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Abstract. In this paper, standard and economical cascadic multigrid methods are con-

sidered for solving the algebraic systems resulting from the mortar finite element meth-

ods. Both cascadic multigrid methods do not need full elliptic regularity, so they can be

used to tackle more general elliptic problems. Numerical experiments are reported to

support our theory.
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1. Introduction

Cascadic multigrid (CMG) [8, 9] is a type of multigrid methods which requires no

coarse grid corrections at all that may be viewed as a "one way" multigrid. The main ad-

vantage of the cascadic multigrid method is its simplicity. Numerical experiments [9, 10]

show that this method is very effective. Meanwhile, it has been proved [8,23] that the cas-

cadic multigrid which uses the P1 conforming element for second-order elliptic problem in

3-D is accurate with optimal computational complexity for all one-step conventional itera-

tive methods, like the weighted Jacobi, Gauss-Seidel and Richardson iteration as well as for

the conjugate gradient method as a smoother. However, in 2-D case, the cascadic multigrid

gives accurate solution with optimal computational complexity for the conjugate gradient

method, but only nearly optimal complexity for other conventional iterative smoothers. In

recent years, there have been several theoretical analysis and applications of these meth-

ods, cf. [24, 30] for nonconforming element methods and plate bending problems, [25]

for parabolic problems, [21, 31] for nonlinear problems, [12] for Stokes problems, [14]

for mortar element methods, [27] for the finite volume methods.

Recently, we proposed in [28] a new type of cascadic multigrid method. Compared

with the standard cascadic multigrid method developed by Bornemann and Deuflhard
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[8,9], the new one requires less iterations on each level, especially on coarser grids. Many

operations can be reduced in the new cascadic multigrid algorithms. So we call it an eco-

nomical cascadic multigrid method (ECMG). It is proved that the new cascadic multigrid

algorithm is still as optimal as the standard cascadic multigrid algorithm in both accuracy

and computational complexity.

The mortar finite element method as a special domain decomposition methodology

appears very attractive because it can handle situations where meshes on different sub-

domains need not align across interfaces, and the matching of discretizations on adjacent

subdomains is only enforced weakly. In [7], Bernardi, Maday and Patera first introduced

basic concepts of general mortar element methods, including the coupling of spectral ele-

ments with finite elements. Then it was extensively used and analyzed by many authors.

In [5], Belgacem studied the mortar element method under a primal hybrid finite element

formulation. Meanwhile, some extensions and convergence results in three dimensions

were considered in [4, 6]. Recently, many works have been done in constructing efficient

iterative solvers for the discrete system resulting from the mortar element method. The

first approaches were based on iterative substructuring methods, see [1–3, 18]. Multi-

grid methods for the mortar element methods have also been considered. Gopalakrishnan

and Pasciak [20] presented a variable V-cycle preconditioner, while Braess, Dahmen and

Wieners [13] and Wohlmuth [29] established a W-cycle multigrid based on a hybrid for-

mulation which gives rise to a saddle point problem.

The objective of this paper is to design efficient cascadic multigrid (CMG) solvers for the

mortar finite element methods. Note that Braess, Deuflhard and Lipnikov [14] constructed

a subspace cascadic multigrid method for the mortar element method based on a saddle

point formulation. Moreover, the authors only considered second-order elliptic problems

with full regularity. In this paper, we will treat the mortar element method under the

framework of nonconforming methods and assume that the Lagrange multiplier has been

eliminated. We will construct the standard and economical cascadic multigrid methods for

solving the algebraic system resulting from such kind of mortar finite element method and

then give their convergence analysis for more general second elliptic problems without full

regularity such as L-shape domain problems.

This paper is organized as follows: Section 2 introduces the mortar element method

developed by Bernardi, Maday and Patera in [7]. In Section 3, we give the standard

cascadic multigrid method and its convergence analysis. In Section 4, we introduce the

economical cascadic multigrid method. Finally, numerical results that confirm our theory

will be given in the Section 5.

2. The mortar element method

The mortar finite element method allows the coupling of different discretizations across

subdomain boundaries. The idea of the mortar finite element method is to weakly impose

the transmission conditions across the interface of difference subdomains by means of La-

grange multiplier. The key argument is to construct a suitable discrete Lagrange multiplier

space in order to ensure the stability of the discrete problem. It is interesting to design some



182 X. J. Xu and W. B. Chen

efficient iterative solvers for the arising systems from the mortar finite element method. In

this paper, we will construct standard and economical cascadic multigrid methods for solv-

ing the algebraic systems. Cascadic multigrid is a new type of multigrid methods which

requires no coarse correction at all that may be viewed as a "one way" multigrid, while

the economical cascadic multigrid needs less iterations on each level, especially on coarser

levels.

Throughout this paper, we adopt standard notations from Lebesgue and Sobolev space

theory (cf., e.g., [17]). In particular, we refer to (·, ·)0 and ‖ · ‖0 as the inner product

and norm on L2(Ω) and to ‖ · ‖α as the norm on the Sobolev space Hα(Ω), α ∈ [1,2].

Let Ω ⊂ Rd , d = 2,3 be a bounded polygonal domain. We consider the following elliptic

Dirichlet problem:
¨

−div(a(x)∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where a(x) is a sufficiently smooth and uniformly positive definite matrix in Ω⊂ Rd .

The variational form of (2.1) is to find u ∈ H1
0(Ω) such that

a(u, v) = ( f , v) ∀v ∈ H1
0(Ω), (2.2)

where the bilinear form

a(u, v) =

∫

Ω

a(x)∇u · ∇vd x ∀u, v ∈ H1(Ω).

It is known that the problem (2.2) has a unique solution.

We assume some regularity for the solution of problem (2.1), i.e.,

(A1). There exists an α ∈ (1

2
, 1] such that

‖u‖1+α ≤ C‖ f ‖α−1.

Remark 2.1. It is known that (A1) holds for a wide class of domains [19]. Note that we

do not require the full regularity (α = 1) as in [14].

We now divide Ω into nonoverlapping polygonal subdomains such that

Ω =

N
⋃

i=1

Ωi and Ωi ∩Ω j = , i 6= j.

They are arranged so that the intersection of Ωi ∩ Ω j for i 6= j is either an empty set, an

edge or a vertex, i.e., the partition is geometrically conforming. The interface

Γ =

N
⋃

i=1

∂Ωi\∂Ω
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is broken into a set of disjoint open straight segments γm (1≤ m ≤ M) (that are the edges

of subdomains) called mortars, i.e.,

Γ =

M
⋃

m=1

γ̄m, γm ∩ γn = , if m 6= n.

We denote the common open edge to Ωi and Ω j by γm. By γm(i) we denote an edge of Ωi

called mortar and by δm( j) an edge of Ω j that geometrically occupies the same place called

nonmortar.

Let T i
1 be the coarsest triangulation of Ωi with the mesh size h1. The triangulation

generally does not align at the subdomain interface. Denote the global mesh ∪iT
i

1 by T1.

We refine the triangulation T1 to produce T2 by joining all mid-points of edges of triangles

in T1. Obviously, the mesh size h2 in T2 is h2 = h1/2. Repeating this process, we get the

l-time refined triangulation Tl with the mesh size hl = h12−l+1 (l = 1, · · · , L).

In the following, we define the mortar finite element space as in [7, 20]. First, define

the space Z as follows:

Z =
¦

v| v|Ωi
∈ H1(Ωi), ∀i = 1, · · · , N , v = 0 on ∂Ω

©

. (2.3)

On each level l, the P1 linear continuous finite element space over the triangulation T i
l

is

denoted by Vl ,i, whose functions have zero trace on ∂Ω. Let

Ṽl =

N
∏

i=1

Vl ,i, l = 1, · · · , L. (2.4)

Obviously,

Ṽ1 ⊆ · · · ⊆ ṼL .

For any interface

γm = γm(i) = δm( j), 1≤ m≤ M ,

there are two different and independent 1D triangulations Tl(γm(i)) and Tl(δm( j)), which

are the restriction of triangulations T i
l

and T j

l
on γm. Let Ml(γm(i)) and Ml(δm( j)) be the

piecewise continuous linear function space corresponding to the triangulation Tl(γm(i))

and Tl(δm( j)), respectively. In addition, we define an auxiliary test space Sl(δm( j)) as a

subspace of the nonmortar space Ml(δm( j)) such that its functions are constants on ele-

ments that intersect the ends of δm( j). Based on the above preparation, we can now define

the following mortar finite element space

Vl =
n

vl ⊂ Ṽl |∀δm( j) ⊂ Γ,

∫

δm( j)

(vl ,i − vl , j)ϕds = 0, ∀ϕ ∈ Sl(δm( j))
o

. (2.5)
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Note that though the space {Ṽl} is nested, the multilevel space {Vl} is generally nonnested.

Define

|v|l ,i=̂
∑

K∈T i
l

∫

K

∇v · ∇vd x , ‖v‖l=̂
N
∑

i=1

|v|2l ,i.

al ,i(u, v)=̂
∑

K∈T i
l

∫

K

(a(x)∇u) · ∇vd x , ∀u, v ∈ Vl ,i,

al(u, v)=̂

N
∑

i=1

al ,i(u, v).

Then the mortar element approximation of the problem (2.2) is to find ul ∈ Vl such that

al(ul , vl) = f (vl), ∀vl ∈ Vl , (2.6)

where

f (vl) =

N
∑

i=1

∫

Ωi

f vlds.

It is shown in [7] that (2.6) has a unique solution.

The following theorem can be found in [7].

Theorem 2.1. Let u,ul be the solution of (2.2), (2.6) respectively. Then

‖u− ul‖l ≤ Chαl ‖u‖1+α. (2.7)

3. Cascadic multigrid algorithm and its convergence analysis

In this section, we will give the convergence analysis of the cascadic multigrid method.

It is shown that the cascadic multigrid method is an optimal methods, which means that

we obtain both the accuracy

‖uL − u∗L‖L ≈ |u− uL |L

and the multigrid complexity

amount of work = O (nL), nL = dimVL .

Due to the nonnestedness of the mesh spaces, we first introduce an intergrid transfer

operator which was constructed in [20] for the standard multigrid method.

Define the space Wl(δm( j)) by

Wl(δm( j)) = {v| v is a linear continuous function on δm( j), and v is

vanishing at endpoints of δm( j)}.
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Accordingly, define a projection operator πl ,m : L2(Ω)→Wl(δm( j)) by [7,20]:

∫

δm( j)

(πl ,mv)χds =

∫

δm( j)

uχds, ∀χ ∈ Sl(δm( j)). (3.1)

This projection is known to be stable in L2(γm) and H
1/2
00
(γm) [7,13], i.e.,

‖πl ,mv‖0,γm
≤ C‖v‖0,γm

,

‖πl ,mv‖
H

1/2
00 (γm)

≤ C‖v‖
H

1/2
00 (γm)

.

Let {y i
l
} denote the nodes of δm( j) and the operator Ξl ,δm( j)

: X → Ṽl is defined by

(Ξl ,δm( j)
(v))(y i

l ) =

¨

(πl ,m(v|γm(i)
− v|δm( j)

))(y i
l
) y i

l
∈ δm( j),

0 otherwise.

Then, we can give the intergrid transfer operator Il for the nonnested space Vl (l =

1, · · · , L) as follows [20]:

Il v = v+

M
∑

m=1

Ξl ,δm( j)
(v), ∀v ∈ Vl−1, (3.2)

Remark 3.1. In [15], Braess, Dryja and Hackbusch presented another intergrid transfer

operator for the space Vl .

Remark 3.2. For 3D problems, we can also define corresponding mortar element spaces

Vl and intergrid transfer operators, see [6,11,14] for details.

Lemma 3.1. For the operator Il defined in (3.2), we have

(1). ‖Il v‖l ≤ C‖v‖l−1,

(2). ‖v− Il v‖0 ≤ Chl‖v‖l−1.

Proof. Please refer to [20] for a proof. �

Moreover, based on the operator Ξl ,δm( j)
, we give an approximation function for any

ξ ∈ H2(Ω)∩H1
0(Ω) in the space Vl :

Πlξ= C̃lξ+

M
∑

m=1

Ξl ,δm( j)
(C̃lξ). (3.3)

It is easy to see that Πlξ ∈ Vl .

Lemma 3.2. For the operator Πl , we have

‖ξ−Πlξ‖0 + hl‖ξ−Πlξ‖l ≤ Ch1+α
l
‖ξ‖1+α ∀ξ ∈ H1

0(Ω)∩H1+α(Ω).
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Proof. The proof follows by a similar argument as in Lemma 4.2 in [32]. �

For the following convergence analysis, we define a mesh dependent norm over the

space Vl , i.e.,

|||v|||s,l=̂(A
s
l
v, v) ∀v ∈ Vl , s ∈ R, (3.4)

where the operator Al is given by

(Alu, v) = al(u, v) ∀u, v ∈ Vl .

It is easy to check that |||v|||1,l = a
1

2

l
(v, v), |||v|||0,l = ‖v‖0, and

|||v|||s,l ≤ Cht−s|||v|||t,l (t < s), (3.5)

(u, v)≤ |||u|||s,l|||v|||−s,l ∀u, v ∈ Vl , s ∈ R. (3.6)

Lemma 3.3. Let s ∈ [0, 1

2
) or (1

2
, 1], for any vl ∈ Vl . It holds that

‖vl‖−s ≤ C |||v|||−s,l.

Proof. Let Q l be the L2 projection operator from L2(Ω) to Vl , i.e.,

(Q l v, w) = (v, w) ∀v ∈ L2(Ω), w ∈ Vl ,

where (·, ·) denotes the usual inner product over the space L2(Ω). It is easy to see that

‖Q l v‖0 ≤ ‖v‖0, (3.7)

‖v −Q l v‖0 ≤ 2‖v‖0, ∀v ∈ Vl . (3.8)

By Lemma 3.2 and the property of the projection Q l , we can derive that

‖v−Q l v‖0 ≤ Ch1+α
l
‖v‖1+α, ∀v ∈ H1+α(Ω), α ∈ (0.5,1]. (3.9)

Using the interpolation [16] between (3.8) and (3.9), we get

‖v−Q l v‖0 ≤ Chl‖v‖1, ∀v ∈ H1(Ω). (3.10)

For each K on Γl , define QK : L2(K)→ P1(K) being the L2(K) orthogonal projection, here

P1(K) is the piecewise polynomial space on K , then it is easy to show that

1
∑

i=0

hi
l |v−QK v|i,K ≤ Chl |v|1,K , ∀v ∈ H1(K). (3.11)
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Using (3.1), (3.11), then for any v ∈ H1
0(Ω), we have

‖Q l v‖
2
1,l = C
∑

K∈Γl

|Q l v|
2
1,K

≤ C
∑

K∈Γl

�

|Q l v−QK v|21,K + |QK v|21,K

�

≤ C
∑

K∈Γl

�

Ch−2
l
‖Q l v −QK v‖20,K + |QK v|21,K

�

≤ C
∑

K∈Γl

h

Ch−2
l
(‖Q l v − v‖20,K + ‖v−QK v‖20,K) + |QK v|21,K

i

≤ C



h−2
l
(‖Q l v− v‖20+ h2

l

∑

K∈Γl

|v|21,K) + ‖v‖
2
1





≤ C‖v‖21. (3.12)

An application of the interpolation between (3.7) and (3.12) yields

|||Q l v|||s,l ≤ C‖v‖s s ∈ [0,0.5) or (0.5,1]. (3.13)

By the definition of negative norm in Sobolev space, we have

‖vl‖−s = sup
w∈H1

0(Ω)

(vl , w)

‖w‖s
.

On the other hand, it follows from (3.6) and (3.13) that

(vl , w) = (vl ,Q lw) ≤ |||vl |||−s,l|||Q l v|||s,l
≤ C |||vl |||−s,l‖w‖s .

Combining the above two inequalities gives the proof. �

Next, we choose an iterative operator Cl : Vl → Vl on the level l and assume that there

exists a linear operator Tl : Vl → Vl such that

ul − C
ml

l
u0

l = T
ml

l
(ul − u0

l ),

and

(H1): the following assumptions:

(1). ‖T ml

l
v‖l ≤ C

h−α
l

m
αγ

l

|||v|||1−α,l ∀v ∈ Vl ,

(2). ‖T ml

l
v‖l ≤ ‖v‖l ∀v ∈ Vl ,

where ml is the number of iteration steps on the level l, and γ is a positive number

depending on the given iteration.
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Based on the smoothing operator and intergrid transfer operator Il , we can write the

cascadic algorithm for the mortar finite element method as follows:

Cascadic Multigrid Algorithm (CMG)

(1) Set u1
1 = u∗1=̂u1 and let (l = 2, · · · , L)

u1
l = Ilu

∗
l−1. (3.14)

(2) For l = 2, · · · , L, do iterations:

u
ml

l
= C

ml

l
u1

l
. (3.15)

(3) Set u∗
l
=̂u

ml

l
.

Following [8], we call a cascadic multigrid optimal in the energy norm on the level L,

if we obtain both the accuracy

‖uL − u∗L‖L ≈ ‖u− uL‖L (3.16)

which means that the iterative error is comparable to the approximation error, and the

multigrid complexity

amount of work = O (nL), nL = dimVL .

For obtaining the convergence rate of the above CMG method, we first prove the fol-

lowing lemma.

Lemma 3.4. Let u,ul be the solution of equations (2.2), (2.6) respectively. Then

|||Πlu− ul |||1−α,l ≤ Ch2α
l ‖u‖1+α.

Proof. Define

gl = A1−α
l
(Πlu− ul).

Consider the following auxiliary problems

a(ξ, v) = (gl , v) ∀v ∈ H1
0(Ω).

al(ξl , v) = (gl , v) ∀v ∈ Vl .

We have

‖ξ− ξl‖l ≤ Chαl ‖ξ‖1+α ∀ξ ∈ H1+α(Ω)∩H1
0(Ω). (3.17)

Using the regularity assumption (A1) and Lemma 3.3, we get

‖ξ‖1+α ≤ C‖gl‖α−1 ≤ C |||gl|||α−1,l .
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By the definition of the mesh-dependent norm ||| · |||s,l, it follows that

|||gl|||
2
α−1,l = (A

α−1
l

gl , gl)

= (Aα−1
l

A1−α
l
(Πlu− ul),A

1−α
l
(Πlu− ul))

= (A1−α
l
(Πlu− ul),Πlu− ul)

= |||Πlu− ul |||1−α,l .

Combining above two inequalities, we obtain

‖ξ‖1+α ≤ C |||Πlu− ul |||1−α,l. (3.18)

On the other hand,

|||Πlu− ul |||
2
1−α,l = (A

1−α
l
(Πlu− ul),Πlu− ul)

= (gl ,Πlu− ul) = al(ξl ,Πlu− ul)

= al(ξl ,Πlu− u) + al(ξl ,u− ul)

= al(ξl − ξ,Πlu− u) + al(ξl ,u− ul) + al(ξ,Πlu− u)

=

3
∑

i=1

ei. (3.19)

We now estimate the terms ei one by one. For e1, it is easy to check that

|e1| ≤ Ch2α
l ‖ξ‖1+α‖u‖1+α. (3.20)

For e2, we have

|e2| ≤
�

�al(ξl ,u− ul)
�

� =
�

�al(ξl ,u)− al(ξl ,ul)
�

�

=

�

�

�(−△u,ξl) +
∑

γm⊂Γ

∫

γm

(a(x)∇u) · n[ξl]ds− f (ξl)

�

�

�

=

�

�

�

∑

γm⊂Γ

∫

γm

(a(x)∇u) · n[ξl]ds

�

�

�

=

�

�

�

∑

γm⊂Γ

∫

γm

(a(x)∇u) · n[ξl − ξ]ds

�

�

�

≤ Ch2α
l ‖u‖1+α‖ξ‖1+α, (3.21)

where [·] denotes the jump of a function across the interface Γ. Moreover, we have used

the following fact (cf. [7] for details)

�

�

�

∑

γm⊂Γ

∫

γm

(a(x)∇u) · nvds

�

�

�≤ Chαl ‖u‖1+α‖v‖l ∀u ∈ H1+α(Ω), v ∈ Vl +H1
0(Ω). (3.22)
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For the last term e3,

a(ξ,Πlu− u)

= (−△ξ,Πlu)− (−△ξ,u) +
∑

γm⊂Γ

∫

γm

(a(x)∇ξ) · n[Πlu− u]ds

= (gl ,Πlu− u) +
∑

γm⊂Γ

∫

γm

(a(x)∇ξ) · n[Πlu− u]ds

=̂ T1 + T2. (3.23)

We can estimate the term T2 in the above inequality as follows:

|T2| ≤ Chαl ‖ξ‖1+α‖Πlu− u‖l
≤ Ch2α

l ‖ξ‖1+α‖u‖1+α. (3.24)

For the term T1, we have

|T1| = (gl ,Q l(Πlu− u)) = (gl ,Πlu−Q lu)

≤ |||gl|||α−1,l |||Q lu−Πlu|||1−α,l

= |||Πlu− ul |||1−α,l |||Q lu−Πlu|||1−α,l . (3.25)

On the other hand,

|||Q lu−Πlu|||1−α,l ≤ Chα−1
l
‖Q lu−Πlu‖0

≤ Chα−1
l
(‖Q lu− u‖0 + ‖Πlu− u‖0)

≤ Chα−1
l
(h1+α‖u‖1+α)

≤ Ch2α
l ‖u‖1+α. (3.26)

It follows from (3.23)-(3.26) that

|e3| ≤ Ch2α
l |||Πlu− ul |||1−α,l‖u‖1+α. (3.27)

Finally, combining (3.19)-(3.21), (3.27) gives the proof. �

Based on Lemma 3.4, we can prove the following important theorem.

Theorem 3.1. Let ul be the solution of (2.6). Then

|||ul − Ilul−1|||1−α,l ≤ Ch2α
l ‖u‖1+α.

Proof. Using the same argument as in Lemma 4.3 in [32], we can prove that

||Πl v− IlΠl−1v||0 ≤ Ch1+α‖v‖1+α, ∀v ∈ H1+α(Ω).

Then by (3.5), we have

|||Πlv − IlΠl−1v|||1−α,l ≤ Chα−1
l

h1+α
l
‖v‖1+α = Ch2α

l ‖v‖1+α. (3.28)
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Using the triangle inequality, (3.28) and Lemma 3.4, we get

|||ul − Ilul−1|||1−α,l

≤ |||ul −Πlu|||1−α,l + |||Πlu− IlΠl−1u|||1−α,l + |||Il(Πl−1u− ul−1)|||1−α,l

≤ Ch2α
l ‖u‖1+α + |||Il(Πl−1u− ul−1)|||1−α,l . (3.29)

An application of Lemma 3.1 and the interpolation [16] yields

|||Il v|||1−α,l ≤ C |||v|||1−α,l−1. (3.30)

Then based on (3.30) and Lemma 3.4, we get

|||Il(Πl−1u− ul−1)|||1−α,l ≤ |||Πl−1u− ul−1|||1−α,l−1 ≤ Ch2α
l ‖u‖1+α. (3.31)

Combining (3.29), (3.31) gives Theorem 3.1. �

Moreover, following the general framework of the convergence analysis for the

nonnested cascadic multigrid method, we introduce a projection operator Pl : Vl−1 + Vl →
Vl defined by

al(Pl v, w) = al(v, w) ∀w ∈ Vl . (3.32a)

From the definition, it is easy to see that

‖Pl v‖l ≤ ‖v‖l−1 ∀v ∈ Vl−1. (3.32b)

Theorem 3.2. For the projection operator Pl defined by (3.32), we have

|||(Il − Pl)v|||1−α,l ≤ Chαl ‖v‖l−1 ∀v ∈ Vl−1.

Proof. Similar to Lemma 3.4, we use a duality technique to prove this theorem. Define

gl = A1−α
l
(Il v− Pl v).

Consider the following auxiliary problems

a(η, v) = (gl , v) ∀v ∈ H1
0(Ω),

al(ηl , v) = (gl , v) ∀v ∈ Vl .

We have

‖η−ηl‖l ≤ Chα
l
‖η‖1+α. (3.33)

Using the same argument as in the proof of Lemma 3.4, we can see that

|||gl|||α−1,l = |||(Il − Pl)v|||1−α,l, (3.34)

‖η‖1+α ≤ C |||(Il − Pl)v|||1−α,l. (3.35)
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Meanwhile,

|||(Il − Pl)v|||
2
1−α,l

= (gl , (Il − Pl)v) = al(ηl , (Il − Pl)v)

= al(ηl −η, (Il − Pl)v)+ al(η, (Il − Pl)v). (3.36)

For the first term on the right hand of (3.36), an application of Lemma 3.1 and (3.32),

(3.33) yields

|al(ηl −η, (Il − Pl)v)| ≤ Chαl ‖η‖1+α‖v‖l−1. (3.37)

We now estimate the second term on the right hand of (3.36). In fact

al(η, (Il − Pl)v) = al(η, v − Pl v) + al(η, Il v − v)=̂F1 + F2. (3.38)

By the definition of Pl , we obtain

|F1| = |al(η−Πlη, v − Pl v)|

≤ Chαl ‖η‖1+α‖v − Pl v‖l ≤ Chαl ‖η‖1+α‖v‖l−1. (3.39)

For the term F2,

F2 = (−△η, Il v)− (−△η, v) +
∑

γm⊂Γ

∫

γm

(a(x)∇η) · nIl vds+
∑

γm⊂Γ

∫

γm

(a(x)∇η) · nvds

= (gl , Il v− v)+
∑

γm⊂Γ

∫

γm

(a(x)∇η) · nIl vds+
∑

γm⊂Γ

∫

γm

(a(x)∇η) · nvds

=̂

3
∑

1

Gi. (3.40)

It is easy to see that

|Gi| ≤ Chαl ‖η‖1+α‖v‖l , i = 2,3. (3.41)

For the term G1, we have

|G1|= |(gl ,Q l(Il v − v)| ≤ |||gl|||α−1,l |||Q l(Il v − v)|||1−α,l

= |||(Il − Pl)v|||1−α,l|||Q l(Il v − v)|||1−α,l

≤ |||(Il − Pl)v|||1−α,lChα−1‖Q l(Il v − v)‖0
≤ |||(Il − Pl)v|||1−α,lChα−1‖Il v − v‖0
≤ Chαl |||(Il − Pl)v|||1−α,l‖v‖l−1. (3.42)

Then by (3.40)-(3.42), we get

|F2| ≤ Chαl |||(Il − Pl)v|||1−α,l‖v‖l−1. (3.43)

Combining (3.35)-(3.39) and (3.43) yields the proof. �
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Note that the mesh size on the level l is

hl = hL2L−l. (3.44)

Let ml (1 ≤ l ≤ L) be the smallest integer satisfying

ml ≥ β
L−lmL (3.45)

for some fixed β > 1, where mL is the number of iterations on the finest level L.

Lemma 3.5. Let ml satisfy (3.45), and assume that the smoothing condition (H1) holds.

Then

‖uL − u∗L‖L ≤ C0

L
∑

l=1

hα
l

m
αγ

l

‖u‖1+α,

where the constant C0 is independent of the mesh size hL and the level L.

Proof. The proof of this lemma is similar as the one of Lemma 2.1 in [24] where the

cascadic multigrid method with full elliptic regularity for standard finite element approxi-

mations was considered. For completeness, we give an outline of this proof.

It is easy to check that

‖ul − u∗l ‖l = ‖T
ml

l
(ul − Ilu

∗
l−1)‖l

≤ ‖T ml

l
(ul − Ilul−1)‖l + ‖T

ml

l
Il(ul−1− u∗l−1)‖l

≤ ‖T ml

l
(ul − Ilul−1)‖l + ‖T

ml

l
Pl(ul−1− u∗l−1)‖l

+ ‖T ml

l
(Il − Pl)(ul−1− u∗l−1)‖l

= J1 + J2 + J3. (3.46)

Then we estimate Ji one by one. For J1, by Theorem 3.1 and (H1)-(1), we have

J1 ≤ C
h−α

l

m
αγ

l

|||ul − Ilul−1|||1−α,l ≤ C
hα

l

m
αγ

l

‖u‖1+α. (3.47)

For J2, an application of (H1)-(2) and (3.32) yields

J2 ≤ ‖Pl(ul−1− u∗l−1)‖l ≤ ‖ul−1− u∗l−1‖l−1. (3.48)

For the last term J3, using (H1)-(1), Theorem 3.2, we get

J3 ≤ C
h−α

l

m
αγ

l

|||(Il − Pl)(ul−1− u∗l−1)|||1−α,l

≤
C

m
αγ

l

‖ul−1 − u∗l−1‖l−1. (3.49)
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Combining (3.46)-(3.49) yields

‖ul − u∗l ‖l ≤ C
hα

l

m
αγ

l

‖u‖1+α +
�

1+
C

m
αγ

l

�

‖ul−1− u∗l−1‖l−1. (3.50)

Recurrently, we get

‖uL − u∗L‖L ≤ C

L
∑

l=1

l−1
∏

i=0

�

1+
C

m
αγ

L−i

� hαL−i

m
αγ

L−i

‖u‖1+α. (3.51)

Noticing (3.45) and mL ≥ 1, we obtain

L−1
∏

i=0

�

1+
C

m
αγ

L−i

�

≤ exp
�

L−1
∑

i=0

C

m
αγ

L−i

�

≤ exp
� C

m
αγ
L

L−1
∑

i=0

β−iαγ
�

≤ exp
� Cβαγ

m
αγ
L (β

αγ− 1)

�

≤ C0. (3.52)

Finally, inserting (3.52) into (3.51) proves Lemma 3.5. �

Based on Lemma 3.5 and a similar argument as in [8], we can prove that the following

lemma is valid.

Lemma 3.6. Under the assumption (H1), if ml , the number of iterations at level l, is given

by (3.45), then the accuracy of the cascadic multigrid is

‖uL − u∗L‖L ≤











C
1

1− ( 2

βγ
)α

hαL

m
αγ
L

‖u‖1+α for β > 2
1

γ ,

C L
hαL

m
αγ
L

‖u‖1+α for β = 2
1

γ .

(3.53)

Lemma 3.7 ([8]). The computational cost of the cascadic multigrid is proportional to

L
∑

l=1

mlnl ≤







C
1

1− β2−d
mLnL for β < 2d ,

C LmLnL for β = 2d ,

(3.54)

where d is the dimension of the domain Ω.

3.1. Basic iterative methods

We consider the Richardson iteration as a smoother. Using the same argument as in [4],

it is shown that the Richardson iterative operator

Tl = I −
1

λl

Al
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satisfies the assumption (H1) with γ= 0.5.

Combining the methods of constructing smoothers in [16, 20], we can also show that

the operator Tl = I −RlAl , where Rl denotes Jacobi or Gauss-Seidel iterations on the level

l, satisfies (H1).

Theorem 3.3. If a standard iteration like the Richardson, Jacobi, and Gauss-Seidel iterations

is used as smoother, then

(1). If d=3, then the cascadic multigrid method is optimal.

(2). If d=2, and the number of iterations on the level L is mL = [m∗L
2], then the error

of the cascadic multigrid method is

‖uL − u∗L‖L ≤ ChαLm
− 1

2
∗ ‖u‖1+α,

and the complexity of computation is

L
∑

l=1

ml nl ≤ Cm∗nL(1+ log nL)
1+ 2

α ,

which means the CMG algorithm in this case is nearly optimal.

3.2. Conjugate gradient (CG) method

Assume that u0
l

is the initial value of the CG method on the level l. Let C
ml

l
u0

l
be the

ml steps of the CG iteration. Then the error of the CG method can be expressed by

‖ul − C
ml

l
u0

l
‖l = min

p∈Pml
,p(0)=1

‖p(Al)(ul − u0
l
)‖l , (3.55)

where Pml
denotes the set of polynomials p with degree p ≤ ml , see [3].

Combining Theorem 2.2 in [8] and the fact the L2 norm of basis function {φ i
l
}Nl

i=1
∈ Vl

is O (h2
l
) (see the proof of Lemma 4.3 in [20]), we can prove

Lemma 3.8. There exists a linear operator Tl ∈ Pml
= φλl ,ml

(Al), where φλ,m ∈ Pm,

φλ,m(0) = 1 such that

(1). ‖T ml

l
vl‖l ≤ C

h−1
l

2ml + 1
‖vl‖0 ∀vl ∈ Vl , (3.56)

(2). ‖T ml

l
vl‖l ≤ ‖vl‖l ∀vl ∈ Vl . (3.57)

So (H1) holds for CG method with γ = 1. Finally, we have

Theorem 3.4. If the conjugate gradient method is used as smoother, then the cascadic multi-

grid method is optimal for both 2D and 3D problems.

Remark 3.3. We can extend the cascadic multigrid method developed in this paper

to the mortar-type P1 nonconforming element method which was first introduced by

Marcinkowski in [22] and the mortar-type Wilson element method [26].
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4. An economical cascadic multigrid method

In this section, we will introduce the economical cascadic multigrid method for solving

the system resulting from the mortar finite element method. It is shown that the ECMG

method is also optimal both the accuracy and the computational complexity. In fact, com-

pared with the standard CMG method, the ECMG method requires less work operations on

each level.

For simplicity, we consider the 2-D case. Based on [28], we define a level parameter

L0 as the largest positive integer, which satisfies the following inequality:

L0 ≤min
n L logβ + log mL + 2 logh0

logβ + 2 log2
,

L

2

o

. (4.1)

First, we give a new criteria.

New criteria:

(i). If l > L0, then

ml = [mLβ
L−l].

(ii). If l ≤ L0, then

ml = [m
1

2
∗ (L− (2− ǫ0)l)κl],

where 0< ǫ0 ≤ 1 is a fixed positive number.

In practical implementation, because κl ≈ h−2
l

, the above terms can be replaced by:

ml = [m
1

2
∗ (L − (2− ǫ0)l)h

−2
l
], ml = [m

1

2
∗ h−2

l
].

Then our economical cascadic multigrid method can be written as follows:

Economical Cascadic Multigrid

(1) Set u0
0 = u∗0=̂u0 and let

u0
l
= Ilu

∗
l−1.

(2) For l = 1, · · · , L

u
ml

l
= C

ml

l
u0

l .

(3) Set u∗
l
=̂u

ml

l
, where ml is determined by the new criteria.

Similar as the standard CMG method, optimal error estimates and computational com-

plexity can be also obtained for this economical cascadic multigrid method. The proof is

just a simple combination of the theory of Section 3 in this paper and the theoretical results

in [28]. We will omit the details here.
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H1

(yan line) and eI
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(blak line).
5. Numerical experiments

In this section, we show the performance of the cascadic multigrid method and eco-

nomical cascadic multigrid methods for the mortar element methods. For the experiments,

we consider our model problem to be defined on a square domain and an L-shaped domain.

We use ECMG and usual CMG algorithms to solve the following problem:

¨

−△u = f , in Ω = (−1,1)× (−1,1),

u = 0, on ∂Ω,
(5.1)

where f is chosen such that the exact solution of the problem is

u(x , y) = (1− x2)(1− y2)rα sin(αθ),

where r and θ are the polar coordinates, i.e., x = r cosθ , y = r sinθ , and the parameter

α ∈ (1,0.5]. We assume that 0 ∈ ∂Ω. Then it is known that u ∈ H1+α−ε(Ω) \ H1+α(Ω)

(see [19]).

Experiment 5.1. In this experiment, we assume that Ω = [−1,1]×[0,1], and the domain

Ω is divided into two subdomains Ω1 = [−1,0]×[0,1] and Ω2 = [0,1]×[0,1]. The initial

mesh (l = 1) is plotted in Fig. 1(a), and the mesh of level l is refined uniformly from the

mesh of level l − 1, that is to say, every element at level l − 1 is cut into four new triangles

by joining the midpoints of its edges. The mortar side is taken at the boundary of ∂Ω1. In

our experiments, we compute the following terms to estimate the error:

eH1
=
‖∇uh−∇u‖L2(Ω)

‖∇u‖L2(Ω)

, and eL2
=
‖uh− u‖L2(Ω)

‖u‖L2(Ω)

,



198 X. J. Xu and W. B. ChenTable 1: Errors of the mortar �nite element method (H1 norm).
Level α = 9

10
α = 2

3
α = 1

2

eH1
log2 r1 eH1

log2 r1 eH1
log2 r1

1 3.9281e-1 3.8355e-1 4.0284e-1

2 1.9085e-1 1.0414 1.9639e-1 9.6571e-1 2.3303e-1 7.897e-1

3 9.3990e-2 1.0219 1.0477e-1 9.0646e-1 1.4528e-1 6.8217e-1

4 4.6687e-2 1.0095 5.7855e-2 8.5674e-1 9.5510e-2 6.052e-1

5 2.3313e-2 1.0019 3.2953e-2 8.1202e-1 6.4926e-2 5.569e-1

6 1.1676e-2 9.9752e-1 1.9277e-2 7.7355e-1 4.4977e-2 5.296e-1

7 5.8592e-3 9.9484e-1 1.1523e-2 7.4231e-1 3.1472e-2 5.151e-1

8 2.9439e-3 9.9297e-1 7.0033e-3 7.1845e-1 2.2137e-2 5.076e-1Table 2: Errors of the mortar �nite element method (L2 norm).
Level α = 9

10
α = 2

3
α = 1

2

eL2
log2 r2 eL2

log2 r2 eL2
log2 r2

1 1.5696e-1 1.4110e-1 1.4841e-1

2 3.7308e-2 2.0728 3.6045e-2 1.9688 4.4356e-2 1.7424

3 9.0536e-3 2.0429 9.7462e-3 1.8869 1.4401e-2 1.623

4 2.2313e-3 2.0206 2.7546e-3 1.8230 4.9145e-3 1.5511

5 5.5511e-4 2.0071 8.0604e-4 1.7729 1.7238e-3 1.5114

6 1.3882e-4 1.9996 2.4214e-4 1.7350 6.1315e-4 1.4913

7 3.4819e-5 1.9953 7.4158e-5 1.7072 2.1959e-4 1.4814

8 8.7500e-6 1.9925 2.3022e-5 1.6876 7.8895e-5 1.4768

and we also compute the difference between the finite element solution with the inter-

polant of the original solution:

eI
H1
=
‖∇uh−∇uI‖L2(Ω)

‖∇uI‖L2(Ω)

, and eI
L2
=
‖uh− uI‖L2(Ω)

‖uI‖L2(Ω)

,

where uI is the P1 conforming finite element interpolant of u. Fig. 1(b) shows the conver-

gence behaviors of the mortar element method: For the H1 norm, the mortar finite element

uh is closer to the interpolant uI , which is typical called superconvergence.

Now, following the convergence analysis of Theorem 2.1, we will compute the ratios of

the errors at different level l:

r1 =
eH1

on level l − 1

eH1
on level l

, and r2 =
eL2

on level l − 1

eL2
on level l

,

and note that the mesh size of the lth level is half of the (l − 1)th one, then we expect

r1 ≈ 2α, or log2 r1 ≈ α. This expectation can be verified by the results in Table 1: For

different α, the value log2 r1 is a good approximation of α.

Here, we also display the error behaviors in the L2 norm. Table 2 shows that the

convergence of the mortar finite element behaves like

‖u− ul‖L2(Ω) ≤ ch1+α
l
‖u‖1+α.
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Experiment 5.2. In Experiment 5.1, we have verified the convergence of the mortar finite

element method. In this experiment, we want to check the convergence behavior of the

cascadic multigrid algorithm (see (3.14) and (3.15)). Here we use the Jacobi iteration as

the smoother, and we set β = 5.

Fig. 2(a) shows the initial mesh on the L-shaped domain. Here, we use the same

refinement as in Experiment 5.1. In Fig. 2(b), the mortar finite element on level 3 is solved

exactly, and the cascadic multigrid algorithm (3.14)-(3.15) is used to obtain the iterative

solution. Here, the error behavior in the H1 norm is the same as in Experiment 5.1, and

the errors in the L2 norm will stop at some error level. That is to say that the cascadic

multigrid algorithm is optimal in the H1 norm but not in the L2 norm.

Experiment 5.3. In this experiment, the ECMG (Economical Cascadic Multigrid) algorithm

is used. Compared with CMG algorithm, less smoothing steps are needed when l ≤ L0.
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3
.

Level CMG ECMG

H1 log2 r1 L2 log2 r2 H1 log2 r1 L2 log2 r2

3 1.4154e-1 9.3528e-3 1.4154e-1 9.3528e-3

4 8.2424e-2 0.7801 2.6458e-3 1.8217 8.2421e-2 0.7801 2.6554e-3 1.8165

5 4.9196e-2 0.7445 8.4412e-4 1.6482 4.9196e-2 0.7445 8.4326e-4 1.6549

6 2.9889e-2 0.7189 3.1492e-4 1.4225 2.9891e-2 0.7188 3.3561e-4 1.3292

7 1.8394e-2 0.7004 2.0963e-4 0.5871 1.8405e-2 0.6996 2.4340e-4 0.4635

8 1.1444e-2 0.6846 1.9715e-4 0.0886 1.1455e-2 0.6841 2.3303e-4 0.0628

Fig. 3 shows that the error behavior is almost the same as in Experiment 5.1. In Table 3,

the relative errors in the H1 and L2 norms are listed. Here, the mortar finite element on

level 3 is solved exactly, and when the CMG and ECMG algorithms are used, the errors are

almost the same.
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