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Abstract. In this paper, we are interested in HSS preconditioners for saddle point lin-

ear systems with a nonzero (2,2)-th block. We study an approximation of the spectra of

HSS preconditioned matrices and use these results to illustrate and explain the spectra

obtained from numerical examples, where the previous spectral analysis of HSS precon-

ditioned matrices does not cover.
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1. Introduction

Saddle point linear problems arise in many different practical applications [4]. In this

paper we study iterative methods for solving saddle point problemsA ′x = b where

A ′ =
�

W K

KT −µI

�

, (1.1)

W ∈ Rm×m is symmetric positive semi-definite and K ∈ Rm×n (so I ∈ Rn×n). We confine

our discussion that m ≥ n (or even m ≫ n) and K is assumed to have full (column)

rank. Examples include discrete Stokes equations [6], and weighted Toeplitz least squares

problems [5] where applications arise from image reconstruction [1, 10] and nonlinear

image restoration [9]. In imaging applications, µ refers to the regularization parameter.

In the literature, there are many solution methods for solving saddle point linear sys-

tems; see [4] for references. In this paper, we are interested in HSS preconditioning tech-

niques [3]. The idea is first to transform A ′ in (1.1) to a nonsymmetric matrix

A =
�

W K

−KT µI

�

. (1.2)
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Then we splitA intoH +S where

H =
�

W 0

0 µI

�

and S =
�

0 K

−KT 0

�

. (1.3)

Here H is the symmetric part of A and S is the skew-symmetric part of A . The HSS

preconditioner is in the form

P = 1

2α
(H +αI)(S +αI), (1.4)

where α > 0 is referred to as the preconditioning parameter for the HSS preconditioner.

The idea of HSS preconditioner is motivated from the Hermitian and skew-Hermitian split-

ting (HSS) method [2]. It was shown in [3] that the eigenvalues of I − P −1A lie in

D(1) = {z ∈ C | |z| ≤ 1} and in particular D(1) = {z ∈ C | |z| < 1} if W is positive definite.

In [11] a more thorough spectral analysis for the case of µ = 0 is presented where a

more refined inclusion region is given, and sufficient conditions with respect to α for a real

or a clustered spectrum are provided.

When µ 6= 0, an analysis under the special case when α = µ can be found in [5].

However, when α 6= µ it remains a rather difficult task to make any conclusion on the

spectrum.

The main aim of this paper is to explain the spectra of HSS preconditioned matrices

when µ 6= 0. The argument involved is to approximate the transformed preconditioned

matrices for which the eigenvalues of the approximations can be determined and analyzed.

When α is smaller than the eigenvalues of W our approximations are quite accurate. Our

analysis can be used to study the spectra of HSS preconditioned matrices when µ = 0.

The outline of this paper is as follows. In Section 2, we give some preparatory work.

In Section 3, we study an approximation of spectra of HSS preconditioned matrices. In

Section 4, numerical examples are presented to illustrate the approximation scheme. In

Section 5, we study the spectra when µ = 0. Finally, we give some concluding remarks in

Section 6.

2. Decomposition of matrices

For simplification, throughout this paper we shall denote by R(r), D(r) and D(r) the

sets {z ∈ C | |z| = r}, {z ∈ C | |z| < r} and {z ∈ C | |z| ≤ r} respectively. We shall also

denote by Ik the k×k identity matrix, whenever ambiguities may arise from the size of the

identity matrix.

We first note that the spectrum of the matrix (αI−H )(αI+H )−1(αI−S )(αI+S )−1

is the same as the spectrum of I −P −1A .

Lemma 2.1. ([11]) Consider the HSS preconditioner P to a linear system with coefficient

matrixA =H +S , whereH andS are respectively the Hermitian part and skew-Hermitian

part of A . Then the matrices I −P −1A and (αI −H )(αI +H )−1(αI −S )(αI +S )−1

have the same spectrum.
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As (αI −S )(αI+S )−1 is the well-known Cayley transform of the skew-symmetric S ,

it is orthogonal and its spectrum is a subset of R(1). Next we see that if the singular values

of K are known, the precise locations of the eigenvalues of (αI −S )(αI + S )−1 can be

determined. Let

K = VΛU T

be a singular value decomposition of K . Here V ∈ Rm×m, U ∈ Rn×n are orthogonal and

Λ = [Σ 0]T ∈ Rm×n with m ≥ n and Σ ∈ Rn×n is a diagonal matrix (i.e., ΣT = Σ)

with non-negative diagonal entries containing the singular values of K . When K is of full

column rank, Σ is positive diagonal. We note that

αI +S =
�

αI K

−KT αI

�

=

�

αI VΛU T

−UΛT V T αI

�

= V






αI 0 Σ

0 αI 0

−Σ 0 αI





V T ,

where

V =
�

V 0

0 U

�

.

Using the following identity






I 0 0

0 I 0
1

α
Σ 0 I













αI 0 Σ

0 αI 0

−Σ 0 αI





=







αI 0 Σ

0 αI 0

0 0 D







with D = 1

α
Σ2 +αI , we have







αI 0 Σ

0 αI 0

−Σ 0 αI







−1

=









D−1 0 − 1

α
ΣD−1

0 1

α
I 0

1

α
ΣD−1 0 D−1









.

It follows that

(αI +S )−1 = V









D−1 0 − 1

α
ΣD−1

0 1

α
I 0

1

α
ΣD−1 0 D−1









V T .

Similarly, we obtain

αI −S =
�

αI −K

KT αI

�

=

�

αI −VΛU T

UΛT V T αI

�

= V






αI 0 −Σ
0 αI 0

Σ 0 αI





V T ,

and therefore we have

(αI −S )(αI +S )−1 = V






2αD−1 − I 0 −2ΣD−1

0 I 0

2ΣD−1 0 2αD−1 − I





V T . (2.1)

The following lemma is straightforward and the proof can be omitted.
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Lemma 2.2. Let

T =






D1 0 −D2

0 I 0

D2 0 D1





 ,

where D1 and D2 are n× n diagonal matrices, I is an identity matrix of size m− n. Then the

eigenvalues of T are given by

(i) 1 with multiplicity m− n; and

(ii) the roots of the quadratic equations

λ2− 2[D1]i,iλ+ ([D1]
2
i,i + [D2]

2
i,i) = 0, i = 1, · · · , n.

In our study, the singular values of K are given by σi (i = 1,2, · · · , n). It follows that

[D1]i,i = [2αD−1 − I]i,i =
2α2

σ2
i
+α2
− 1=

α2 −σ2
i

α2 +σ2
i

,

[D2]i,i = [2ΣD−1]i,i =
2σiα

σ2
i
+α2

.

(2.2)

As

[D1]
2
i,i + [D2]

2
i,i =

�

α2 −σ2
i

α2 +σ2
i

�2

+

�

2σiα

σ2
i
+α2

�2

= 1,

the quadratic equations in (ii) of Lemma 2.2 is reduced to

λ2 − 2

�

α2 −σ2
i

α2 +σ2
i

�

λ+ 1= 0,

the corresponding discriminants are −16α2σ2
i

�

α2 +σ2
i

�−2
, which is always negative be-

cause α > 0 and σi > 0. Therefore, these eigenvalues are non-real and in conjugate pairs.

Their real parts are given by

α2 −σ2
i

α2 +σ2
i

. (2.3)

Next we investigate the spectrum of (αI−H )(αI+H )−1. Suppose an eigen-decomposition

of W is given by

W = Q diag(w1, · · · , wm) QT ,

where Q is orthogonal and w1,· · · , wm are the eigenvalues of W . From (1.3), we have

(αI −H )(αI +H )−1

=

�

Q 0

0 I

�















α−w1

α+w1

. . .
α−wm

α+wm

0

0
α−µ
α+µ

I















�

QT 0

0 I

�

.
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It is clear that the spectral radius of (αI−H )(αI+H )−1(αI−S )(αI+S )−1 is bounded

above by

w ≡max

¨�

�

�

�

α−w1

α+w1

�

�

�

�

, · · · ,
�

�

�

�

α−wm

α+wm

�

�

�

�

,

�

�

�

�

α−µ
α+µ

�

�

�

�

«

(2.4)

regardless of the singular values of K . The eigenvalues of

(αI −H )(αI +H )−1(αI −S )(αI +S )−1

are then lying inside D(w). A more refined region for the case µ = 0 is given as inside

an annulus [11]. However, these results do not tell much how the eigenvalues lie inside

D(w).

Based the above decompositions of (αI−H )(αI+H )−1 and (αI−S )(αI+S )−1, we

have the following result about the spectra of P −1A .

Theorem 2.1. Consider the linear system with coefficient matrix in (1.2) and its correspond-

ing HSS preconditioner P in (1.4). Assume that W is symmetric and positive definite with

eigenvalues w1, · · · , wm. If either (i) µ < α < wi for all i or (ii) wi < α < µ for all i, then the

eigenvalues of P −1A are real.

Proof. Suppose (i) holds. Then (αI −W )(αI +W )−1 is negative definite and
α−µ
α+µ

I is

positive definite. Therefore,

� −(αI −W )(αI +W )−1 0

0
α−µ
α+µ

I

�

is positive definite. Moreover, we have

(αI −H )(αI +H )−1(αI −S )(αI +S )−1

=

�

(αI −W )(αI +W )−1 0

0
α−µ
α+µ

I

�

V






2αD−1 − I 0 −2ΣD−1

0 I 0

2ΣD−1 0 2αD−1 − I





V T

= −
� −(αI −W )(αI +W )−1 0

0
α−µ
α+µ

I

�

V






2αD−1 − I 0 −2ΣD−1

0 I 0

−2ΣD−1 0 −(2αD−1− I)






V T .

Note that

V






2αD−1 − I 0 −2ΣD−1

0 I 0

−2ΣD−1 0 −(2αD−1 − I)






V T

is symmetric, i.e., (αI −H )(αI +H )−1(αI −S )(αI +S )−1 is a product of a symmetric

negative definite matrix and a symmetric matrix and so it must have a real spectrum. The

result follows from Lemma 2.1. The proof for (ii) is similar. �
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Remark 2.1. Although a singular, symmetric positive semi-definite matrix does not have an

invertible square root, we can still use continuity arguments about eigenvalues to conclude

that the product of a semi-definite matrix and a symmetric matrix has a real spectrum. There-

fore, we can further relax the assumptions in the statement of Theorem 2.1 where equality

conditions are included to the strict inequalities.

3. Spectral analysis of HSS preconditioned matrices

3.1. Mathematical tools

In this subsection, we present two main results for our further analysis.

Lemma 3.1. Let

U =

�

a −b

b a

�

, P =

�

1 0

0 ρ

�

,

where a, b ∈ R with a2 + b2 = 1, and ρ ∈ R, 0 ≤ |ρ| ≤ 1. The product PU has real

eigenvalues if and only if either (i) −1 ≤ ρ ≤ 0 or (ii) ρ > 0 and |a| ≥ 2
p
ρ(ρ+ 1)−1.

Moreover, if the eigenvalues of PU are non-real, then their moduli are
p
ρ regardless of the

values a and b of U.

Proof. As the characteristic polynomial of PU is

det(PU −λI) = λ2 − (ρ+ 1)aλ+ρ,

the discriminant of the characteristic equation is precisely

(ρ+ 1)2a2 − 4ρ,

which means the eigenvalues are real if and only if

(ρ+ 1)2a2 − 4ρ ≥ 0.

Clearly this situation holds if −1≤ ρ ≤ 0 (i.e., when condition (i) is satisfied). Otherwise,

if ρ > 0, then we need |a| ≥ 2
p
ρ(ρ+ 1)−1 (i.e., when condition (ii) is satisfied).

If the eigenvalues of PU are non-real, then they are in conjugate pair and they have

the same moduli. Moreover, the product of them equals

det(PU) = (det P)(det U) = ρ.

Hence, the moduli for non-real eigenvalues must be
p
ρ regardless of the values a and b

of U . �

The next lemma discusses the nilpotent part of the upper triangular matrix correspond-

ing to the Schur’s triangularization of the product PU . Denote by ‖·‖F the Frobenious norm

of a matrix.
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Lemma 3.2. Let U and P be the matrices in Lemma 3.1. Suppose PU has Schur triangular-

ization V ∗T V where

T =

�

λ1 t

0 λ2

�

is upper triangular and V is unitary. Then |t| ≤
�

� 1− |ρ|
�

�. In particular, if 0 ≤ |ρ| ≤ 1 then

we have |t| ≤ 1.

Proof. As PU and T are similar to each other by a unitary matrix, they have the same

determinant and the same Frobenius norm. Then,

1+ρ2 = a2 + b2+ρ2a2 +ρ2 b2

= ‖PU‖2F = ‖T‖2F = |λ1|2+ |λ2|2+ |t|2

and

ρ = (det P)(det U) = det(PU) = det(T ) = λ1λ2.

Hence,

|t|2 = 1+ρ2 − |λ1|2− |λ2|2 ≤ 1+ρ2 − 2|λ1λ2|
= 1+ρ2 − 2|ρ|= (1− |ρ|)2, (3.1)

which gives |t| ≤
�

� 1− |ρ|
�

�. Hence, if 0≤ |ρ| ≤ 1 then we have |t| ≤ 1. �

According to the above result, if T is decomposed as D+ N where D is diagonal and

N =

�

0 t

0 0

�

is nilpotent, then we have ‖N‖ ≤ 1 for any usual matrix norm. In particular, if ρ = ±1

then PU is normal and from (3.1) we have t = 0, i.e. T is indeed diagonal.

3.2. Approximation of the spectra of HSS preconditioned matrices

In this subsection, we study an approximation of the spectra of HSS preconditioned

matrices. We first note that the eigenvalues for (αI −H )(αI +H )−1 and (αI −S )(αI +

S )−1 involve the key terms in the form

f1(x) =
α− x

α+ x
= 1− 2

α

x
+ 1

and f2(y) =
α2 − y2

α2 + y2
= 1− 2
�

α

y

�2

+ 1

respectively (cf. (2.4) and (2.3)). Here x and y relate to the eigenvalues of W and the

singular values of K respectively. Note that f1(x) is a decreasing function with respect to

x . When α is fixed, we find that

f1(x)







→−1, if α
x
→ 0,

= 0, if α
x
= 1,

→ 1, if α
x
→∞.

(3.2)
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The function f2(·) behaves similarly as f1(·), but f2(·) approaches the extreme values ±1

much faster than f1(·).

Lemma 3.3. Let A and B be two normal matrices. If either A or B has eigenvalues being close

to 1, then the spectrum of the product AB resembles to that of the other. In particular, if both A

and B have eigenvalues being close to 1, then the product AB will also have eigenvalues being

close to 1.

Proof. We assume A to be the normal matrix having eigenvalues being close to 1. If

‖B‖ = 0, then B is the zero matrix and the result trivially holds. Here ‖ · ‖ refers to the

spectral norm. Now suppose ‖B‖ 6= 0. Let

εA = ‖B‖ · max
λ∈λ(A)
|λ− 1|.

Hence, ‖A− I‖ = εA/‖B‖ and we have

‖AB− B‖ ≤ ‖A− I‖‖B‖ = εA.

This means AB differs from the normal matrix B with a matrix AB − B which has a very

small norm. According to Bauer-Fike theorem [8, p.321], we have

min
λ∈λ(AB)

|λ− ν | ≤ εA

for any eigenvalue ν of B. The explanation to the case if B has eigenvalues being close to

1 is just the same. �

With the above observations and Lemma 3.3, we consider an approximation to the

matrix (αI −H )(αI +H )−1. When the value of α lies away from the entries of W , we

approximate the (1,1)-th block of (αI −H )(αI +H )−1, i.e., (αI −W )(αI +W )−1, by

±Im. The plus or minus sign depends on whether α is larger than or smaller than those

non-negative entries of W respectively, as we can see from (3.2). We also note that when

x ≪ α or α≪ x , |(α− x)/(α+ x)| tends to 1. Therefore, an approximation to the matrix

(αI −H )(αI +H )−1 takes the form

�

Im 0

0 ρIn

�

,

where ρ ∈ R and |ρ| ≤ 1. Recall that if α is smaller than wi ’s, the approximated (1,1)-th

block is actually −Im. In this case we simply multiply the whole matrix by −Im+n. Hence,

we can still have Im where the corresponding sign of ρ will be adjusted and our analysis

still applies. The (2,2)-th block of (αI −H )(αI +H )−1 is
α−µ
α+µ

I , and therefore we take

ρ = ±α−µ
α+µ

where the minus sign is added if α is smaller than wi ’s. Using this approximation
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and by (2.1), we obtain

(αI −H )(αI +H )−1(αI −S )(αI +S )−1

≈






In 0

In−m 0

0 0 ρI






V






2αD−1 − I 0 −2ΣD−1

0 I 0

2ΣD−1 0 2αD−1 − I






V T

= V






2αD−1 − I 0 −2ΣD−1

0 I 0

2ρΣD−1 0 ρ(2αD−1 − I)





V T .

For simplicity, we denote the above expression as V DV T . By using appropriate permuta-

tion matrix P , it is straightforward to get

P TDP =F = diag(F1, F2, · · · , Fn, Im−n)

and each Fi is of the form
�

[D1]i,i −[D2]i,i
ρ[D2]i,i ρ[D1]i,i

�

and |ρ| ≤ 1. It follows that

(αI −H )(αI +H )−1(αI −S )(αI +S )−1 ≈ (V P )F (V P )T

which means the approximation of (αI−H )(αI+H )−1(αI−S )(αI+S )−1 is orthogonally

similar to F .

There are m− n eigenvalues of D being 1. The remaining eigenvalues are clearly the

eigenvalues of Fi ’s, which are all 2× 2 blocks. Using Lemma 3.1 we can easily obtain the

spectrum of F . The blocks Fi ’s in F are precisely













α2 −σ2
i

α2 +σ2
i

− 2σiα

σ2
i
+α2

ρ

�

2σiα

σ2
i
+α2

�

ρ

�

α2 −σ2
i

α2 +σ2
i

�













,

where ρ = ±α−µ
α+µ

, which in turn implies the spectrum depends on the singular values of K ,

the preconditioning parameter α and the parameter µ. The relationship between σi and ρ

will determine the spectral properties of the HSS preconditioned matrices. For example, if

ρ < 0, or if ρ > 0 and

�

�

�

�

�

α2 −σ2
i

α2 +σ2
i

�

�

�

�

�

>
2
p
ρ

ρ + 1
for some i = 1,2, · · · , n,

then the corresponding eigenvalues are real. Even if non-real eigenvalues occur, they will

all be distributed on R(
p
ρ). Hence, the approximated matrix F has eigenvalue 1 with
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multiplicity m− n and n pairs (i.e., a total of 2n) of eigenvalues, which may be all real or

a combination of real and non-real corresponding to the n 2× 2 blocks Fi ’s which can be

determined explicitly.

After setting up the above argument, we assert that the approximated spectrum agrees

with the actual spectrum to a certain level by setting a uniform upper bound for ‖E‖ where

E is the perturbation induced. We have approximated (αI−W )(αI+W )−1 by ±I . In other

words, the actual matrix can be regarded as perturbing the approximated matrix by

E =
�

(αI −W )(αI +W )−1 ∓ I 0

0 0

�

(αI −S )(αI +S )−1

and we denote (αI − W )(αI + W )−1 ∓ I by E, where the plus or minus sign depends

on the relative values of α and wi . We shall also denote min{w1, · · · , wm} by wmin, and

max{w1, · · · , wm} by wmax.

In practice we usually have α smaller than wi ’s, and thus (αI − W )(αI + W )−1 is

negative and we approximate it by −I . Hence, E = (αI −W )(αI +W )−1 + I . Moreover,

we have

‖E‖ = max
i=1,2,··· ,m

¨ �

�

�

�

α−wi

α+wi

+ 1

�

�

�

�

«

=
α−wmin

α+wmin

+ 1. (3.3)

Although it is not very realistic, we also remark here the situation where α is larger than

all wi ’s, in which case (αI −W )(αI +W )−1 is a positive definite matrix, with eigenvalues

close to 1, and we shall approximate it by I . Hence, the perturbation matrix here is E =

(αI −W )(αI +W )−1− I . Moreover, we have

‖E‖ = max
i=1,2,··· ,m

¨ �

�

�

�

α−wi

α+wi

− 1

�

�

�

�

«

= 1− α−wmax

α+wmax

.

The overall approximation differs from the HSS preconditioner by

�

E 0

0 0

�

(αI −S )(αI +S )−1.

Since (αI−S )(αI+S )−1 is unitary, the norm of the difference E (which is essentially the

perturbation) depends solely on E, i.e., ‖E‖ = ‖E‖. Recall that, if the perturbation from a

matrix is not normal, then the nilpotent part of the upper triangular matrix obtained from

the Schur’s triangularization of the perturbation must need to be taken into consideration;

see [8, p.321].

Lemma 3.4. Let Q∗AQ = D+N be a Schur decomposition of A∈ Cn×n where Q is unitary, D

is diagonal and N is strictly upper triangular. If ν ∈ λ(A+ E) and q is the smallest positive

integer such that N q = 0, then

min
λ∈λ(A)

|λ− ν | ≤max(δ,δ1/q) where δ = ‖E‖
q−1
∑

k=0

‖N‖k.
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By Lemma 3.2, each Fi is unitarily similar to an upper triangular matrix Ti = Di + Ni

such that Ni has all entries zero except possibly the (1,2) entry which has absolute value

at most 1. Hence, F is unitarily similar to D +N where

D =





















λ1,1

λ1,2

. . . 0

λn,1

λn,2

0 In−m





















(3.4)

is diagonal, and

N =





















0 t1

0
... 0

0 tn

0

0 0n−m





















. (3.5)

Clearly, N 2 = 0 and

‖N ‖= n
max
i=1
|t i | ≤ 1.

Combining (3.4) and (3.5), Lemma 3.4 and the fact that ‖E‖ = ‖E‖, the value δ in Lemma

3.4 is given by (here we have q = 2)

δ = ‖E‖
q−1
∑

k=0

‖N ‖k = ‖E‖(1+ ‖N ‖) ≤ 2‖E‖. (3.6)

Our discussion mainly deals with the cases where ‖E‖ is small. Therefore, 2‖E‖ < 1

and we obtain the difference between the actual eigenvalue with the nearest approximated

eigenvalue by
p

2‖E‖. A reminder here is that we only use
p

2‖E‖ when our approxima-

tion Fi ’s are not normal, i.e., for the cases where ρ 6= ±1. Recall that when ρ = ±1, those

Fi ’s are still normal and we can use a more refined bound ‖E‖ instead of
p

2‖E‖.
Concluding the above, provided that ‖E‖ is small, the approximated spectrum can

provide a rather good picture of the spectrum of the true preconditioned system. Although

the actual eigenvalues cannot be given, and an accurate determination is impractical also,

the approximation explains well the pattern and the distribution of them on D(w).

4. Numerical examples

In this section, we provide some examples for illustrations of using the above argu-

ments to explain the spectral properties. In many cases, it is found that the approximated
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spectra are very near to the true spectra. Recall that the important factors affecting the

spectra are the interaction between the value

ρ = ±α−µ
α+µ

and
α2 −σ2

i

α2 +σ2
i

(σi ’s are the singular values of K). Also the nearness between the approximated spectra

and the true one depends on the perturbation E.

In our experiments, we test the systems arising from weighted Toeplitz least squares

problems [5]

min
z
‖Az − b‖22,

where the rectangular coefficient matrix A and the right-hand side vector b are of the form:

A=

�

W K

µI

�

∈ R2n×n and b =

�

W f

0

�

∈ R2n .

Here W ∈ Rn×n is positive diagonal, K ∈ Rn×n is a Toeplitz matrix (and therefore we have

m = n). This least squares problem leads to a quadratic minimization which is equivalent

to solving a linear system with coefficient matrix in the form of (1.2).

In our test cases we choose n = 128, κ(W ) ≈ 106, where κ(·) denotes the condition

number of a matrix, and µ = 10−3. Our test cases mainly concern the cases where α < wmin

and so according to (3.3), we shall see how the values (α−wmin)/(α+wmin) are near −1.

The singular values σi ’s of K affect correspondingly those (1,1) entries in the blocks Fi ’s

and we know the relationship between a and ρ depends on whether Fi has real or non-real

eigenvalues. Here we shall use two examples of K , one is well-conditioned and the other

one is ill-conditioned. Numerically, the entries of the well-conditioned K are given by

K
(1)

i, j
=

1
p

|i − j|+ 1

and those of the ill-conditioned K are given by (here we take σ = 2)

K
(2)

i, j
=

1p
2πσ

e−|i− j|2/(2σ2),

see [5]. Different preconditioning parameters are chosen with various orders and lead-

ing coefficients. Keep in mind that the spectra and the approximations taken are for the

transformed matrices I −P −1A . To obtain the original spectra we should transform back

the eigenvalues correspondingly. In the following, we use an approximation of the spectra

of HSS preconditioned matrices in Section 3 to illustrate and explain the spectra obtained

from these numerical examples.

Fig. 1 shows the orders of the singular values of K . By looking at how many singular

values are smaller or larger than the preconditioning parameter α and using f2, we get a
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Figure 1: Plots (in order) of singular values of K (128 × 128). Left: well-
onditioned; Right: ill-
onditioned (note the di�eren
e in s
ales on the verti
al axes).
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Figure 2: wi ∈ [1, 106]; ill-
onditioned K. Left: α = 0.01; Right: α = 0.001.
rough picture of the distribution of the eigenvalues of the orthogonal matrix (αI−S )(αI+

S )−1 on R(1). Note that

| f2(x)|> 0.980 for log

�

�

�

α

x

�

�

� > 1.

Except for the case of all the singular values are very near to α, otherwise a very large

proportion of eigenvalues lie around ±1.

Figs. 2-5 show the cases where the eigenvalues of W lie within [1,106]. The uppermost

figure shows the spectra of the corresponding orthogonal matrices (αI −S )(αI +S )−1;

the middle one shows the spectra of the approximated matrices V DV T and the bottom

figure shows the true spectra for the preconditioned systems. In all cases since α < wmin,

we multiply −1 to ρ (see Section 3.2).

Figs. 2 and 3 correspond to the ill-conditioned K . We can see from each of the figures
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Figure 3: wi ∈ [1, 106]; ill-
onditioned K. Left: α= 10−4; Right: α = 10−5.Table 1: Some parameters for Figs. 2-3.
Fig. 2 (left) Fig. 2 (right) Fig. 3 (left) Fig. 3 (right)

α 10−2 10−3 10−4 10−5

ρ = −α−µ
α+µ

0.818 0 0.818 0.980
p
ρ N/A N/A 0.904 0.990

‖E‖ 2.00× 10−2 2.00× 10−3 2.00× 10−4 2.00× 10−5

p
θ 2.00× 10−1 6.32× 10−2 2.00× 10−2 6.32× 10−3

the eigenvalues of (αI −S )(αI +S )−1 lie evenly on R(1) as the singular values of K lie

within 10−9 and 1. Since α is smaller than wi ’s, we approximate (αI −H )(αI +H )−1 by

−
�

Im 0

0 ρIn

�

and so

ρ =−α−µ
α+µ

.

If ρ < 0 (i.e., α < µ), then real eigenvalues occur (see Lemma 2.3), and even when α ≤ µ
(see the remarks after Lemma 2.3). Otherwise if ρ > 0, then non-real eigenvalues exist

and they lie on R(
p
ρ). According to Lemma 3.1, real eigenvalues exist when

|a| ≥ 2
p
ρ

ρ+ 1
, where a =

α2 −σ2
i

α2 +σ2
i

.

Figs. 4 and 5 correspond to the well-conditioned K . Here (αI −S )(αI +S )−1 is very



Spectral Analysis for HSS Preconditioners 71

−1 −1 −1 −1 −1 −1 −1 −1
−5

0

5
x 10

−3 spectrum of orthogonal part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
spectrum of approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
spectrum of (transformed) HSS spectrum

−1 −1 −1 −1 −1 −1 −1 −1
−5

0

5
x 10

−4 spectrum of orthogonal part

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
spectrum of approximation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
spectrum of (transformed) HSS spectrum

Figure 4: wi ∈ [1, 106]; well-
onditioned K. Left: α = 10−3; Right: α= 10−4.
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Figure 5: wi ∈ [1, 106]; well-
onditioned K. Left: α = 10−5; Right: α= 10−6.
near to −I and all eigenvalues have real parts (α2−σ2

i )/(α
2 +σ2

i ) very near −1. Hence,

�

�

�

�

�

α2 −σ2
i

α2 +σ2
i

�

�

�

�

�

>
2
p
ρ

ρ+ 1
for all i

and real spectrum occurs. In fact by Lemma 3.3 we can also see that the spectrum is close

to that of (αI−H )(αI+H )−1. Therefore, (αI−H )(αI+H )−1(αI−S )(αI+S )−1 is close

to (αI−H )(αI+H )−1. Since α is smaller than wi ’s, the eigenvalues (αI−H )(αI+H )−1

are close to 1 and ρ = −(α−µ)/(α+µ).
Tables 1 and 2 summarize some important quantities mentioned above that are related



72 L. C. Chan, M. K. Ng and N. K. TsingTable 2: Some parameters for Figs. 4-5.
Fig. 4 (left) Fig. 4 (right) Fig. 5 (left) Fig. 5 (right)

α 10−3 10−4 10−5 10−6

ρ = −α−µ
α+µ

0 0.818 0.980 0.998

‖E‖ 2.00× 10−3 2.00× 10−4 2.00× 10−5 2.00× 10−6

p
θ 6.32× 10−2 2.00× 10−2 6.32× 10−3 2.00× 10−3
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Figure 6: Plots (in order) the eigenvalues of W (in [10−6, 1]): uniformly distributed (left) and log-uniformly distributed (right).
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Figure 7: wi ∈ [10−6, 1] (uniformly distributed); well-
onditioned K. Left: α = 10−3; Right: α = 10−5.
to the spectra shown on Figs. 2-5. In the tables, ρ refers to the non-unit (real) eigenvalues

of the approximated spectrum and
p
ρ refers to the moduli of the non-real eigenvalues

of the approximated spectrum. We also list the values of ‖E‖ determined by (3.3) for

each case which is equal to ‖E‖ that provides a bound on the difference between true and
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Figure 8: wi ∈ [10−6, 1] (uniformly distributed); ill-
onditioned K. Left: α= 10−3; Right: α = 10−5.
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Figure 9: wi ∈ [10−6, 1] (log-uniformly distributed); well-
onditioned K. Left: α = 10−3; Right: α = 10−5.
approximated eigenvalues. Recall that unless ρ = ±1, we should use (3.6) for the purpose

of calculating δ.

Figs. 7-10 show the cases with corresponding eigenvalues of W lying within [10−6, 1].

Figs. 7 and 8 show the case where the eigenvalues are uniformly distributed while Figs. 9

and 10 show the case where the eigenvalues of W are log-uniformly distributed. A plot of

uniformly distributed and log-uniformly distributed eigenvalues can be seen from Fig. 6.

The upper figure still shows the spectra of the corresponding orthogonal matrices (αI −
S )(αI+S )−1 and the bottom figure shows the true spectra for the (transformed) precon-

ditioned systems. The middle one of Figs. 7 and 9 are explained in the next paragraph.
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Figure 10: wi ∈ [10−6, 1] (log-uniformly distributed); ill-
onditioned K. Left: α = 10−3; Right: α= 10−5.
In general for well-conditioned K the spectra of (αI −S )(αI +S )−1 is still clustered

around −1. Similar to Figs. 4 and 5, we can still use Lemma 3.3 to explain spectrum of

(αI −H )(αI +H )−1(αI −S )(αI +S )−1 looks like −(αI −H )(αI +H )−1 (Figs. 7 and

9). The middle figures are now showing the spectra of −(αI −H )(αI +H )−1. For ill-

conditioned K (Figs. 8 and 10), the preconditioning parameter α lies inside the eigenvalues

of W and we cannot make an approximation for estimating the eigenvalues. At this point

we cannot tell too much about the spectra and we still cannot provide a general picture for

such case. The explanations to this case may still require further effort.

5. Spectral analysis of HSS preconditioned system: the case µ= 0

In the previous section we have provided some pictures for the preconditioned spectra

corresponding to µ 6= 0 with different preconditioning parameter α. Actually, the ideas

presented fit well to explain the spectral properties corresponding to the particular case

µ = 0 also, which have been previously covered in [11]. When µ = 0, the coefficient

matrix corresponding to the saddle point problem is

A =
�

W K

−KT 0

�

, (5.1)

whereH , S are defined as in (1.3) and the HSS preconditionerP is still in the form (1.4).

Recall that wmin = min{w1, · · · , wm}. It was mentioned in [11] that if α ≤ 1

2
wmin then the

preconditioned system has a real spectrum. The explanations involved are mainly some

conditions satisfied by the Rayleigh quotients corresponding to the coefficient matrices of

the preconditioned systems. Since α > 0 = µ, by Lemma 2.1 the above condition can

further be relaxed:
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Theorem 5.1. Consider the linear system with coefficient matrix (5.1) and its corresponding

HSS preconditionerP . Assume that W is symmetric and positive definite. If the precondition-

ing parameter satisfies α < wmin, then the eigenvalues of P −1A are real.

Remark 5.1. Following the remarks given after Lemma 2.1, we can still obtain a real spectrum

if we have α ≤ wmin only.

A sufficient condition was also given when the preconditioned system has a clustered

spectrum. Here we shall state the result and provide another new and simple proof.

Corollary 5.1. ([11]) Consider the linear system with coefficient matrix (5.1) and its cor-

responding HSS preconditioner P . Assume that W is symmetric and positive definite. For

sufficiently small α > 0, the eigenvalues of P −1A cluster near zero and 2. More precisely,

for small α > 0,

σ(P −1A )⊆ (0,ε1)∪ (2− ε2, 2)

with ε1,ε2 > 0 and ε1,ε2→ 0, as α→ 0.

Proof. If µ = 0, then ρ = (α−µ)/(α+µ) = 1 regardless of what α is. On the other

hand, as α→ 0, then

α−wi

α+wi

→−1 and (αI −W )(αI +W )−1→−I .

Hence, the approximation (αI −H )(αI +H )−1 gives us

�

−I 0

0 I

�

.

To maintain the positivity of (1,1)-th block we multiply by −Im+n and the overall approxi-

mation now becomes

V






2αD−1 − I 0 2ΣD−1

0 I 0

−2ΣD−1 0 −(2αD−1− I)





V T . (5.2)

The above matrix have eigenvalues±1 (more precisely m eigenvalues being 1 and n eigen-

values being −1). We know that the preconditioned system must have a real spectrum by

Lemma 5.1. Moreover, the overall matrix above is normal and so the difference between

the true and the approximated eigenvalues due to perturbation is at most ‖E‖. By (3.3),

we have ‖E‖= (α−wmin)/(α+wmin)+1. In this case since α→ 0, ‖E‖ also becomes very

small and so we can ensure the true eigenvalues will be very near ±1. We also know that

the absolute values of the eigenvalues will not exceed 1 by the bound given by (2.4).

Combining the above, when µ = 0 and α→ 0, we have the eigenvalues (of I−P −1A )

lying within (1− ε1, 1)∪ (−1,−1+ ε2), which in turn implies that the eigenvalues for the

preconditioned system lie within (0,ε1)∪ (2− ε2, 2). �
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Remark 5.2. We can see from the above proof that ε1 and ε2 are bounded above by

‖E‖ = α−wmin

α+wmin

+ 1=
2α

α+wmin

=
2

1+
wmin

α

.

Therefore, ε1,ε2→ 0 as α→ 0.

From the proof of Corollary 5.2, we see that the matrix in (5.2) has, precisely, eigen-

values 1 of multiplicity m and -1 of multiplicity n. Recall that we have multiplied −I to

obtain this matrix, which means the approximation of

(αI −H )(αI +H )−1(αI −S )(αI +S )−1

has eigenvalues -1 of multiplicity m and 1 of multiplicity n. Finally, we know the precon-

ditioned spectrum has m eigenvalues near 2 while n eigenvalues near 0.

6. Concluding remarks

Spectral analysis is a key issue for studying preconditioned systems. It is especially

important for HSS preconditioner in the search of the optimal preconditioning parameter

α. In this paper, we have extended previous results to the general situation of α 6= µ by

using an approximation scheme. In particular the approximated spectrum gives a picture

which is very close to the true one when α lies away from the eigenvalues of W , which is

rather usual when applying HSS preconditioner. Our analysis also covers the case µ = 0

which was studied in [11]. Actually we can extend our result further to the case when the

(2,2)-th block is a non-scalar positive semi-definite matrix C , i.e.,

A =
�

W K

−KT C

�

.

In particular when the eigenvalues of C are clustered or the preconditioning parameter α

can be set away from the eigenvalues of C , we can even approximate the (2,2)-th block of

(αI −H )(αI +H )−1 by a scalar times an identity matrix also and our analysis can still

apply. Our arguments are elementary and simple enough to give a satisfactory picture.

We can see in most cases we cannot avoid a spectrum with very small eigenvalues,

which correspond to those eigenvalues very near to 1 in

(αI −H )(αI +H )−1(αI −S )(αI +S )−1.

When α is smaller than the eigenvalues of W and the singular values of K , we can see

α−wi

α+wi

and
α2 −σ2

i

α2 +σ2
i

will both be very near to −1 and so the existence of eigenvalue 1 in (αI − H )(αI +

H )−1(αI − S )(αI + S )−1 cannot be avoided. Therefore, the use of a small precon-

ditioning parameter α is not beneficial in particular when K is well-conditioned. For
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an ill-conditioned K , HSS preconditioner may prevent the clustering of eigenvalues in

(αI −S )(αI +S )−1.

Nevertheless, we cannot rule out that under some special scenarios, it is possible to

come up with a rather desirable (for example, cluster away from zero) spectrum for HSS

preconditioned system. For instance if α happens to be bigger than the singular values of

K but smaller than both the eigenvalues of W and the parameter µ, then

(αI −S )(αI +S )−1→ I

while

(αI −H )(αI +H )−1→−I

and so

(αI −H )(αI +H )−1(αI −S )(αI +S )−1→−I .

Finally the preconditioned system has eigenvalues near 2 which is beneficial for applying

iterative methods.
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