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Abstract. This paper is intended to be a first step towards the continuous dependence
of dynamical contact problems on the initial data as well as the uniqueness of a solu-
tion. Moreover, it provides the basis for a proof of the convergence of popular time
integration schemes as the Newmark method. We study a frictionless dynamical con-
tact problem between both linearly elastic and viscoelastic bodies which is formulated
via the Signorini contact conditions. For viscoelastic materials fulfilling the Kelvin-Voigt
constitutive law, we find a characterization of the class of problems which satisfy a
perturbation result in a non-trivial mix of norms in function space. This characteriza-
tion is given in the form of a stability condition on the contact stresses at the contact
boundaries. Furthermore, we present perturbation results for two well-established ap-
proximations of the classical Signorini condition: The Signorini condition formulated in
velocities and the model of normal compliance, both satisfying even a sharper version
of our stability condition.
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1. Introduction

One of the most popular time discretization schemes for dynamical contact problems
is the Newmark method. Unfortunately, this scheme may lead to artificial numerical oscil-
lations at dynamical contact boundaries and an undesirable energy blow-up during time
integration may occur [6, 19]. In [16], Kane et al. suggested a variant of Newmark’s
method which is energy dissipative at contact. Unfortunately, this scheme is still unable to
circumvent the undesirable oscillations at contact boundaries, for which reason Deuflhard
et al. suggested a contact-stabilized Newmark method [6,19]. Up to now, the question of
convergence of Newmark schemes in the presence of contact has completely been avoided
in both the engineering and the mathematical literature – a difficult problem due to the
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non-smoothness at contact boundaries. Our aim is to apply the established proof tech-
nique for discretizations of evolution problems by Hairer, Nørsett and Wanner (also known
as “Lady Windermere’s Fan”, cf. [12]) to the contact-stabilized Newmark method. For this
purpose, the necessary first step is to find a norm in which we can expect a perturbation
result even in the presence of contact.

The classical approach modeling contact phenomena between elastic bodies employs
Signorini’s contact conditions which are based on the non-penetrability of mass and lead
to nonsmooth and nonlinear variational inequalities. The first existence and uniqueness
results for evolution problems in elasticity were obtained by Duvaut and Lions [7]. They
studied the special case of prescribed normal stresses where the contact surface is known in
advance. For the case of linear elasticity in conjunction with Signorini’s contact conditions,
to date, existence has only been provided in some simple geometric settings and for one-
dimensional problems. A general theory for multi-dimensional dynamical contact problems
is still missing.

Basically, the serious mathematical difficulties with the well-posedness of purely elastic
problems result from the irregularity of the velocities at contact. However, the assumption
of viscous material behavior allows the derivation of existence results. In [14] and [15],
Jarušek proved the existence of a weak solution for the dynamical frictionless Signorini
problem between a viscoelastic body with singular memory and a rigid foundation. More
recently, the existence of weak solutions in viscoelasticity with Kelvin-Voigt constitutive
law has been studied by Cocou [3] and Kuttler and Shillor [22]. Migòrski and Ochal [26]
established the existence for a class of unilateral viscoelastic contact problems modeled by
dynamical hemivariational inequalities. In 2008, Ahn and Stewart [1] proved an existence
result for a frictionless dynamical contact problem between a linearly viscoelastic material
of Kelvin-Voigt type and a rigid obstacle. A survey of existence and uniqueness results is
given in the monograph [10].

Unfortunately, there are still fundamental and unresolved mathematical difficulties
even in the analysis of viscoelastic contact. These are caused by the Signorini conditions
on the unknown displacement field itself. Therefore, Martins and Oden [25] proposed
the normal compliance condition, likewise leading to a problem with a much simpler
mathematical structure. Their model assumes that the normal stresses on the contact
surface depend only on the normal displacement field which results in a relaxation of
the non-penetration of mass. They presented existence and uniqueness results for lin-
early elastic and viscoelastic materials, but unfortunately their proof of uniqueness ex-
hibits a fundamental error in the estimation of norms (they used a norm inequality in the
wrong direction). Their model of normal compliance was used in various papers, see,
e.g., [4,18,20,21] and the monograph [17]. One of its main advantages is the higher reg-
ularity of the solutions in time [23]. However, for the medical applications that we have
in mind (such as the movement of the knee joint, see [19]), a mutual interpenetration of
the bodies is unacceptable and normal compliance models are ruled out.

Most of the papers cited above concern existence and uniqueness results for dynamical
contact problems. However, to the best of our knowledge, there are still no mathematical
results concerning the continuous dependence on the initial data (“dynamical contact with
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non-penetration is still an open problem“, [G. Leugering, A. M. Khludnev. Private commu-
nication, 2009.]). The lack of well-posedness results mainly originates from the hyperbolic
structure of the problem which leads to shocks at the contact interfaces. The Signorini
conditions in displacements seem to inhibit a general regularity of such problems. It is this
undesirable and unclear situation that motivates the present analytical study.

The paper is organized as follows. In Section 2, we will consider the frictionless dynam-
ical contact problem between two linearly elastic bodies based on Signorini’s conditions.
We will give a short description of the underlying physical and mathematical model. Then,
we will point out the essential mathematical difficulties in the derivation of a perturba-
tion result for such materials. To this end, in Section 3, we will introduce the Kelvin-Voigt
model for viscoelastic materials. We will find a characterization of a class of problems, for
which it is possible to prove a perturbation theorem in a non-trivial choice of mixed norms
in function space. This theorem is the central result of our paper. In Section 4, we will
end up with the application of our technique to a famous approximation of the Signorini
condition in linear viscoelasticity, namely the normal compliance model. For this, we will
give a perturbation result yielding even the uniqueness of the approximated solutions.

2. The Signorini condition in linear elasticity

The first two sections of this paper deal with a perturbation result for dynamical contact
problems with Signorini conditions in displacements. To the best of our knowledge, there
exist no results concerning continuous dependence on the initial data in the mathematical
literature, neither in the purely elastic nor in the viscoelastic case.

In Section 2.1, we will give a short description of the classical contact problem in
linear elasticity which is formulated via the Signorini conditions. Then, in Section 2.2, we
will analyze the fundamental problems with a characterization of linearly elastic contact
problems which are satisfying a perturbation result.

2.1. Theoretical background

We use the same model of dynamical contact between two linearly elastic bodies as
in [6] which is based on Signorini’s contact conditions. For the convenience of the reader,
we will briefly present the notation of the paper and the formulation of the underlying
mathematical model.

Notation. All domains treated here are understood to be bounded subsets in Rd with
d = 2,3 and indices i, j, l, m run from 1 to d throughout the paper. Let the two bodies be
identified with the domains ΩK , K ∈ {S, M} where S and M stand for slave and master
body, respectively. Let the solution be decomposed according to u = (uS ,uM ). Each of
the boundaries ∂ΩK with associated outward directed normal νK shall be Lipschitz and
is decomposed into three disjoint parts: ΓK

D, the Dirichlet boundary, ΓK
N , the Neumann

boundary, and ΓK
C , the possible contact boundary, see Fig. 1. We assume a non-vanishing

Dirichlet boundary, i.e. meas(ΓD) > 0. The actual contact boundary is not known in
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Figure 1: Two body ontat problem and deomposition of the boundary.
advance, but is assumed to be contained in a compact strict subset of ΓK

C . Set Ω = ΩS ∪ΩM

and Γ∗ = Γ
S
∗ ∪Γ

M
∗ for ∗ ∈ {D, N , C}.

Tensor and vector quantities are written in bold characters, e.g., σ and v with compo-
nents σi j and vi, respectively. The partial derivative with respect to the spatial variable x j

is indicated by a subindex j, e.g., v, j. The dot (˙) denotes the derivative with respect to

the time t > 0. We write the Euclidean vector norm in Rd as | · |. Let L2(ΩK) =
�

L2(ΩK)
�d

and L2 = L2(ΩS)×L2(ΩM ). The Sobolev space of functions with weak derivative in L2(ΩK)

is denoted by H1(ΩK) =
�

H1(ΩK)
�d and (H1)∗(ΩK) is the corresponding dual space. For

Dirichlet boundary conditions we define the subspaces

H1
D(Ω

K) =
n

v |v ∈ H1(ΩK), v|ΓK
D
= 0
o

,

and H1
D = H1

D

�

ΩS
�

×H1
D

�

ΩM
�

. Let H1
D be equipped with the norm

‖v‖2
H1

D

= ‖vS‖2
H1(ΩS)

+ ‖vM‖2
H1(ΩM )

.

Scalar products are written in the form (·, ·)L2(ΩK ) and (·, ·)H1(ΩK ) with induced norms

‖v‖2
L2(ΩK )

= (v,v)L2(ΩK ), ‖v‖
2
H1(ΩK )

= (v,v)H1(ΩK ).

For a Banach space X and 0 < T <∞ we denote by C([0, T],X) all continuous functions
v : [0, T]→ X. The space L2(0, T ;X) consists of all measurable functions v : (0, T )→ X for
which

‖v‖2
L2(0,T ;X)

=

∫ T

0

‖v(t)‖2X dt <∞

holds. We identify L2 with its dual space and obtain the evolution triple

H1 ⊂ L2 ⊂
�

H1�∗
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with dense, continuous and compact embeddings (cf., e.g., [30]). With reference to this
evolution triple, the Sobolev space W1,2(0, T ;H1,L2) means the set of all functions v ∈
L2(0, T ;H1) that have generalized derivatives v̇ ∈ L2�0, T ; (H1)

∗�
.

Non-penetration condition. At the contact interface ΓC , the two bodies may come into
contact but must not penetrate each other. We assume a bijective mapping φ : ΓS

C −→
ΓM

C between the two possible contact surfaces to be given and, following [9], we define
linearized non-penetration with respect to φ by

[u · ν]φ(x , t) = uS(x , t) · νφ(x)− uM
�

φ(x), t
�

· νφ(x)≤ g(x), x ∈ ΓS
C .

This condition is given with respect to the initial gap

ΓS
C ∋ x 7→ g(x) = |x −φ(x)| ∈ R

between the two bodies in the reference configuration and we have set

νφ =







φ(x)− x

|φ(x)− x |
, if x 6= φ(x) ,

ν S(x) = −νM (x) , if x = φ(x).

Variational problem formulation. For the weak formulation of the contact problem, we
denote the convex set of all admissible displacements by

K =
n

v ∈ H1
D

�

� [v · ν]φ ≤ g
o

. (2.1)

For the data we assume f(·, t) ∈ L2(Ω) and π(·, t) ∈ H−1/2(ΓN ) for all t ∈ [0, T]. On H1
D,

the linear functional fext, which accounts for the volume forces and the tractions on the
Neumann boundary, is given by

fext(v) = (f,v)L2 + 〈π,v〉H−1/2(ΓN )×H1/2(ΓN )
.

The internal forces can be written as a bilinear form

a(v,w) =

∫

Ω

Eǫ(vK) : ǫ(wK) dx , v,w ∈ H1

with the elasticity tensor E and the linearized second-order strain tensor

ǫ(v) =
1

2

�

∇v+ (∇v)T
�

, v ∈ H1.

Then, the sum of internal and external forces can be represented by

〈F(w),v〉(H1)∗×H1 = a(w,v)− fext(v), v,w ∈ H1.
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Via integration by parts and exploiting the boundary conditions, see [8] and [17],
we can write the contact problem in the weak formulation as a hyperbolic variational
inequality: For almost every t ∈ [0, T], find u(·, t) ∈K with ü(·, t) ∈ (H1)

∗
such that

〈ü,v− u〉(H1)∗×H1 +



F(u),v− u
�

(H1)∗×H1 ≥ 0, ∀v ∈K , (2.2)

u(x , 0) = u0(x), u̇(x , 0) = u̇0(x) in Ω. (2.3)

Incorporating the constraints v(t) ∈ K for almost all t ∈ [0, T] by the characteristic func-
tional IK (v),

IK (v) =

¨

0 if v ∈K ,
∞ else,

v ∈ H1
D,

the variational inequality (2.2) can equivalently be formulated as the variational inclusion

0 ∈ ü+ F(u) + ∂ IK (u) (2.4)

utilizing the subdifferential ∂ IK of IK (see, e.g., [11]). For a given solution u of this
variational inequality, we define for almost every t ∈ [0, T] the contact forces Fcon(u) ∈
(H1)∗ via




Fcon(u),v
�

(H1)∗×H1 =



ü+ F(u),v
�

(H1)∗×H1 , v ∈ H1. (2.5)

2.2. A perturbation result

In the following we analyze the continuous dependence on the initial data for the
linearly elastic contact problem presented above. We start with a formal derivation of a
relation which describes the dynamical behavior of an initial perturbation in the energy
norm of the system.

Let u and ũ be two solutions of the linearly elastic contact problem (2.2) with initial
values u(x , 0) = u0(x), u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. We
assume u̇−˙̃u to be contained in W1,2(0, T ;H1,L2)which is of course not satisfied in general.
Nevertheless, we formally integrate (2.5) from 0 to t with t ∈ [0, T] and we use v= u̇− ˙̃u
as a trial function. This yields

t
∫

0

〈ü, u̇− ˙̃u〉(H1)
∗×H1 ds+

t
∫

0

a(u, u̇− ˙̃u) ds

=

t
∫

0

fext(u̇− ˙̃u) ds+

t
∫

0




Fcon(u), u̇− ˙̃u
�

(H1)
∗×H1 ds.

Performing the same formal calculation with (2.5) for ũ instead of u, we can subtract the
resulting equation for ũ from the equation for u above. By the linearity of the functional
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fext we find

t
∫

0

〈ü− ¨̃u, u̇− ˙̃u〉(H1)
∗×H1 ds+

t
∫

0

a(u− ũ, u̇− ˙̃u) ds

=

t
∫

0




Fcon(u)− Fcon(ũ), u̇− ˙̃u
�

(H1)
∗×H1 ds .

Under the regularity assumption u̇− ˙̃u ∈W1,2(0, T ;H1,L2) on the velocities, we can refor-
mulate the left-hand side of this expression by applying integration by parts in time (see,
e.g., Prop. 23.23 in [30]). This calculation gives rise to the following result.

Lemma 2.1. Let u and ũ be two solutions of (2.2) with initial values u(x , 0) = u0(x),

u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. Furthermore, assume that

u̇− ˙̃u ∈W1,2(0, T ;H1,L2). Then, for all t ∈ [0, T],

‖u̇(t)− ˙̃u(t)‖2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

=‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

t
∫

0




Fcon
�

u(s)
�

− Fcon
�

ũ(s)
�

, u̇(s)− ˙̃u(s)
�

(H1)
∗×H1 ds . (2.6)

In the absence of contact, the two left-hand terms and the first two right-hand terms
in (2.6) show the continuous dependence of the solution from the initial values. In the
presence of contact, this structure is disturbed by the additional integral term on the right-
hand side.

In order to gain some insight into this result, let us turn to the simpler case of ordinary
differential equations (ODEs). In this case impulsive constraint forces Fcon concentrate
at times where the (rigid) bodies collide. From the analytical point of view, these forces
cannot be modeled as functions in time anymore, but rather as distributions or measures.
From the numerical point of view, the given situation is treated in terms of ”switching
functions“ used to identify ”switching points“ as their local zeros. Once these points are
determined, they can be used to restart the integration (cf., e.g., [5, chapter 8.2]). If such
methods were not applied, a loss of regularity would occur even in the ODE case. In the
PDE case, each spatial point would give rise to a corresponding switching time, which
is why such a treatment cannot carry over. However, the constraint forces can still be
expected to be very irregular.

In order to estimate this term, we need information on the time derivatives of the
displacements at the contact boundaries. Unfortunately, a purely elastic formulation is in
general not able to provide such information. This fact originates from the underlying
assumption that the dependence of internal stresses on velocities can be neglected. There-
fore, there is no way to define a class of elastic contact problems just by demanding a
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kind of stability on the contact stresses. A perturbation result for linearly elastic contact
problems would necessarily require estimates on the velocities at the contact boundaries.

Actually, this problem is linked to the additional regularity assumption on the solutions
which is needed for the derivation of Lemma 2.1. Due to the hyperbolic structure of purely
elastic contact problems, the Signorini solutions are not as smooth as the initial data allow.
Therefore, in the following section, we will turn to materials with viscoelastic behavior.

3. The Signorini condition in viscoelasticity

In this section we will characterize a class of viscoelastic contact problems which are
stable with respect to perturbations of the initial data.

In Section 3.1, we will present the weak formulation of the dynamical contact prob-
lem for viscoelastic materials of Kelvin-Voigt type with Signorini’s contact conditions. After
that, in Section 3.2, we will discuss the so-called persistency condition for linearly elastic
problems in comparison with the viscoelastic case. It will play a major role in the interpre-
tation of our stability condition for viscoelastic contact problems. Finally, in the subsequent
Section 3.3, we will present a characterization of a class of viscoelastic contact problems
which satisfy continuous dependence on the initial data. Under this condition we will
prove a perturbation result in a special mix of norms in function space.

3.1. Theoretical background

In the following, we assume the materials under consideration to be linearly viscoelas-
tic, i.e., the stresses σ satisfy the Kelvin-Voigt constitutive relation

σ
�

uK , u̇K
�

= EK ǫ(uK)+VK ǫ(u̇K) , uK , u̇K ∈ H1,

where EK and VK are the fourth-order elasticity and viscosity tensors, respectively (see,
e.g., [13]). Both tensors are assumed to be sufficiently smooth (with EK

i jml
, V K

i jml
∈ L∞(ΩK)),

symmetric, and uniformly positive definite, i.e., there are constants E0, V0 > 0 such that
�

Eζ,ζ
�

≥ E0|ζ|
2,
�

Vζ,ζ
�

≥ V0|ζ|
2, (3.1)

for all symmetric second-order tensors ζ= (ζi j), where |ζ|=
�

∑

i, j ζ
2
i j

�1/2
. When VK = 0,

this constitutive law reduces to Hooke’s law as used for linearly elastic materials.

Variational problem formulation. For the weak formulation, the convex set of all ad-
missible displacements is given by

K =
n

v : (0, T )→ H1
D

�

� v̇ ∈ H1, [v · ν]φ ≤ g
o

. (3.2)

The viscous part of the internal forces can be written as the bilinear form

b(v,w) =

∫

Ω

Vǫ(vK) : ǫ(wK) dx , v,w ∈ H1,
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which can be represented by



G(w),v
�

(H1)∗×H1 = b(w,v), v,w ∈ H1.

As in the linearly elastic case, we write the viscoelastic contact problem in the weak
formulation as a hyperbolic variational inequality: For almost every t ∈ [0, T] find u(·, t) ∈
K with u(·, t) ∈ C

�

[0, T],H1� and u̇ ∈W1,2�0, T ;H1,L2� such that

〈ü,v− u〉(H1)∗×H1 +



F(u),v− u
�

(H1)∗×H1 +



G(u̇),v− u
�

(H1)∗×H1 ≥ 0, ∀v ∈ K , (3.3)

u(x , 0) = u0(x), u̇(x , 0) = u̇0(x) in Ω . (3.4)

We define the contact forces Fcon(u) ∈ (H
1)
∗

for almost every t ∈ [0, T] as



Fcon(u),v
�

(H1)∗×H1 =



ü+ F(u) +G(u̇),v
�

(H1)∗×H1 , v ∈ H1. (3.5)

As shown, for instance, in [1] and [22] the unilateral contact problem between a
viscoelastic body and a rigid foundation has at least one weak solution.

Remarks. Note that the initial conditions (3.4) are formulated in a meaningful way: The
generalized derivative u̇ ∈W1,2(0, T ;H1,L2) is determined only up to changes on a set of
measure zero on [0, T]. However, since the embedding W1,2(0, T ;H1,L2) ⊂ C(0, T ;L2) is
continuous (cf. [30], sec. 33.1), there exists a uniquely determined representative

u̇ ∈ C
�

[0, T],L2�.

The initial conditions (3.4) are to be understood in this sense.

Korn’s inequality. On Ω, the inequality of Korn

ck ‖v‖
2
H1 ≤ ‖v‖

2
L2 + ‖ǫ(v)‖

2
L2 , ∀v ∈ H

1

holds, where ck > 0 is a constant depending only on Ω and ΓD. Under our additional
assumption that ΓD ⊂ ∂Ω is connected with meas(ΓD)> 0, the inequality reduces to

ck ‖v‖
2
H1 ≤ ‖ǫ(v)‖

2
L2 , ∀v ∈ H

1
D. (3.6)

With the ellipticity condition (3.1), it follows that ‖·‖H1 and a(·, ·)1/2 are equivalent norms
on H1. A proof of Korn’s inequality can, for instance, be found in [27] and [28].

Gronwall’s inequality. Let δ, λ be two mappings from an interval [0, T] into [0,∞).
Assume δ is continuous, λ is integrable, C ∈ [0,∞) and

δ(t) ≤ C +

∫ t

0

λ(s)δ(s) ds, ∀t ∈ [0, T].

Then,

δ(t) ≤ C exp

�∫ t

0

λ(s) ds

�

, ∀t ∈ [0, T].

A proof of this generalized version of the inequality of Gronwall can be found in [29].



246 C. Klapproth, P. Deuflhard and A. Schiela

3.2. The notorious persistency condition

In the case of linear elasticity, we expect the energy of the whole system to be constant
in time. As far as we know, up to now, energy conservation can only be shown for so-
lutions u with sufficiently smooth velocities u̇ and under an additional assumption at the
contact boundary, known as persistency condition (see, e.g., [24]). Analyzing the proof of
energy conservation in [24], we find that this condition can be weakened to




Fcon(u), u̇
�

(H1)
∗×H1 = 0, a.e. t ∈ [0, T] . (3.7)

The solutions of the purely linearly elastic contact problem are in general not smooth
enough to satisfy the persistency condition (3.7). By contrast, we are able to prove the
validity of this condition for solutions of our viscoelastic problem. For this aim, we follow
the presentation for unilateral contact problems in [1] and references therein.

Theorem 3.1. Let u(·, t) ∈ K fulfill (3.3) with u̇ ∈W1,2(0, T ;H1,L2). Then u satisfies the

generalized persistency condition (3.7).

Proof. The definition of the contact forces and the continuity of the linearly elastic
forces (see, e.g., Lemma 1.1 in [9]) lead to Fcon

�

u) ∈ L2(0, T ; (H1)
∗�

since

‖Fcon(u)‖L2(0,T ;(H1)
∗
)

≤c
�

‖ü‖L2(0,T ;(H1)
∗
) + ‖F(u)‖L2(0,T ;(H1)

∗
)+ ‖G(u)‖L2(0,T ;(H1)

∗
)

�

≤c
�

‖ü‖L2(0,T ;(H1)
∗
) + ‖u‖L2(0,T ;H1) + ‖u̇‖L2(0,T ;H1)

�

<∞.

By the generalized main theorem of calculus (compare, e.g., prob. 23.5 in [30]), the time
derivative u̇(t) exists for almost every t ∈ [0, T] even in the classical sense because the
generalized derivative u̇ is contained in L2(0, T ;H1). We choose t such that u̇(t) exists and
condition (3.3) holds. Then,

�

Fcon
�

u(t)
�

,
u(t + h)− u(t)

h

�

(H1)
∗×H1

=

¨

≥ 0 if h> 0,
≤ 0 if h< 0,

and, for almost every t ∈ [0, T], we find




Fcon
�

u(t)
�

, u̇(t)
�

(H1)
∗×H1 = lim

h→0

�

Fcon
�

u(t)
�

,
u(t + h)− u(t)

h

�

(H1)
∗×H1

= 0 .

This completes the proof of the theorem. �

The weakened persistency condition will play an important role in the interpretation
of our stability condition for viscoelastic contact problems presented in the next section.
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3.3. A perturbation result

In what follows, we analyze the continuous dependence of linearly viscoelastic contact
problems with Signorini conditions on the initial data. Viscosity leads to higher regularity
of the solutions which justifies the formal calculation for linearly elastic problems as per-
formed in Section 2.2. Furthermore, linearly viscoelastic models are in general capable of
providing information on the time derivatives of the solutions at the contact boundaries.

We start with a result for the linearly viscoelastic problem corresponding to Lemma 2.1
in the purely elastic case.

Lemma 3.1. Let u and ũ be two solutions of (3.3) with initial values u(x , 0) = u0(x),

u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. Then, for all t ∈ [0, T],



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

=


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

t
∫

0

D

Fcon
�

u(s)
�

− Fcon
�

ũ(s)
�

, u̇(s)− ˙̃u(s)
E

(H1)
∗×H1

ds. (3.8)

Proof. As in the linearly elastic case, we integrate the viscoelasticity equation (3.3) for
u and ũ from 0 to t, test them with v= u̇− ˙̃u, subtract one from the other and obtain

t
∫

0

〈ü− ¨̃u, u̇− ˙̃u〉(H1)
∗×H1 ds+

t
∫

0

a(u− ũ, u̇− ˙̃u) ds+

t
∫

0

b(u̇− ˙̃u, u̇− ˙̃u) ds

=

t
∫

0




Fcon(u)− Fcon(ũ), u̇− ˙̃u
�

(H1)
∗×H1 ds.

Integration by parts (see, e.g., Prop. 23.23 in [30]) leads to (3.8). �

Even in the case of linear viscoelasticity, the dynamical contact problem with Signorini
conditions may be ill-posed in the presence of contact. Hence, we give a characterization of
problems for which the continuous dependence of the solutions on the initial values holds.
The result presented in the lemma above shows that we have to impose such a stability
condition on the time integral over the contact forces applied to the velocities.
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Stability condition. Measuring the perturbation in the displacements and the velocities
in the canonical norm on L2(0, T ;H1(Ω)), we demand for all t ∈ [0, T]

�

�

�

�

t
∫

0

D

Fcon
�

u(t)
�

− Fcon
�

ũ(t)
�

, u̇(t)− ˙̃u(t)
E

(H1)
∗
(Ω)×H1(Ω)

dt

�

�

�

�

≤ǫ
�

‖κ (u− ũ)‖L2(0,t;H1(Ω)) +


u̇− ˙̃u




L2(0,t;H1(Ω))

�


u̇− ˙̃u




L2(0,t;H1(Ω))
, (3.9)

where ǫ ≥ 0 is sufficiently small and 0≤ κ ∈ L2(0, T ).

The precise meaning of the requirement “ǫ sufficiently small” will be given in the proof
of the following perturbation theorem. We will see that, for the derivation of a perturbation
result in the viscoelastic case, the validity of this demand is absolutely fundamental.

For the class of viscoelastic problems satisfying the stability condition above, the fol-
lowing perturbation result holds.

Theorem 3.2. Let u and ũ be two solutions of (3.3) with initial conditions u(x , 0) =
u0(x), u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. For T > 0, assume

the stability condition (3.9) with (3.11). Then, for all t ∈ [0, T],



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2αǫ

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤
�

‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

�

· e

t
∫

0

κ̃2(s) ds

(3.10)

with αǫ ∈ [0,1) and

κ̃2(s) =
ǫ2

2 E0 V0 c2
k
(1−αǫ)

· κ2(s), for s ∈ (0, T ).

Proof. Using Lemma 3.1 the stability condition (3.9) leads for all t ∈ (0, T ) to


u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

�

�

�

�

t
∫

0

D

Fcon
�

u(s)
�

− Fcon
�

ũ(s)
�

, u̇(s)− ˙̃u(s)
E

(H1)
∗×H1

ds

�

�

�

�

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2ǫ


κ (u− ũ)




L2(0,t;H1)



u̇− ˙̃u




L2(0,t;H1)
+ 2ǫ


u̇− ˙̃u




2
L2(0,t;H1)

.
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For an arbitrary parameter α ∈ [0,1), we use Young’s inequality in the form

2ab ≤
1

2 V0 ck (1−α)
a2 + 2 V0 ck (1−α) b2

to find



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+
ǫ2

2 V0 ck (1−α)
‖κ (u− ũ)‖2

L2(0,t;H1)
+ 2
�

ǫ+ V0 ck (1−α)
�

‖u̇− ˙̃u‖2
L2(0,t;H1)

.

Remember our assumption meas(ΓD) > 0. For almost every t > 0, the velocities u̇(t) are
contained in H1(Ω) with a trace on the boundary. Hence, it follows from u(t) = 0 on ΓD

that even u̇(t) = 0 on ΓD for almost every t. Then, Korn’s inequality (3.6) yields



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2
t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+
ǫ2

2 E0 V0 c2
k
(1−α)

t
∫

0

κ2(s) a
�

u(s)− ũ(s),u(s)− ũ(s)
�

ds

+ 2
� ǫ

V0 ck

+ (1−α)
�

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds,

which is equivalent to



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+2
�

α−
ǫ

V0 ck

�

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+
ǫ2

2 E0 V0 c2
k
(1−α)

t
∫

0

κ2(s) a
�

u(s)− ũ(s),u(s)− ũ(s)
�

ds.

In order to ensure the non-negativity of the integral term on the left-hand side, we demand
ǫ to be such small that

ǫ

V0 ck

< 1. (3.11)
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This yields



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2αǫ
t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0) +

t
∫

0

κ̃2(s) a
�

u(s)− ũ(s),u(s)− ũ(s)
�

ds,

with a constant
αǫ = α−

ǫ

V0 ck

∈ [0,1)

and

κ̃2(s) =
ǫ2

2 E0 V0 c2
k
(1−α)

· κ2(s) ∈ L2(0, T ) .

We note that u ∈ C([0, T],H1) and u̇ ∈ C([0, T],L2). Together with Lebesgue’s theorem
and u̇ ∈ L2(0, T ;H1), this fact yields the continuity of the left-hand side w.r.t. t ∈ [0, T].
Theorem 3.2 is a direct consequence of Gronwall’s lemma as it has been presented in
Section 3.1. �

The perturbation theorem given above is the main result of our paper. Coming back to
dynamical contact problems in the context of orthopaedic surgery as already mentioned in
the Introduction (the motion of the knee), we may interpret that cartilage is the Nature’s
reflection of the above mathematical insight.

3.4. Interpretation of the stability condition

In order to interpretate and to motivate our stability condition (3.9), our first aim is to
localize the contact stresses on a part of the possible contact boundaries. On the basis of
such a localization, we will give a sufficient criterion for the validity of the condition.

Our considerations are motivated by the intuition that perturbations in the contact
forces are effective only on a small part of the contact boundaries, namely where the
original solution is in contact and the perturbed is not, or vice versa. Due to lack of
regularity of the solutions, however, we resort to a heuristic argumentation rather than a
rigorous proof.

Localization of the contact stresses. For simplification, we assume that the possible
contact boundaries and the bijective mappings between the two possible contact bound-
aries coincide, i.e. ΓC = Γ̃C and φ = φ̃.

For t > 0, we want to consider the part ΓC(t) of the possible contact boundaries
where the solution of the dynamical viscoelastic contact problem is actually in contact.
The natural definition of the actual contact boundaries is

ΓC(t) =
�

x ∈ ΓC | [u · ν]φ = g
	

⊂ ΓC , t ≥ 0,

respectively
Γ̃C(t) =
�

x ∈ ΓC | [ũ · ν]φ = g
	

⊂ ΓC , t ≥ 0,
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for the perturbed solution. Unfortunately, in the general case, the lack of regularity results
for dynamical contact problems prohibits the introduction of actual contact boundaries in
this way. This is due to the fact that the definition of the admissible set K yields only

[u · ν]φ ≤ g, for almost every x ∈ ΓC ,

i.e. up to boundary sets of measure zero. Hence, the definition above necessitates the
additional assumption that the solutions u and ũ are continuous on the possible contact
boundaries ΓC and Γ̃C . This is satisfied, e.g., if u ∈ L2�0, T ;H2(Ω)

�

.
Now, we mean by the critical part of the actual contact boundaries the set where the

solution is in contact and the perturbed solution is not, or vice versa. It is given by the
symmetric difference

Γ∗C(t) =(ΓC(t)∪ Γ̃C(t)) \ (ΓC(t)∩ Γ̃C(t))

=
n

x ∈ ΓC (t)∪ Γ̃C(t) | [u · ν]φ < g, [ũ · ν]φ = g

or [u · ν]φ = g, [ũ · ν]φ < g
o

, t ≥ 0.

Finally, we introduce the space

VC =
n

v ∈ L2�0, T ;H1
D

�
�

� v̇ ∈ L2�0, T ;H1�, [v · ν] = 0 on ΓC(t)∩ Γ̃C (t)
o

,

containing functions which are zero on the intersection of the two actual contact bound-
aries.

Using these preliminary definitions we want to write for all t ∈ [0, T] the difference of
the contact forces as an operator on the critical contact boundary Γ∗C , i.e.

∫ t

0




Fcon(u)− Fcon(ũ), v̇
�

(H1)
∗
(Ω)×H1(Ω) ds

=

∫ t

0


�

σ̂(u, u̇)− σ̂(ũ, ˙̃u)
�∗, v̇
�

H−1/2(Γ∗
C
(s))×H1/2(Γ∗

C
(s)) ds, v ∈ VC , (3.12)

with a functional
�

σ̂(u, u̇)− σ̂(ũ, ˙̃u)
�∗ ∈ L2�0, T ;H−1/2(Γ∗C(t))

�

.
We give a brief sketch how to validate the representation (3.12). The proof is based on

a trace theorem which generalizes the definition of the normal stresses in the strong sense.
Some formulations of such a theorem can be found, e.g., in [2] and [17]. We mention that
it is possible to prove generalized versions of this theorem under less strict assumptions.

The first idea of the argumentation is the fact that the contact forces are supported
by the union of the actual contact boundaries ΓC (t) ∪ Γ̃C(t). This yields a representation
of the contact forces via a functional in L2(0, T ;H−1/2(ΓC(t) ∪ Γ̃C(t)). In a second idea,
the reduction of the contact forces onto the subset Γ∗C(t) is motivated in analogy to the
persistency condition in Section 3.2: If a function v ∈ VC satisfies [v(t) ·ν] = 0 on ΓC (t)∩
Γ̃C(t), it follows that even [v̇(t) · ν] = 0 for almost every x ∈ ΓC (t) ∩ Γ̃C (t). Under
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the regularity assumption that divσ(u, u̇) ∈ L2(0, T ; (H1)
∗
), the trace theorem mentioned

above gives a representation of the contact forces via (3.12).
Note that the difference u−ũ is contained in VC by definition. Thus, we can reformulate

Lemma 3.1 in the following way.

Lemma 3.2. Let u and ũ be two solutions of (3.3) with initial values u(x , 0) = u0(x),

u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. For T > 0, assume that (3.12)
is valid. Then,



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

=


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

t
∫

0




(σ̂(u, u̇)− σ̂(ũ, ˙̃u))∗, u̇− ˙̃u
�

H−1/2(Γ∗
C
(s))×H1/2(Γ∗

C
(s)) ds . (3.13)

Using this new representation of the integral term on the right-hand side, we find a
variant of our stability condition (3.9) for the contact stresses. This variant is a sufficient
criterion for the validity of the original stability condition.

Localized stability condition. For all t ∈ [0, T], let



(σ̂(u, u̇)− σ̂(ũ, ˙̃u))∗




L2
�

0,t;H−1/2(Γ∗
C
(s))
�

≤ ǫ
�

‖κ (u− ũ)‖L2(0,t;H1(Ω)) +


u̇− ˙̃u




L2(0,t;H1(Ω))

�

, (3.14)

where ǫ ≥ 0 is sufficiently small and 0≤ κ ∈ L2(0, T ).

The quasistatic contact problem. In order to show that our stability condition (3.14)
is reasonable, we want to discuss it for the special case of quasistatic contact problems.
These problems follow from the dynamic viscoelastic contact problem (3.3) by setting

ü = 0,

which yields the following problem formulation in the form of a variational inequality: For
almost every t ∈ [0, T], find u(·, t) ∈ K with u(·, t) ∈ C([0, T],H1) and u̇ ∈ L2(0, T ;H1)

such that




F(u),v
�

(H1)∗×H1 +



G(u̇),v
�

(H1)∗×H1 =



Fcon(u),v
�

(H1)∗×H1 , ∀v ∈ H1,

u(x , 0) = u0(x), u̇(x , 0) = u̇0(x) in Ω .
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We assume the characterization (3.12) of the contact forces in the form of stresses
at the contact boundaries to be valid. Then, the definition of the contact forces and the
continuity of the linearly elastic forces (see, e.g., Lemma 1.1 in [9]) directly lead to



σ̂(u, u̇)− σ̂(ũ, ˙̃u)




L2(0,t;H−1/2(ΓC∪Γ̃C ))

≤ c
�

‖F(u)− F(ũ)‖L2(0,t;(H1)
∗
) +


G(u̇)−G(˙̃u)




L2(0,t;(H1)
∗
)

�

≤ c
�

‖u− ũ‖L2(0,t;(H1)
∗
)+


u̇− ˙̃u




L2(0,t;(H1)
∗
)

�

,

for almost every t ∈ [0, T]. Under the assumption that we have for all t ∈ (0, T ) an
estimate of the form





�

σ̂(u, u̇)− σ̂(ũ, ˙̃u)
�∗


L2
�

0,t;H−1/2(Γ∗
C
(s))
�

≤ǫ


σ̂(u, u̇)− σ̂(ũ, ˙̃u)




L2
�

0,t;H−1/2(ΓC∪Γ̃C )
�

with ǫ sufficiently small, we find the stability condition (3.9) to be satisfied for quasistatic
contact problems:





�

σ̂(u, u̇)− σ̂(ũ, ˙̃u)
�∗


L2
�

0,t;H−1/2(Γ∗
C
(s))
�

≤ǫ c
�

‖u− ũ‖L2(0,t;H1) +


u̇− ˙̃u




L2(0,t;H1)

�

.

In the quasistatic case, our localized stability assumption is equivalent to the require-
ment that “ǫ c is sufficiently small” for all t ∈ [0, T]. This corresponds to our intuition that
for small perturbations the critical part of the actual contact boundaries is only a small part
of the possible contact boundaries.

Our characterization seems to be reasonable at least in the case of a small spatial
variation in the velocities. Thus, if the dynamical contact problem shows a behavior similar
to the one of the quasistatic problem, it might satisfy continuous dependence on the initial
data.

4. Application to the normal compliance problem

In this last section of our paper we want to apply the above technique to the spe-
cial case of the widely-used normal compliance model. This contact model introduced by
Martins and Oden in [25] is based on a penalization of the exact Signorini condition in dis-
placements which leads to a higher regularity of the solutions. It will further motivate our
stability condition as formulated in the previous section, since the approximating solution
satisfies the assumption even in a sharper version.

Introducing the penalty parameter ǫ > 0, the contact forces Fcon of the problem with
Signorini conditions in displacements are replaced by the normal compliance operator P

given by

P
S
�

uS
��

x s
�

= −
1

ǫ

�

[uS · ν]φ − g
�

+ · νφ , on ΓS
C × [0, T], (4.1)
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P
M
�

uM
��

x M
�

= −P
S
�

uS
��

φ−1(x M )
�

, on ΓM
C × [0, T], (4.2)

where (·)+ =max(0, ·) denotes the positive part of a function. Defining

K =
n

v : (0, T )→ H1
D | v̇ ∈ H1
o

−, (4.3)

we write the normal compliance problem in the weak formulation as a partial differential
equality: For almost every t ∈ [0, T] find u(·, t) ∈ C([0, T],H1) with u̇ ∈W1,2(0, T ;H1,L2)

such that

〈ü,v〉(H1)∗×H1 +



F(u),v
�

(H1)∗×H1 +



G(u̇),v
�

(H1)∗×H1

=



P(u),v
�

H−1/2(Γ)×H1/2(Γ), ∀v ∈K (4.4)

and
u(x , 0) = u0(x), u̇(x , 0) = u̇0(x) in Ω . (4.5)

For this penalty approach we are able to prove a perturbation result in the same mixed
norm as used in the previous section for the original Signorini contact condition in dis-
placements.

Theorem 4.1. Let u and ũ be two solutions of (4.4) with initial conditions u(x , 0) =
u0(x), u̇(x , 0) = u̇0(x) and ũ(x , 0) = ũ0(x), ˙̃u(x , 0) = ˙̃u0(x) in Ω. Then, for all t ∈ [0, T],



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2α

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤
�

‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

�

· e
2 c2

s

ǫ2 E0 V0 c2
k
(1−α)
·t

(4.6)

with α ∈ [0,1).

Proof. Performing the same calculations as in the proof of Lemma 3.1, we find the
corresponding result with Fcon(u) replaced by P(u):



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

=


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+ 2

t
∫

0




P(u(s))− P(ũ(s)), u̇(s)− ˙̃u(s)
�

H−1/2(Γ)×H1/2(Γ) ds

=‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0)

−
2

ǫ

t
∫

0

∫

ΓS
C

��

[u · ν]φ − g
�

+−
�

[ũ · ν]φ − g
�

+

�

· [(u̇− ˙̃u) · ν]φ daS ds.
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Since the normal compliance model does not satisfy the persistency condition, we need an
estimate for the contact forces on the whole contact boundaries. We arrive at the following
case distinction:
If
�

[u · ν]φ − g
�

+ ·
�

[ũ · ν]φ − g
�

+ > 0, then
�

�

�

[u · ν]φ − g
�

+ −
�

[ũ · ν]φ − g
�

+

�

� =
�

�[(u− ũ) · ν]φ
�

�,

and if
�

[u · ν]φ − g
�

+ ·
�

[ũ · ν]φ − g
�

+ = 0, we estimate
�

�

�

[u · ν]φ − g
�

+ −
�

[ũ · ν]φ − g
�

+

�

� ≤
�

�[(u− ũ) · ν]φ
�

�.

Thus, we conclude




�

[u · ν]φ − g
�

+−
�

[ũ · ν]φ − g
�

+





2
H1/2(ΓS

C
)
≤ 2


u− ũ




2
H1/2(ΓS

C
)
,

which corresponds to the localized stability condition for the problem with Signorini’s
contact condition. We use Young’s inequality in the form

2ab ≤
cs

2 V0 ck (1−α)
a2 +

2 V0 ck (1−α)

cs

b2,

where α ∈ [0,1) and cs denotes the Sobolev embedding constant. This leads to



u̇(t)− ˙̃u(t)




2
L2 + a
�

u(t)− ũ(t),u(t)− ũ(t)
�

+ 2

t
∫

0

b
�

u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)
�

ds

≤


u̇0 − ˙̃u0





2
L2 + a(u0 − ũ0,u0 − ũ0)

+
1

ǫ2

2 cs

V0 ck (1−α)

t
∫

0

‖u− ũ‖2
H1/2(ΓC )

ds+
2 V0 ck (1−α)

cs

t
∫

0

‖u̇− ˙̃u‖2
H1/2(ΓC )

ds.

Korn’s inequality (3.6) yields

‖u̇(t)− ˙̃u(t)‖2
L2 + a(u(t)− ũ(t),u(t)− ũ(t)) + 2α

t
∫

0

b(u̇(s)− ˙̃u(s), u̇(s)− ˙̃u(s)) ds

≤‖u̇0 − ˙̃u0‖
2
L2 + a(u0 − ũ0,u0 − ũ0) + κ̃

2
ǫ

t
∫

0

a(u− ũ,u− ũ)ds,

where

κ̃2
ǫ =

1

ǫ2 ·
2 c2

s

E0 V0 c2
k
(1−α)

.

Now, the result follows from Gronwall’s lemma as presented in Section 3.1. �

Note that our perturbation result yields the uniqueness of the normal compliance prob-
lem for two viscoelastic bodies of Kelvin-Voigt type.
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Corollary 4.1. There exists at most one solution of the normal compliance problem (4.4).

Proof. Assume that u and ũ are two solutions of (4.4) with the same initial conditions.
Then, Theorem 4.1 yields that



u(t)− ũ(t)




H1 = 0,


u̇(t)− ˙̃u(t)




L2 = 0, for all t ≥ 0,


u̇− ˙̃u




L2(0,t;H1)
= 0 for a.e. t ≥ 0.

This gives us the uniqueness of a solution u ∈ C([0, T],H1) with generalized derivative
u̇ ∈ L2(0, T ;H1). �
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