
= φt +

dΓ(t)

d t
· ∇φ = 0.

Replacing dΓ(t)

d t
with the gradient flow (2.17) we get the PDE model (2.15).

3. Numerical aspects of the reconstruction algorithm

Given an unorganized set P of N points Pi ∈ IR3, i = 1, · · · , N , we want to reconstruct
the surface Γ defined as the level set of an implicit function φ(t,x), t ∈ [0, T],x ∈ Ω ⊂ IR3

obtained by evolving the model (2.14). At this aim, we need two numerical ingredients:
first, we have to compute the distance function to the arbitrary data setP , then the second
step involves the solution of the time dependent PDE (2.14) on a uniform grid defined on
Ω. The numerical technique involved to solve the latter is based on an efficient semi-
implicit scheme and finite volume space discretization [10].

The shape reconstruction method is described by Algorithm 3.1 and discussed in more
details in the rest of this section.
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INPUT: data set P , TOL

OUTPUT: reconstructed surface Γ

STEP pre-comp:

determine the spherical cover domain Ω1

compute d(x) and k(x) on Ω1 by local RBF reconstruction;

φ(x, 0) = φ0;

STEP evolve:

repeat

compute φ(x, tn) in (2.14) by solving (3.18) for Φ, ∀x ∈ Ω1;

until ‖φ(x, tn)−φ(x, tn−1)‖2 < TOL;

STEP post-comp visualize the s-level set of φ, where s = (max(Φ)+min(Φ))/2.

In a pre-processing step, pre-comp, we determine the spherical cover of the data set
and then we compute the distance function to the data set as a local interpolant function
only in points belonging to the spherical cover. Precisely, for a given h-dense data set P , r

cannot be a point of Γ if dist(r,P )> h. Thus for each Pi ∈ P we define

Bi =
¦
x ∈ IR3 : |x− Pi| ≤ h

©
,

the sphere of radius h and center Pi. Hence the working domain Ω1 ⊂ Ω,Ω1 =
⋃N

i=1 Bi

completely encloses the data set.
The restriction of the domain from Ω to Ω1, let us speed up the computation of the

solution of the PDE model (2.14) in step evolve. In fact, instead of solving it on a uniform
volume grid on Ω, which clearly leads to inefficient computation and undue storage, we
computes the PDE model solution only on points sufficiently close to the surface to be
reconstructed, that is on Ω1.

Although the idea of computational adaptivity has been used also in the fast sweeping
algorithm by Zhao et al. [32], our approach is different. They considered the solution of the
Eikonal equation by an upwind differencing scheme for front evolution where the solution
is computed on a sweeping narrow band with readjusting neighbors. We compute the
surface evolution at each time step, only on all grid points contained on the pre-computed
spherical cover by a finite volume discretization of the PDE equation (2.14). Our proposal
has been made possible thanks to the use of Krylov-space iterative linear solvers, as detailed
in Section 3.3.

In the final STEP post-comp, the reconstructed surface is obtained from the implicit
surface φ as the zero level set of the function φ(x) − s, that is the s-level set of φ:
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{(u, v, w) ∈ Ω : φ(x) = s}, where s is the average between the maximum and the mini-
mum of the φ function. This is motivated by the fact that the flow driven by (2.14) forms
a sharp step in the proximity of the object boundaries, while it approaches at constant
values inside/outside the object.

3.1. Computing the distance function

In [31, 32] the construction of the distance function d(x) from unorganized points on
a rectangular grid, follows a PDE-based approach by solving the Eikonal equation:

‖∇d(x)‖= 1, d(x) = 0, x ∈ Γ, (3.1)

which is the stationary case of the Hamilton-Jacobi equation. We refer the reader to [20]
for more detailed information. In particular, given N data points, first each data point has
to be located within a grid cell and the exact distance values at the vertices of the grid
cell have to be determined. These distance values initialize the grid on which the Eikonal
equation (3.1) has to be solved. One way to solve (3.1) is to use upwind finite difference
schemes and iterate the solution in time, (see [31]). The Fast Marching Method proposed
by Sethian [25] solves (3.1) leading to an algorithm with time complexity O (MlogM),
for M grid points. This approach provides in general good results when the given data is
represented by continuous curves, however, it fails to compute a good approximation of the
distance function to the real shape Γ when isolated points are given, moreover, the results
strongly depend on the chosen grid resolution which consequently limits the algorithm
efficiency. Another problem involved in the Eikonal equation’s solution is the discontinuity
at points equidistant from two separate data points.

In this paper we propose an alternative method to evaluate the distance function with-
out solving the Eikonal equation. We approximate the signed distance function by using
local implicit interpolants of an arbitrary scattered data set. The implicit representation
is based on Radial Basis Functions (RBFs). The signed distance function is analytically
constructed in a small neighborhoods around the data points and then evaluated on a set
of grid points x ∈ Ω1 in order to construct the shape indicator function g(x) in (2.14). For
a discussion on the choice of the grid size used in solving the PDE model (2.14), we refer
the reader to Section 3.2.2.

At each point Pi in the data set is associated a sphere Bi of the spherical cover; we
reconstruct the local distance function on Bi by computing a local RBF interpolant of data
contained in Bi .

Let us focus our attention on the construction of a single interpolant on a generic
spherical domain B. The constraints may be points on the surface to be reconstructed, that
is x j ∈ P , or off-surface points external to the object in order to avoid the trivial solution
of a vanishing interpolant everywhere. At each point {x j ∈ B; j = 1, · · · , NB}, a function
value f j is associated according to its signed-distance to the set P :

f j = 0 if dist(x j ,P ) = 0,

f j 6= 0 if x j is an off-surface point,
(3.2)
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where f j > 0 for points outside the object surface and f j < 0 for points inside.
When the data set is provided e.g. by a 3D scanning system, points on the object are

acquired directly by the digitalization system, while constraints outside of the object can be
captured if the line-of-sight to the scanner is used during the acquisition phase. In practice,
the exterior constraints are located at the same distance away from the surface constraints
towards the scanner viewpoint and assign them a function value of 1.0. Since they do
not represent actual data a sparse sampling of exterior constraints is sufficient to correctly
solve the interpolation problem.

The local implicit reconstruction problem consists of determining a function d(x) which
satisfies the interpolation conditions:

d(x j) = f j , j = 1, · · · , NB, (3.3)

see [8] for a detailed discussion on RBF local approximations and related computational
and stability aspects.

The local reconstruction of the distance function d(x) on B, gives us an implicit, an-
alytical representation which can be evaluated anywhere, in particular, we will evaluate
d(x) at each point x ∈ B belonging to the 3D grid used for the space discretization of the
PDE evolution model (2.14).

For the local implicit distance function we consider a representation based on Radial
Basis Functions since the RBFs represent a well established tool for multivariate scattered
data interpolation.

The RBF interpolant of the data

{(x j , f j)}
NB

j=1, x j ∈ B, f j ∈ R, (3.4)

with positive definite radial function ϕ : [0,+∞)→ IR, is given by

d(x) =

NB∑

k=1

akϕ(‖x− xk‖2). (3.5)

The coefficients ak, k = 1, · · · , NB are obtained imposing the interpolation conditions (3.3),
i.e., by solving the linear system

d(x j) =

NB∑

k=1

akϕ(‖x j − xk‖2), j = 1, · · · , NB. (3.6)

It is well known that the linear system (3.6) is uniquely solvable, as long as the radial
basis functions ϕ are positive definite, such as for example is the case for some popular
choices proposed in the literature such as inverse multiquadrics, Gaussians, and compactly
supported radial basis functions [33].

Given the analytical reconstruction of d(x) the mean curvature can be reliably calcu-
lated as follows:

k =∇ ·
�
∇d

|∇d |

�
.
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Figure 1: Slies from the signed distane funtion reonstrution of the bunny data set (see Fig. 2).
Using the notations

dx =
∂ d

∂ x
, dy =

∂ d

∂ y
, dz =

∂ d

∂ z
, dx y =

∂ 2d

∂ x∂ y
, dxz =

∂ 2d

∂ x∂ z
, dyz =

∂ 2d

∂ y∂ z
,

we can compute analytically the curvature term k as

k =
1

‖∇d‖3

�
d2

x dy y − 2dx dy dx y + d2
y dx x + d2

x dzz − 2dx dzdxz

+ d2
z dx x + d2

y dzz − 2dy dzdyz + d2
z dy y

�
.

Associated with the spherical covering, a family of non-negative weight functions
{w j} j=1,N , with limited support supp(w j) ⊆ B j , is constructed, with the additional prop-
erty that
∑

j w j = 1 in the entire domain Ω1. For each grid point x ∈ Ω1 which belongs to
support B j , the evaluation of distance function d(x) is given by the sum of all the contri-
butions of the distance function values obtained for each Pj, j = 1, · · · , N , such that x ∈ B j ,
suitably blended by the weights {w j} j=1,N .

In Fig. 1 we show some slices from the signed distance function reconstruction of thebunny data set (for the final reconstruction see Fig. 2). The values for d(x) are mapped in
the range [0,255] to be represented as grey-level images. The influence of the spherical
cover is well represented by non-white pixels in the images.

If the scattered data set presents some holes smaller than a diameter h, then the dis-
tance function d(x) on Ω1 computed on the spherical cover for a h-dense data set, can fill
these holes. However, in general, the STEP pre-omp in Algorithm 3.1 leaves gaps larger
than h in the d(x) computation since it is difficult to estimate a suitable value for h which
predicts a correct reconstruction. The STEP evolve in Algorithm 3.1 will then provide the
correct control on the hole filling during the surface reconstruction.

3.2. Solving the non-linear PDE diffusion equation

The computational method for solving (2.14) is based on an efficient semi-implicit co-
volume scheme suggested in [10]. It provides an unconditionally stable, semi-implicit time
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discretization, and a 3D co-volume spatial discretization on a grid.
The equation we want to solve is (2.14) where φ(x, t) is the unknown function, defined

in Ω× [0, T], and Ω ⊂ IR3 contains all the data points. The endpoint of the interval [0, T]

represents a time when the final reconstruction result is achieved. In practice T is chosen
a posteriori.

Eq. (2.14) is accompanied with Dirichlet boundary conditions

φ(x, t) = φD in ∂Ω× [0, T], (3.7)

and with initial condition
φ(x, 0) = φ0(x) in Ω. (3.8)

In surface reconstruction we use Dirichlet boundary conditions and without loss of gener-
ality we may assume φD = 0. We assume that initial state of the function is bounded, i.e.
φ0 ∈ L∞(Ω). In particular we have considered

φ0(x) =
1
p
‖C− x‖2 + γ

, (3.9)

where γ > 0.0 can be considered as a regularization parameter, and C is a point inside
the domain, typically the center of Ω. To further accelerate the convergence, we have also
considered the distance function to initialize the function φ, that is

φ0(x) = d(x). (3.10)

In our approach, the reconstruction is an evolutionary process given by the solution of
Eq. (2.14). The stopping criterion is the change, in L2-norm, of solution in time less than
a prescribed threshold.

The mean curvature flow is weighted by the shape indicator function g : IR3 → IR+,
which provides useful information of the object we want to reconstruct. In fact, this func-
tion allows us to stop evolution of φ near the data set, i.e. where the distance is (almost)
zero. We notice a similar behavior in the edge detection function g(‖∇I‖), used in the
Perona-Malik model for segmentation problems (∇I is the image gradient), where the
evolution process is arrested when the segmentation function achieves the high gradient
region, i.e. an edge zone [23].

In order to provide high quality reconstructions we introduced in (2.10) a term con-
nected with the curvature of the surface. The idea is to increase the attraction of φ towards
object’s sharp features. In (2.14), where 0≤ g(x)≤ e, e = 2.71828182, the motion of level
sets is influenced by the surface features expressed in g.

3.2.1. Semi-implicit time discretization

For the time discretization of (2.14), we first choose a uniform discrete time step τ, then
we replace time derivative in (2.14) by backward difference. The nonlinear terms of the
equation are treated from the previous time step while the linear ones are considered on
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the current time level, this means semi-implicitness of the time discretization. By such
approach we get the semi-discrete in time scheme:

Let τ be a fixed number, g be given by (2.10), φ0 be a given initial function. Then, for every

discrete time step tn = nτ, n= 1, · · · , N, we look for a function φn, solution of the equation

1

‖∇φn−1‖ǫ

φn −φn−1

τ
=∇.

�
g
∇φn

‖∇φn−1‖ǫ

�
. (3.11)

where ‖∇φn−1‖ǫ =
p
ǫ2 + ‖∇φn−1‖2.

We observe that since g(x) is computed as a pre-processed step on the data set in input,
in the evolution (2.14) it remains the same at each time step.

3.2.2. Co-volume spatial discretization in three dimensions

The computational domain is obtained by decomposing Ω into cubic cells. According to
[10] the construction of co-volume mesh has to use 3D tetrahedral finite element grid to
which it is complementary. We denote by T this 3D tetrahedral grid.

In this method, only the centers of cells in Ω represent Degree of Freedom (DF) nodes,
i.e. we solve the equation at a new time step updating the function only in these DF nodes.
We denote these values φn

p , p = 1, · · · , M . Since there will be one-to-one correspondence
between co-volumes, DF nodes and grid points, to avoid any confusion, we use the same
notation for them. The co-volume mesh consists of M cells associated with DF nodes p of
T .

The choice of the number of co-volume M , that is of the volume grid size, is indepen-
dent on the density of the initial unorganized data set, and it only affects the accuracy of
the reconstruction as well as the computational complexity of the model. In fact, the dif-
ficulties given by a data set that is not uniformly sampled with some patches that are very
dense and others that are very sparse, are efficiently managed by the computation of the
analytical distance function, as discussed in Section 3.1. The choice of the grid size only
effects the visualization of the results on different resolution and scale. Finer resolution
will lead to more detailed reconstructions.

Following the notation in [10], for each DF node p let Cp be the set of all DF nodes q

connected to the node p by an edge. This edge will be denoted by σpq and its length by hpq.
Then every co-volume p is bounded by the planes epq that bisect and are perpendicular to
the edges σpq,q ∈ Cp.

We denote by Epq the set of tetrahedras having σpq as an edge. In our configuration
every Epq consists of 4 tetrahedras.

As it is usual in finite volume methods [13, 19], we integrate (3.11) over every co-
volume p obtaining

∫

p

1

‖∇φn−1‖ǫ

φn −φn−1

τ
d x =

∫

p

∇.

�
g
∇φn

‖∇φn−1‖ǫ

�
d x . (3.12)
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For the right hand side of (3.12) using divergence theorem we get
∫

p

∇.

�
g
∇φn

‖∇φn−1‖ǫ

�
d x =

∫

∂ p

g

‖∇φn−1‖ǫ

∂ φn

∂ ν
ds

=
∑

q∈Cp

∫

epq

g

‖∇φn−1‖ǫ

∂ φn

∂ ν
ds,

where ν denotes the unit normal to ∂ p. So we have an integral formulation of (3.11)
∫

p

1

‖∇φn−1‖ǫ

φn −φn−1

τ
d x =
∑

q∈Cp

∫

epq

g

‖∇φn−1‖ǫ

∂ φn

∂ ν
ds. (3.13)

In every discrete time step tn of the method (3.11) we have to evaluate gradient of φ
at the previous time step ‖∇φn−1‖ǫ. We consider a piecewise linear approximation of φ
on this grid, such that its gradient has a constant value in tetrahedras. We will denote
this constant value by ‖∇φT‖. Then we consider the value of g in the midpoint of σpq,
denoting it by gpq. For the approximation of the right hand side of (3.13) we get

∑

q∈Cp



∑

T∈Epq

cT
pq

gpq

‖∇φn−1
T ‖ǫ



φn

q −φ
n
p

hpq

, (3.14)

with cT
pq is the area of the portion of epq that is in T , and the left hand side of (3.13) is

approximated by

Mǫp m(p)
φn

p −φ
n−1
p

τ
, (3.15)

where m(p) is measure in IR3 of co-volume p and Mǫp is an approximation of the capacity

function 1
‖∇φn−1‖ǫ

inside the finite volume p. If we define the coefficients

βn−1
p = Mǫp m(p), αn−1

pq =
1

hpq

∑

T∈Epq

cT
pq

gpq

‖∇φn−1
T ‖ǫ

, (3.16)

we get from (3.14)-(3.15) the following:

Fully-discrete semi-implicit co-volume scheme: Let φ0
p , p = 1, · · · , M be given discrete

initial values of the function. Then, for n= 1, · · · , N we look for φn
p , p = 1, · · · , M, satisfying

βn−1
p φn

p +τ
∑

q∈Cp

αn−1
pq (φ

n
p −φ

n
q ) = β

n−1
p φn−1

p . (3.17)

Applying boundary conditions, we get a system of linear equations which can be rewrit-
ten in matrix-vector form as

AΦ = b, (3.18)
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with the coefficient matrix A ∈ IRM×M which is a symmetric and diagonally dominant M-
matrix, and Φ = (φ1, · · · ,φM ) is the vector solution of the linear system.

The semi-implicit time discretization scheme used to numerically solve the formulation
(2.14) turns out to be unconditionally stable as follows from the following result proved
in [18].

Theorem 3.1. The linear system (3.18) obtained by the scheme (3.17), for any τ > 0, ǫ > 0
and for every time step n= 1, · · · , N has a coefficient matrix that is symmetric and diagonally

dominant thus a unique solution Φn = (φn
1 ,φn

2 , · · · ,φn
M ) exists. Moreover, for any τ > 0,

ǫ > 0, the following L∞ stability estimate holds

min
p
φ0

p ≤min
p
φn

p ≤max
p
φn

p ≤max
p
φ0

p , 1≤ n≤ N . (3.19)

Any efficient iterative algorithm can be applied to solve the linear system (3.18), for
example the PCG (preconditioned conjugate gradient) is suitable for sparse, symmetric,
diagonally dominant M-matrices [27]. In the experiments presented in section 4 we used
PCG and the iterative algorithm is stopped at the lth iteration if the norm of the residual
is less than a tolerance 1 · 10−3. Incomplete Cholesky factorization is used as effective tool
to construct efficient preconditioners for symmetric positive definite M-matrices. However,
the system dimension can be significantly reduced if only grid points close to the region
of interest could be involved in the computation. In the next section we introduce an effi-
cient linear solver strategy suitable for reduced version of the linear system (3.18) which
considers only a small portion Ω1 of the grid domain Ω with a negligible penalization on
the results.

3.3. Fast linear system resolution

The computation of an approximate solution of the PDE non-linear model (2.14) would
require the update of the unknown function φ(x , t) for each co-volume of the domain Ω,
at each time step n, which is a time consuming process. Since the unknown function
φ(x , t) evolves only on nodes sufficiently close to the object boundary, we speed up the
computation by determining the updated values for φ(x , t) only for the nodes x ∈ Ω1

inside the spherical cover.
In practice, at each time step, we reduce significantly the number of unknowns in

the linear system (3.18), thus saving both storage requirement and computational costs.
Since at each row of A corresponds a node in Ω, considering a limited number of nodes
M1 ≪ M , we get a linear system with a sparse coefficient matrix which contains M − M1

zero rows. Moreover, if we consider to apply a Krylov-type iterative method, like PCG or
gmres method, where the main computational step involves a matrix-vector product with
a vector of unknowns which contains M−M1 zeros, then we end up with a matrix A which
has M−M1 zero rows and columns. It is easy to verify that applying a suitable permutation
to rows and columns of A, and corresponding elements of b, we get a linear system with
a coefficient matrix eA∈ RM1×M1 with full rank which has the same epta-diagonal structure
as A, that is, it’s symmetric and positive definite. In a similar way, the same permutation



420 E. Franchini, S. Morigi and F. SgallariTable 1: Resolution of the linear systems (3.18) and (3.20) by PCG iterative solver. The table reportsthe relative errors (‖er r‖), the residual norms (‖res‖), the number of iterations (#i tsin), and the numberof non-vanishing elements (nz) for matries of dimension dim and full rank.
PCG PCGs PCG PCGs PCG PCGs

dim 1000 144 1000 343 1000 512
nz 6400 1008 6400 2401 6400 3584

#i tsin 63 11 74 9 25 9
‖res‖ 6.5 · 10−6 5.5 · 10−6 1.6 · 10−5 1.4 · 10−5 3.9 · 10−6 5.8 · 10−6

‖er r‖ - 3.6 · 10−4 - 1.9 · 10−7 - 4.7 · 10−8

applied to the components of the right-hand side vector b, leads to a vector eb ∈ RM1 .
Therefore, instead of solving the linear system (3.18) which involves a M ×M coefficient
matrix, we apply a Krylov-like iterative method for computing the solution eΦ of the linear
system

eAΦ = eb. (3.20)

In general, iterative methods for solving linear systems (3.18) and (3.20) require to
store only the non-vanishing elements of the coefficient matrix and to compute at each
iterative step a matrix-vector multiplication which is inexpensive because of the lower
dimension matrix.

In order to estimate the error between the approximated solutions eΦ and Φ we com-
pare the results obtained by solving the linear systems (3.18) and (3.20) using the PCG
algorithm with the stopping criterium driven by the tolerance 1 · 10−6, for three simple
tests.

Let us consider a data set of points on a cube, inside a grid of resolution 103, for a
fixed time step n, with cubes defined by an increasing size, and corresponding increasing
number of data points (one for each voxel). The dimension of the cube determines the
number of unknowns in (3.20). In Table 1 we illustrate the results for the three tests.
The results displayed in Table 1 columns 2-3 are related to cube dimension 4, in Table 1
columns 4-5 the cube dimension is 6, while in Table 1 columns 6− 7 the cube-dimension
is 7. All the coefficient matrices have full rank.

In Table 1, for each of the three examples, the column denoted by PCG represents the
solution of the linear system (3.18), while the column labelled PCGs reports the results
obtained by solving (3.20). The rows in Table 1 display the dimensions of the matrices
A ∈ RM×M and eA ∈ RM1×M1 denoted by dim, the non-vanishing elements by nz, the norm
of the residuals, ‖res‖, the relative errors on the approximate solutions

‖er r‖= ‖Φ− eΦ‖2/‖Φ‖2,

and the number of iterations (#i tsin) required to solve the linear systems by the pcg
method. The results are qualitatively the same from a visual inspection, and the relative
errors reported in Table 1 confirm the goodness of the approximate solutions.

While in Table 1 we report the results related to a single time step, in Table 2, we
consider the relative errors in the approximate solution eΦ for an increasing number of time
iterations (#i tsout ) in STEP evolve of Algorithm 3.1. At each time step the dimension of
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#i tsout ‖er r‖

2 5.6 · 10−7

4 1.7 · 10−6

6 2.5 · 10−6

8 2.7 · 10−6

10 2.8 · 10−6

the linear systems (3.20) remains the same, and the error on the solution propagated by
the function evolution is limited in time.

4. Experimental results

In this section we present some numerical examples of shape reconstructions obtained
by applying the proposed algorithm on synthetic and real data sets. The computations are
carried out on a CPU INTEL XEON 2GHz with 8Gb memory. All the reconstructions are
on a 150× 150× 150 grid and the resulting surfaces are displayed using the marching
cube method in the Visualization Toolkit package [24], for rendering iso-surfaces from a
3D grid. In the following examples, the computation of the distance function, as discussed
in Section 3.1, is based on inverse multiquadric RBFs, but similar results can be obtained
by using Gaussian or compactly supported RBFs.

Example 4.1. In the first example we demonstrate the ability of Algorithm 3.1 of dealing
with moderately large data sets representing complex shapes with small detailed features.
The original data sets are the teapot (4255 points), the Stanford bunny (34835 points)
and the gargoyle (10141 points).

For a better understanding of the evolution process computed by Algorithm 3.1 in STEPevolve, in Fig. 2 a sequence of evolving steps is illustrated. All the images show the same
iso-surface extracted by the evolving 3D manifold. The initial iso-surface given by (3.9)
evolves following a mean curvature flow, where the diffusion is driven by the distance field
and the curvature of the original data set. The level sets accumulate along the boundaries
of the bunny and the evolution stops as soon as the solutions of two successively time steps
differ for less than the tolerance 1 · 10−4. All the experiments reported in this section have
been obtained using this tolerance as input parameter TOL in Algorithm 3.1.

In Fig. 3(a) the original cloud of points for the gargoyle data set is shown together
with the corresponding reconstruction (Fig. 3(b)) obtained after 10 time steps of Algorithm
3.1, using a time step 1 · 10−3 and initial conditions given by (3.10). The quality of the
details in the reconstructed surface strongly depends on the resolution of the 3D grid used
in the STEP evolve of Algorithm 3.1. Finer resolution grids allow for a more accurate
reconstruction, but are obviously much more computation demanding.

The teapot original data set shown in Fig. 4(a) has been reconstructed by 16 time
steps of Algorithm 3.1 using a time step 1 · 10−3, with initial conditions given by (3.10),
and the reconstructed surface is illustrated in Fig. 4(b).
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Figure 2: Example 4.1. Results of the surfae evolution for the bunny reonstrution for di�erent timesteps.
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(a) (b)Figure 3: Example 4.1. Reonstrution of the gargoyle data set: (a) loud of points (b) reonstrutedsurfae obtained by Algorithm 3.1.

(a) (b)Figure 4: Example 4.1. Reonstrution of the teapot data set: (a) loud of points (b) reonstrutedsurfae obtained by Algorithm 3.1.
Example 4.2. The boolean operations of two implicit surfacesM1 andM2 can be carried
out quite easy, using the min, max tools on the related signed distance functions d1(x)

and d2(x), see, for example [32]. In fact the union, intersection and differences between
two surfaces can be obtained by applying the evolving PDE (2.14) with shape indicator
function (2.10) where d(x) is defined respectively by

d(x) =min{d1(x), d2(x)}, union,
d(x) =max{d1(x), d2(x)}, intersection,
d(x) =max{d1(x),−d2(x)}, difference(M1 −M2),
d(x) =max{−d1(x), d2(x)}, difference(M2 −M1).

(4.1)

Examples of boolean operations are shown in Fig. 5 where the data sets of a sphere



424 E. Franchini, S. Morigi and F. Sgallari

(a) (b) (c)Figure 5: Example 4.2. Boolean operations between two data sets ube and sphere: (a) union (b)intersetion () di�erene ube minus sphere.
(a) (b) (c)Figure 6: Example 4.2. The union between a trunated one (a) and a heart shaped model (b)gives rise to the resulting surfae in ().

and a ube have been composed to obtain respectively the union, intersection and differ-
ence (ube minus sphere) between the two surfaces. In Fig. 5 the reconstructed resulting
surfaces have been obtained after 50 time steps of Algorithm 3.1 using a time step 1 ·10−3,
with initial conditions given by (3.9). The distance function d(x) has been computed
by applying (4.1) to the signed distance functions d1(x) and d2(x) obtained by the STEPpre-omp in Algorithm 3.1.

In Fig. 6, another example of boolean operations between a trunated one and aheart-shapedmodel is shown. The latter is represented mathematically by a sixth order
implicit polynomial function, (2x2+ y2+ z2−1)3− (0.1x2+ y2)z3 = 0. The surface union
of the two shapes, shown in Fig. 6(c), is reconstructed after 12 time steps by Algorithm 3.1
with initial conditions given by (3.10), using a time step τ = 5 · 10−4.

The intersection of two atus shapes shown in Fig. 7 gives raise to three disconnected
surfaces, obtained by applying 25 steps of Algorithm 3.1 with initial conditions given by
(3.9), using a signed distance function d(x) pre-computed using (4.1).

In Fig. 8 we demonstrate the effect of the curvature in the final reconstruction of the
union between two ube data sets. In Fig. 8(a) the resulting shape is obtained by setting
g(x) = d(x), while in Fig. 8(b) the reconstruction is obtained using g(x) defined as in
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(a) (b)Figure 7: Example 4.2. The intersetion between two atus data sets (a) produes three disonnetedsurfaes (b).

(a) (b)Figure 8: Example 4.2. Curvature e�et on the shape reonstrution using the shape indiator funtion(2.10): (a) without urvature ontribution (b) with urvature ontribution.
(2.10), where the mean curvature k acts as an attractor which speeds up the evolution for
high curvature values. Smoother corners and edges can be observed in Fig. 8(a) where the
evolution when the level sets approach to the data (and d(x) approaches to zero values)
tends to slow down and fails to capture sharp features.

Example 4.3. The ability of Algorithm 3.1 in completing missing boundaries is illustrated
with two examples. In the first example, we removed two sets of adjacent points from
a sphere data set, creating two circular holes, one bigger than the other. The signed
distance function obtained by running STEP pre-omp in Algorithm 3.1 is illustrated in
Fig. 9. It reproduces the big hole, while slightly reduces the little one in the opposite
side. The reconstruction by running 45 time steps of the STEP evolve in Algorithm 3.1
with ǫ = 1 and initial conditions given by (3.9), is shown in Fig. 10(a) together with a
slice section (Fig. 10(b)) to better emphasize the silhouette of the reconstructed shape.
The evolving level sets are exiled from the expected real boundaries. The reconstruction
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Figure 9: Example 4.3. Signed distane funtion omputed on the data set sphere with two holes.
(a) (b) (c) (d)Figure 10: Example 4.3. Completing missing boundaries of a sphere data set: (a) reonstrution using

ǫ = 1, (b) orresponding silhouette, () reonstrution using ǫ = 10−4, (d) orresponding silhouette.
obtained after 45 time steps using ε = 1 · 10−4, illustrated in Fig. 10(c) together with a
slice section in Fig. 10(d), completely recovers the shape boundaries.

The last example demonstrates the hole filling strategy on a data set statue-head
with 9928 points, obtained by a 3D laser scanner system, which presents a long thin hole
in correspondence of the forehead and nose (see Fig. 11(a)). The 3D manifold evolution

(a) (b) (c)Figure 11: Example 4.3. Reonstrution of the statue-head data set: (a) loud of points (b) reon-struted surfae obtained by Algorithm 3.1 setting ǫ = 1 () reonstruted surfae obtained by Algorithm3.1 setting ǫ = 10−4.
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fills the gap after 25 time steps of the Algorithm 3.1 with initial conditions (3.10), when
ǫ = 1 · 10−4, (see Fig. 11(c)), while the object boundaries are not correctly recovered for
ǫ = 1, as can be observed in Fig. 11(b).

5. Comparison and conclusions

The examples in Section 4 have shown some of the good properties of the surface
reconstruction method proposed which include good accuracy, faithful reproduction of
sharp features, and robustness in the presence of holes and low sampling density. Since
the surfaces are described using implicit functions, tools such as shape blending, offsets,
and Boolean operations are simple to perform.

These preliminary results let us compare our approach with other existing implicit
surface reconstruction algorithms, in particular, the approaches based on RBF partition of
unity, and the methods driven by PDE deformable models, which share similarities with
our work. In the following comparison we will take into account three important aspects
in the reconstruction process from scattered data, which are the accuracy, the quality of
the sampling data sets, and the computational performance of the method.

From the class of RBF partition of unity methods, our method inherits the accuracy of
a local RBF reconstruction exploited in STEP pre-omp in Algorithm 3.1. However, the
RBF partition of unity methods work well only when the data is densely sampled and the
geometric structures to be reconstructed are simple, well defined and can be deduced from
the samples themselves. In the presence of holes and low sampling density the second
step of our algorithm produces a complete watertight model which provides a boundary
completion without user-intervention. This second step makes our method computation-
ally less appealing than a fast RBF partition of unity method. At this aim, we introduced
a semi-implicit time discretization, and a strategy for accelerating the linear system solver
involved in the numerical solution of formulation (2.14). Moreover, further developments
on the PDE model (2.14), see [17], have demonstrated as an anisotropic variant of this
model, which includes a diffusion tensor, can be easily adopted to reconstruct thin struc-
tures close to each other. We refer the reader to [6,28] for other approaches which provide
topology-stable reconstructions.

From the class of reconstruction methods based on PDE deformable models, such as for
example [31,32], our method inherits the capability to provide reasonable reconstructions
in case of arbitrary and complex topologies, holes and non-uniform data sets. However,
methods belonging to this class suffer of a weak reconstruction accuracy and low compu-
tational efficiency, see Section 3.1 for more details. These problems are successfully solved
by the proposed two-steps method. For example, to improve the recover of sharp features
we have introduced in (2.14) a diffusion term driven by the curvature.

In the remaining of this section we comment on computational times, and on how to
process non-uniform data set with considerable noise and huge data.

The running time depends mainly on the resolution of the grid on which we solve the
equation (2.14), but also on the radius of the spherical cover for the computation of the
distance function. The number of data points is important only in the pre-processing step,
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when the distance function and the curvature term have to be reconstructed close to the
data set.

The main contribution to the total computational cost for each reconstruction is due
to the linear system solver (3.18) invoked at each time step for the numerical solution
of formulation (2.14). Using a 1503 grid, the cost for each time step, in STEP evolve
in Algorithm 3.1, is 25 seconds independently on the data set. However, when the fast
linear system strategy is considered, thus replacing (3.18) with the reduced linear system
(3.20), we have a significant performance improvement. For the data sets considered in
the examples we get the following times for each time step: teapot 0.32 secs., bunny
2.97 secs., gargoyle 1.67 secs., statue-head 9.10 secs. The number of required time
iterations for each reconstruction is reported for each data set in the example description.

The sizes of the computed examples are moderately large and have been chosen ac-
cording to the available computational resources. Huge amount of data can be processed
by the proposed algorithm on a more powerful computational platform.

In case of noisy data the RBF interpolation process we used in STEP pre-omp in
Algorithm 3.1 for all the shown examples, can be easily replaced by a RBF least-squares
approximation, as shown in [8], which provides a control on the smoothness of the re-
construction with the same computational effort. Moreover, increasing the radius of the
spheres Bi ,∀i in the spherical cover, leads to smoother reconstructions.

Finally, the ability of Algorithm 3.1 in completing missing boundaries, illustrated in
Example 4.3, is a demonstration of the robustness of the algorithm in processing non-
uniform data sets.
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