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Abstract. Solution-driven mesh adaptation is becoming quite popular for spatial error

control in the numerical simulation of complex computational physics applications, such

as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h

adaptation) with a primary goal of resolving the local length scales of interest. A sec-

ond, less-popular method of spatial adaptivity is called “mesh motion” (r adaptation);

the smooth repositioning of mesh node points aimed at resizing existing elements to

capture the local length scales. This paper proposes an adaptation method based on a

combination of both element subdivision and node point repositioning (rh adaptation).

By combining these two methods using the notion of a mobility function, the proposed

approach seeks to increase the flexibility and extensibility of mesh motion algorithms

while providing a somewhat smoother transition between refined regions than is pro-

duced by element subdivision alone. Further, in an attempt to support the requirements

of a very general class of climate simulation applications, the proposed method is de-

signed to accommodate unstructured, polygonal mesh topologies in addition to the most

popular mesh types.

AMS subject classifications: 52B10, 65D18, 68U05, 68U07
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1. Introduction

Mesh generation is an important consideration in the area of numerical simulation of

physical phenomena. Indeed, the accuracy and convergence of approaches using mesh-

based numerical methods are strongly dependent on the intrinsic characteristics of the

mesh being used. The “quality” of a mesh is loosely termed as the degree in which a par-

ticular mesh supports a given simulation. For transient calculations, the mesh supporting

the calculation must not only be of high quality initially, it also must effectively support

the requirements of the dynamic simulation as it evolves. Generally, solution features will
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develop and move across the domain; these features must be resolved as they propogate

through the mesh.

One approach to mesh adaptation is to begin with an appropriate initial mesh, and

sweep over this mesh in both space and time calculating an error metric. This error metric is

chosen to represent some quantification of the error in the solution in each mesh element.

As the sweep progresses, provided that this metric is above a certain value, the mesh

element is subdivided to reduce its area (or volume) and hence the value of the error

metric inside the refined portion of the original element.

This method of mesh element subdivision is commonly called h refinement, or adap-

tive mesh refinement (AMR). An example of h refinement on an orographic map of the

Himalayas mountains is shown in Fig. 1. In this example, triangular, quadrilateral, and

polygonal meshes are adapted to better capture the Earth’s orography field (the local aver-

age surface elevation). The upper-left inset of the figure shows a color intensity map of the

orographic value of the Earth’s surface, where blue indicates sea level and red indicates the

highest elevation regions. The upper-right inset shows a quadrilateral mesh on the Earth’s

surface that is h refined using the intensity of the orographic value as a refinement metric.

The lower-left inset shows an h refined triangle surface mesh, where the lower-right inset

shows a refined polygonal mesh.

Figure 1: An example of h-re�nement driven by an orographi salar on a mesh of the Earth's surfae.Upper-left �gure shows elevation; blue is near sea-level and red indiates high elevation regions. Theupper-right �gure shows a re�ned quadrilateral mesh while the lower-left and lower-right �gures showtriangular and polyhedral meshes, respetively.
While the h refinement algorithm is a general approach that is effective on all element

shapes and for all length scales, the method results in abrupt (i.e., non-smooth) variations

in element area or volume. These non-smooth transitions may impact local simulation

accuracy at and near the transition elements. This limitation of element subdivision has to
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the development of other methods to achieve spatial refinement, such as “mesh motion”

or “mesh smoothing.” This mesh adaptation approach (also called r adaptation) varies

element size by moving existing mesh node points to new locations instead of subdividing

elements.

Generally, r adaptive methods also sweep over the mesh in both space and time cal-

culating an error metric. In a given mesh element, if this computed error metric is above

a particular value, the mesh node points are moved closer together to reduce the size of

the mesh elements, which in turn reduces the value of the error metric. An example of

r adaptation is shown in Fig. 2. It is clear in the illustration that r adaptation produces

smoother results than subdivision. It is also clear that the degree to which elements may be

resized is limited by distortion of the surrounding mesh elements. Thus, r adaptation can-

not capture arbitrarily small features without greatly distorting the mesh, which requires

striking a compromise between spatial resolution and mesh quality.

Figure 2: An example of r adaptivity driven by an orographi salar on a mesh of the Earth's surfae.The �gure to the upper left again indiates elevation, while the upper-right, lower-left, and lower-rightdiagrams show r adaptation applied to quadrilateral, triangular, and polyhedral meshes, respetively.
An alternative to meshes that contain exclusively one element geometry is a polygonal

hybrid mesh; i.e., a mesh consisting of both quadrilateral and triangular elements (and

possibly elements with five or more sides). A hybrid mesh attempts to combine the ad-

vantages of using a variety of element shapes to generate the mesh. It is usually easier

to mesh a complex problem using different elements (both triangular and quadrilateral

for example), than using quadrilatera exclusively. A polygonal mesh provides even more

flexibility as it may contain elements of any shape, ranging from hexagons, pentagons,

quads, to even simple triangles. In addition, polygonal/icosahedral meshes are often the

best choice of solving symmetric computational problems, such as climate modeling on the
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Earth’s surface. These meshes have the property of producing symmetric, highly isotropic,

higher order orthogonal meshes that provide quasi-uniform coverage of the sphere with

small regional variation in the shape of elements without problematic mesh singularities

at the poles [1,2].

Mesh generation and adaptation for both structured and unstructured meshes is a

popular area of research [3–6]. Research and methods development targeted at adap-

tive approaches supporting the generation and use of high-quality polygonal meshes is

not as common. Approaches of surface mesh optimization have been demonstrated on

meshes containing structured quadrilateral elements [7–10] and unstructured triangu-

lar elements [11–14]. Hansen et.al. [15, 16] demonstrate a mesh generation method

that is effective for two- and three-dimensional problems, and structured and unstruc-

tured meshes that employ triangle/tetrahedral or quadrilateral/hexahedral elements. This

method may support general polygonal meshes, although this is not demonstrated. Hansen

and Zardecki [17] present a surface meshing algorithm that adapts to surface curvature

on surface meshes containing quadrilateral or triangular elements. Again, polygonal mesh

capability is not demonstrated, nor is adaptivity to solution data. Putman and Lin [18]

apply several mesh generation methods including conformal mapping, elliptic, gnomonic,

and spring-based methods to cube-sphere topologies applicable to global modeling and

present results of atmospheric flow calculations on these meshes. Di et.al. [19] present an

adaptive moving mesh method for calculations on a sphere. Both of these approaches are

closely related to this work and would likely be quite effective for climate simulation appli-

cations. Neither study polygonal elements, nor consider h adaptation. The most effective

approach for one’s particular application would require further study of the advantages

and disadvantages of each of these approaches on the application of interest.

2. Adaptive polygonal surface mesh optimization

The accuracy and convergence of computational solutions of mesh-based methods is

quite dependent on the quality of the mesh used. This paper presents an algorithm for

optimizing polygonal meshes comprised of elements of arbitrary polygonal shape. This

proposed method allows mesh refinement/adaptation to be focused to areas of interest

while globally equidistributing the nodes of the mesh. Additionally, the algorithm typically

improves geometric quality metrics based on angle, length, and area.

Using a parametric representation, surface geometry may be defined in terms of a

mapping (x(u, v), y(u, v), z(u, v)) from parametric space (u, v) in R2 to physical space

(x , y, z) in R3. This mapping may be compactly denoted by the equation x = χ(u), where

x = (x , y, z), and u = (u, v), as illustrated in Fig. 3.

The surface geometry mapping χ may contain specific singularities, such as those that

arise from mapping a line to a point during the parameterization of a cone, for example.

However, if the χ mapping is not one-to-one and onto, the mesh in physical space will

often suffer from folding or spill-over, and thus would not have utility for computational

problems.
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Figure 3: Pitoral showing a mapping from parametri (u, v) spae to surfae in physial (x , y, z) spae.
2.1. Weighted gradient mesh optimization

The primary goal of the adaptive smoothing algorithm proposed here is to minimize

the weighted gradient of the area of the mesh elements on the physical surface provided

that the surface is defined in parametric terms. This goal is commonly referred to as an

“equidistribution principle;” the notion of which was introduced by Brackbill and Saltzman

[20,21] as a guiding principle of variational mesh generation.

This minimization process is typically applied directly to the mesh resting on the phys-

ical surface as one desires the elements to contain roughly the same surface area. One

complicating issue arises from the definition of the physical surface in parametric form.

For such a surface, the minimization on the physical surface is inconvenient as it is diffi-

cult to guarantee conformality of the optimized mesh elements to the surface. Instead, an

indirect formulation is adopted where the mesh element areas are adapted by posing the

equidistribution algorithm in the parametric domain.

To develop this formulation, an area function is defined in the parametric domain (u, v)

that represents the variation in area of the elements of the mesh on the physical surface.

This area function φ is required to be twice continuously differentiable. To smoothly

equidistribute the area function over the mesh, a strategy of minimizing the L 2 norm of

the surface gradient of the area function is employed. This goal is equivalent to moving

the mesh points to minimize
∫

S

µ‖∇S φ‖
2 dS, (2.1)

where the integral applies over the surface area of the physical surface S and the node

mobility function µ that will be discussed in Sec. 3.



Surface Mesh Adaptation for Climate Modeling 415

Rather than minimizing (2.1) directly, an equivalent procedure is employed. This ap-

proach involves solving the Euler-Lagrange equation to minimize this functional, or find φ

such that

∇S ·
�

µ∇S φ
�

= 0 in S . (2.2)

Given that the surface mapping χ : u ∈ Ω ⊂ R2 → x ∈ S ⊂R3 is twice continuously

differentiable and that the Jacobian from the parametric space to the physical surface is

non-vanishing in the region under consideration, the Jacobian J of the surface mapping

may be written as

J = ‖χu×χ v‖=
Æ

g11g22 − g2
12

,

where

g11 = χu ·χu = x2
u + y2

u + z2
u ,

g12 = χu ·χ v = xu xv + yu yv + zuzv ,

g22 = χ v ·χ v = x2
v + y2

v + z2
v .

Equation (2.2) is transformed from the physical surface to the parametric domain (u, v)

using coordinate transformation of the second-order differential equation for surfaces [4,

22]

∇S ·
�

µ∇S φ
�

=
1

J

�

∂

∂ u

µg22φu −µg12φv

J
+
∂

∂ v

µg11φv −µg12φu

J

�

.

Under this transformation, the parametric variables become the independent variables,

resulting in a new form of the surface equation

∇u ·Φ = 0 in Ω, (2.3)

where the vector function Φ is given by

Φ =
µ

J

�

g22φu − g12φv , g11φv − g12φu

�

.

In summary, solving (2.2) is equivalent to solving the partial differential equation (2.3) in

the parametric domain, and the problem is effectively reduced to obtaining the function

φ(∇uχ) that provides the desired distribution of points on the physical surface.

There is a mathematical similarity (2.1) to computing the deformation of a hypere-

lastic surface. The parametric mapping χ plays the role of a deformation mapping, and

since φ only depends on the gradient of χ and the position in the reference (parametric)

domain, the function µ‖∇S φ‖
2 resembles a stored energy function. Given this analogy,

the functional (2.1) is the strain energy associated to the deformation mapping χ . This

approach has also been used to provide mesh adaptivity in three dimensions [23].
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2.2. Derivation of the cell area function

The surface mesh in physical space consists of a multiply-connected network of piece-

wise planar arbitrary polygonal facets. Such a mesh will have a corresponding mesh in the

parametric domain, and if either one of these meshes is valid, the transformed mesh is also

valid. Further, φ is approximated by a set of continuous piecewise quadratic interpolants

over the mesh cells, such that the discrete, cell-centered value of this area function at cell

i is given by

φi(u) = Siαi(u) +

n
∑

j=1

S jβ j(u), (2.4)

where n is the number of vertices for the i th cell. The functions αi and β j are quadratic

basis functions that assume a value of 1 at the cell center and node j, and are equal to

0 at all the other nodes of the element in question. The area S j is evaluated differently

depending on whether j refers to a vertex or the cell centroid. If j refers to the centroid,

S j is the surface area of cell j. If j is a vertex, then

S j =
1

m

m
∑

i=1

Si ,

where m is the number of cells incident to vertex j and Si is the surface area of the i th

incident cell at vertex j.

Alternatively, since the surface area element dS corresponds to the parametric area of

element dA= dudv in the plane given by

dS = ‖χu du×χ v dv‖= J dA,

for a given mesh cell i, the surface and the parametric areas are related by the equation

Si = JiAi,

where Ji =
1

Ai

∫

J dA is the averaged Jacobian which represents the ratio of physical to

parametric cell areas. The surface area function in (2.4) may then be expressed as a

Jacobian-weighted area interpolation in the parametric domain

φi(u) = JiAi αi(u) +

n
∑

j=1

J jA j β j(u),

where the parametric mesh cell areas Ai, A j are defined above, and the basis functions αi ,

β j are defined in (2.4).

2.3. Computational evaluation of the cell area function

To address arbitrary polygonal cells, a cell-centered finite volume discretization is used

to solve (2.3) for φ in the parametric domain Ω. Equation (2.3) may be rewritten in
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integral form as
∫

Ω

∇u ·Φ dA= 0.

Using the divergence theorem, this is equivalent to

∫

∂Ω

Φ · dl= 0,

where the vector l = l t̂ is edge length l times the unit tangent vector t̂. The vector t̂ is

defined to be: (i) tangent to Ω, (ii) orthogonal to ∂Ω, and (iii) pointing away from Ω. This

equation is applicable to any cell or set of cells within the domain. In particular, for a given

cell Ci with linear edges, the above equation may be expressed as

∑

edges j

∫

Ei j

Φ · dl= 0,

where Ei j is the jth edge of current cell. The semi-discrete form of this integral equation

is given by
∑

edges j

ΦEi j
· li j = 0, (2.5)

where ΦEi j
= 1

li j

∫

Ei j
Φ · dl is the average value of Φ on the edge Ei j with length li j . This

function may be approximated on any edge using a cell-centered first-order Taylor series

approximation

ΦEi j
≈

h jΦCi
+ hiΦC j

hi + h j

,

where Ci and C j are the two cells sharing the edge, Ei j, hi and h j are the distances from

the cell centers to the edge center, and ΦCi
and ΦC j

are the average values of Φ in the cells

Ci and C j, as shown in Fig. 4.

.. h hj i

Eij

Ci

l ij

Cj

Figure 4: De�nition of quantities on edge Ei j of ell Ci and that are shared by ell C j.
The above approximation is only first-order accurate in the cell dimension, but higher-

order extensions are possible. To calculate the vector function
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ΦCi
=

�

µg22φu −µg12φv

J
,
µg11φv −µg12φu

J

�

Ci

(2.6)

in the ith cell Ci , it is necessary to compute ∇uφCi
= (φu,φv)Ci

and the quantities µ, J ,

g11, g12, and g22. Using the finite volume method, the average value of any function in a

cell is assumed to be equivalent to the point value at the element centroid. As such, the

quantities µ, J , g11, g12, and g22 in the numerical equation are evaluated analytically from

the surface mapping χ at the cell center. Using Gauss’ theorem,

∇uφCi
=

1

Ai

∫

Ci

∇uφ dA

=
1

Ai

∫

∂ Ci

φ dl

=
1

Ai

∑

edges j

φEi j
li j,

where Ai is the area of cell Ci and φEi j
is the average value of φ on the edge Ei j , which is

approximated from the cell centered values by

φEi j
=

h jφCi
+ hiφC j

hi + h j

.

Therefore,

∇uφci
=

1

Ai

∑

edges j

h jφCi
+ hiφC j

hi + h j

li j. (2.7)

The final algorithm for solving (2.3) for φ may be formulated by solving (2.5) using

the discretization shown in (2.6) and (2.7). The resultant algebraic system may be solved

locally or globally. If the local approach is adopted as in this study, (2.3) is solved using

Gauss-Seidel iteration in the subregion composed of all the cells {C1, C2, . . . , Cm} that are

incident at the central node uc. Values of φCi
are obtained from (2.9) (i.e., using the

algorithm for φs
i , where i loops over the subregion cells in question). φCi

are the target

areas for the new elements that are used to update the location of each node uc and

are calculated for each element Ci on a node-by-node basis. The advantage of the local

approach is that it supports user control over the degree of under-relaxation employed in

the Gauss-Seidel iterative procedure; the user can select approriate values to guard against

edge cross-over. The disadvantage of the local approach is that it is slow to propagate

information to all nodes in the mesh. A global approach may be superior if mesh folding

can be avoided, but this was not examined in this study.

2.4. Local mesh adaptivity

A fundamental step in optimizing an initial surface mesh is to pose an effective mech-

anism of sliding node points on the surface χ . This can be accomplished by selecting



Surface Mesh Adaptation for Climate Modeling 419

a cluster of nodes {u1,u2, . . . ,un} and corresponding cell neighbors {C1, C2, . . . , Cm} sur-

rounding the node uc to be repositioned (c.f., Fig. 5). Note that under the mapping χ , this

cluster of parametric nodes corresponds to a unique set of physical nodes in R3. Let

φi = JiAi =
1

2
Ji‖(ui − uc)× (ui+1 − uc)‖

be the physical area of the Cith cell under χ . Here, Ai is the area of Ci in the parametric

space and Ji =
1

Ai

∫

Ci
J dA is the averaged Jacobian. By varying φi while keeping all cluster

nodes fixed, a mechanism is obtained for moving uc and therefore sliding the correspond-

ing physical node xc = χ(uc) on the surface. It is necessary to limit this sliding movement

so as to keep uc within the convex hull of the cell set.

Figure 5: Node plaement in parameteri spae maps to a orresponding movement on the physialsurfae.
The method advocated here for relocating uc is based on finding a new position u∗ for

the central node by enforcing new values of the physical area φ∗i for the cells Ci as follows.

Let φ∗
i
= J∗

i
A∗

i
be the desired area of the ith cell, where

A∗i (u) =
1

2
‖(ui − u∗)× (ui+1 − u∗)‖

=
1

2

�

aiu
∗ + bi v

∗+ ci

�

,

with coefficients

ai = vi − vi+1, bi = ui+1 − ui, and ci = ui vi+1− ui+1vi .

One method of obtaining u∗ within the polygon in the parametric domain involves the

least-squares minimization of the functional

F =
∑

cells i

�

φ∗i −φ
s
i

�2
,
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where φs
i is the solution of the area function of the ith cell computed previously. In solving

∇F = 0 for u∗’s components u∗ and v∗,

�
∑

i J2
i a2

i

∑

i J2
i ai bi

∑

i J2
i

ai bi

∑

i J2
i

b2
i

��

u∗

v∗

�

=

�
∑

i Jiaiφ
s
i

∑

i Ji biφ
s
i

�

, (2.8)

the new parametric node location u∗ is used to compute the updated position of the corre-

sponding central vertex on the surface χ(u∗). For simplicity, (2.8) is calculated assuming

that it represents a constant value Jacobian evaluated at the cell center. This is often a good

assumption in practice as this minimization process is embedded within an outer loop that

traverses all the nodes of the mesh.

The most recent value for cell area (φs
i
) within the cluster (2.8) should not vary sig-

nificantly from the old value φi . If the update is too severe, it is possible that the updated

parametric position of the central node will fall outside the convex hull of the neighbor

element set. One method to mitigate this problem is based on discarding or limiting any

updates that lie outside of a bounded interval. For the orographic data sets considered in

this study, limiting the magnitude of φs in the system (2.8) to

φs
i =max
�

φs
i , (1−ω)φi

	

, (2.9)

always accelerated algorithm convergence and did not result in mesh folding or spillover.

In this expression, the node regularization scaling parameter ω is chosen to prevent the

collapse or the inversion of cells as the mesh evolves. Experimentally, ω ∈ [1

2
, 1) appears

to be effective.

3. Adaptive hybrid node mobility

The cell area based mesh optimization procedure described above may be extended

to take into account a combination of several geometric and solution criteria. In partic-

ular, the smoothing process might consider the curvature of the surface, solution values,

and other metrics of the surface. This adaptive control factor, or node mobility function,

governs the “strength” or degree of adaptation that is applied to the mesh.

3.1. Node mobility function

The smoothing mobility (weight) function µ in the minimization functional (2.1) may

be generalized by making it a hybrid function that incorporates either additional measures

of mesh element quality or metrics that drive solution adaptation on the surface mesh. For

example, to implement smoothing based on area gradient equidistribution one can specify

that µ = 1 for all elements. To implement curvature weighted smoothing, where mesh

points are concentrated in areas of large surface or solution curvature, µ should have the

form

µ∝ |K
p

φ|,
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where K is the mean curvature. In the case of surface geometry, the curvature K = K(u) of

the surface χ at u is given by

K =
1

2

g22(χuu ·χu ×χ v)− 2g12(χuv ·χu×χ v) + g11(χ vv ·χu ×χ v)

‖χu×χ v‖
3

,

where
p

φ (the square root of the area function) is used to non-dimensionalize the curva-

ture weight function. In the case of adapting to the curvature of a piecewise solution, the

curvature is computed using the method described in the next section.

For solution feature weighted smoothing, the mesh nodes should be concentrated to-

ward areas of large gradient or curvature of the desired solution variable. For the case of

gradient adaptation, µ should have the form

µ ∝ ‖∇S ψ
p

φ‖,

where ∇S ψ is the surface gradient of the non-dimensionalized solution variable to which

the mesh should adapt.

In general, the overall node mobility function will typically be a linear combination of

individual mobility functions, with the general form

µ= λa +λκ

�

|K
p

φ|
�

+λs

�

‖∇S ψ
p

φ‖
�

. (3.1)

This function is used to specify the strength and degree of mesh node point motion and

as a criteria for element subdivision as outlined in Sec. 4.3. The values of λ ≥ 0 are

experimentally determined; the optimal value of each parameter relative to the others is

a function of the strength of the curvature of the surface geometry and the intensity of

the gradient of the solution variable of interest. The three parameters must sum to one,

λa + λκ + λs = 1. Given this relationship, one need only select a scaling of the curvature

weight 0 ≤ λκ ≤ 1 and a weight with which to scale the solution field 0 ≤ λs ≤ 1; the

remaining λa may be calculated relative to the others

λa = 1−λκ −λs.

3.2. Determination of the curvature of a piecewise solution

To calculate integrals involving curvature on a piecewise surface consisting of triangu-

lar facets requires the identity
∫

Ω

Kn dS =

∫

∂Ω

t dl. (3.2)

This identity states that the integral of the sum of principal curvatures K times the unit

normal vector n over a piece of surface Ω is equal to the line integral around the boundary

with an integrand equal to the unit tangent vector t (see Sec. 2.3). An equivalent formula

which avoids t is
∫

Ω

Kn dS = −

∫

∂Ω

n× dl. (3.3)
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The form of (3.2) may be motivated physically; a force normal to a surface with magnitude

equal to the surface curvature is equivalent to a surface tension force (of unit magnitude)

applied to the boundary of the surface [24].

This result leads to a dilemma, as the relationship between the curvature of a piecewise

planar surface with flat facets and that of the “actual” surface which the facets discretely

represent is not readily defined in the general case. For example, if the unit sphere is

discretized using triangular facets, one might reason that K = 2 could be employed in the

above integrals. While this is quite true for the surface of a sphere, it is not true on the

elements of the discretization of the sphere surface as the curvature is generally defined in

terms of a distribution on the edges of the facets and zero elsewhere.

In the proposed approach, curvature is treated as a distribution, where the geomet-

ric object is an arbitrary piecewise linear surface (the fact that the discrete surface is an

approximation to a sphere is not employed). Here, the finite element inner products are

evaluated using
∫

nbd i
Knα dS. In the moving finite element method proposed by Kuprat

and Miller [25, 26], a similar integral equation to (3.2) in the neighborhood Ωi of point i

is evaluated, except that the integrand is multiplied by a “hat function” α which is unity at

the ith node and decays to zero at its neighbors. The presence of α in the left hand term

introduces a factor of 1

2
in the right

∫

Ωi

Knα dS =
1

2

∫

∂Ωi

t dl. (3.4)

To develop a discrete form of (3.4), assume that node i is located at xo and has neigh-

bors 1, . . . , m positioned at x1, . . . ,xm (ordered in a counterclockwise stencil rotation). De-

fine the quantities

r j ≡ x j − xo, l j ≡ x j+1 − x j , a j ≡
1

2
r j × l j,

n j ≡
a j

‖a j‖
, t j ≡ −

n j × l j

‖n j × l j‖
,

where a j is the area vector of the jth triangle surrounding node i, which has length equal

to the area of the triangle and a direction normal to the triangle. Given this notation, (3.4)

is equivalent to
∫

nbd i

Knα dS =
1

2

m
∑

j=1

t j‖l j‖.

Again, this derivation assumes that the underlying surface is unknown, thus an exact value

for the curvature at point i in the stencil is not known. However, one may calculate an

integral average curvature about i using

Ki ≡

∫

nbd i
Knα dS ·
∫

nbd i
nα dS

∫

nbd i
nα dS ·
∫

nbd i
nα dS

.
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Figure 6: Color-oded plot of the earth's surfae geopotential height illustrating high altitude regions(the Himalayas, Alps, Andes, and Rokies).
This may be written as

Ki ≡
1

2

∑m

j=1 t j‖l j‖ ·
1

3

∑m

j=1 a j

1

3

∑m

j=1 a j ·
1

3

∑m

j=1 a j

, (3.5)

given the above definitions. This expression predicts the correct curvature for a small

regular hexagon (collection of six triangles) consisting of six points surrounding a central

node, all on the surface of a sphere. Unfortunately, as the hexagon is made irregular, the

accuracy of (3.5) deteriorates. This degradation is often not of concern in a finite volume

approximation, as the quality of the approximation of the inner products is typically more

important than the precision of the mean curvature calculation.

4. Orography based adaptive meshing

Smooth adaptive mesh transformations are required for resolving orography (i.e., the

average height of land, measured in geopotential meters) and fine-scale processes in cli-

mate modeling. Orography plays an important role in determining the strength and loca-

tion of the atmospheric jet streams that must be accurately predicted for detailed regional

climate studies. Additionally, orography is an important consideration for the prediction

of many key climatic dynamics, elements, and moisture physics; such as rainfall, snowfall,
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and cloud cover. Climate variability is sensitive to orographic effects and can be resolved

by the generation of finer meshes in regions of high altitude. Resolving orography effec-

tively also allows a more accurate prediction of precipitation (to predict wetter or dryer

seasons in particular regions). Lastly, resolved orography is important as orography defines

the lower boundary for general circulation models.

In this section, an orography field illustrated in Fig. 6 will be used for the adaptation

metric for the generation of various example meshes.

Figure 7: Illustration of triangle (left images), quadrilateral (enter images), and polygonal/iosahedrasurfae meshes (right images) superimposed over the orographi data shown in Fig. 6.
4.1. Arbitrary polygonal surface mesh adaptation

This study proposes a surface mesh generation algorithm effective for general element

shapes (c.f., Fig. 7). Arbitrary polygonal meshes are of interest as they often combine the

advantages of both structured and unstructured meshing approaches in that high degree

polygonal/icosahedral meshes

• are often the best choice for solving symmetric computational problems (e.g., no

singular points are required to mesh a sphere),

• have the properties of producing symmetric higher order orthogonal meshes and

do not introduce artificial geometric interfaces, and

• the geometry of the mesh and any problem symmetry may more effectively sup-

port the analytical and numerical methods used to solve the governing equations.
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Figure 8: r-adaptive planar polygonal mesh generation shown on a planar projetion of the aboveorographi data. In lokwise order from the upper-left, these �gures depit the orographi data,quadrilateral element results, polygonal element results, and triangular mesh results. These results werereated using λκ = 0.2, λs = 0.3, and λa = 0.5.
High degree polygonal elements are not a panacea, however. Polygons of low degree

(triangles and quadrilatera), better support many geometric cases and problems:

• Layers of quadrilatera close to a boundary exhibit excellent orthogonality and

clustering capabilities characteristic of structured mesh generation approaches.

• Quadrilatera more readily support the implementation of multi-grid convergence

acceleration schemes, implicit methods, and may also result in memory savings.

• Unstructured triangular elements are well suited for element adaptation.

4.2. r Adaptive polygonal surface mesh generation

Given the selection of a general, arbitrary polygonal meshing strategy, it is now neces-

sary to adapt these meshes to the orographic field. Mesh motion, or r adaptation, will be

considered initially. This approach begins with the generation of a mesh with a prescribed

node density on the sphere. The mesh nodes are then repositioned on the surface to more

useful locations, obtained from the solution of the following equation system using the

finite-volume method described in Sec. 2,

∂

∂ u

µg22φu −µg12φv

J
+
∂

∂ v

µg11φv −µg12φu

J
= 0.
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Figure 9: r-adapted polygonal surfae mesh over the Andes and Rokies. In lokwise order from theupper-left, these �gures depit the orographi data, quadrilateral element results, polygonal elementresults, and triangular mesh results. These results were reated using λκ = 0.2, λs = 0.3, and λa = 0.5.

Figure 10: r-adapted polygonal surfae mesh over the Alps and Himalayas. In lokwise order fromthe upper-left, these �gures depit the orographi data, quadrilateral element results, polygonal elementresults, and triangular mesh results. These results were reated using λκ = 0.2, λs = 0.3, and λa = 0.5.
Figures 8, 9, and 10 were generated using the mobility function (3.1), where λκ = 0.2

and λs = 0.3 (λa = 0.5), which illustrate the results of this solution procedure for meshes



Surface Mesh Adaptation for Climate Modeling 427

Figure 11: h-re�nement struture of polygonal mesh ells. Loal re�nement using element subdivisionresults in the reation of �hanging nodes� along edges of elements at re�nement level boundaries (seetext).
employing various element shapes. From inspection of these diagrams, the mesh nodes

appear to have been repositioned such that the elements are smaller in area over locations

on the sphere with larger orography values corresponding to mountainous regions. From

these results, the inherent smooth transition in element size provided by r adaptation is

apparent. It is also clear that spatial adaptation using this approach generally decreases

element orthogonality to obtain adaptation, particularly in elements near the adapted re-

gions. These results support the conclusion that r refinement provides

• adaptation without increasing the total number of elements in the problem by

using the existing elements in a more effective manner,

• adaptation at a cost in element geometric quality, and

• only a limited degree of node concentration.

4.3. h Adaptive polygonal surface mesh generation

The second mesh adaptation method considered is termed the h refinement method,

or element subdivision. This method is based on a mesh cell subdivision strategy that

creates smaller elements within each parent polygon, as shown in Fig. 11. To implement

this approach, a mesh is initially generated using an element size too large to support

the actual computation; this mesh may only resolve larger geometric features contained

in the domain. Depending on a selected refinement criteria, the mesh elements are then

subdivided until a mesh density function is less than a prescribed tolerance or convergence

metric value. When h adaptation is used, “hanging nodes” are created along edges where

subdivided elements are adjacent to non-subdivided ones, as seen in Fig. 11. These nodes

are placed mid-way between the endpoints of the edges.
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In the case of r adaptation, the node mobility function combines various solution and

geometric data to determine the extent to which nodes were moved within the domain.

In this case, it is possible to use similar mobility information to construct a mesh density

function,

ρ = (µ−σ),

where µ is obtained from (3.1) and σ ≥ 0 is a user-specified refinement threshold. The h

adaptation algorithm proceeds by calculating ρ in each element of the mesh and subdivid-

ing those elements in which ρ > 0. In this implementation, mesh coarsening was not at-

tempted. The addition of mesh coarsening, although conceptually straightforward, would

add significant complexity as only certain element combinations are good candidates for

coarsening due to their edge relationship with each other (often only those elements that

resulted from a previous refinement operation).

Figures 12 and 13 show the results of h adaptation driven by orographic intensity.

Values of λa = 0.75 and λs = 0.25 were used, and σ was selected such that the elements in

the open ocean were not subdivided. Spatial refinement provided by element subdivision

is clear in all three figures; the quadrilateral, triangle, and polygonal meshes adapt to the

orographic field over mountainous regions.

4.4. rh Adaptive polygonal surface mesh generation

The final algorithm to be presented here is based on a combination of both r and h

refinement. There are several strategies that might be examined to combine these methods:

1. Explicitly apply the above h adaptation algorithm and follow this by one or more

iterations of an r refinement approach to smooth the result,

2. Explicitly interleave h adaptation between iterations of r until both algorithms

have simultaneously converged,

3. Implicitly converge both h and r algorithms simultaneously, and/or

4. Select one of the above strategies and interleave it with selected topology opera-

tions (edge and face swapping) to further improve mesh quality.

This study employs the last approach. Fig. 14 illustrates the results of rh refinement

implemented using the following algorithm:

1. Apply h refinement using values of λa = 0.75 and λs = 0.25.

2. Apply 10 iterations of r refinement using λκ = 0.2 and λs = 0.3 (λa = 0.5).

3. Perform edge-swapping and deletion, employing the STRIPACK code [27].

4. Repeat steps 1–3, above, three more times.
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Figure 12: h adapted polygonal surfae mesh over the Andes and Rokies. In lokwise order from theupper-left, these �gures depit the orographi data, quadrilateral element results, polygonal elementresults, and triangular mesh results. These results were reated using λs = 0.25 and λa = 0.75.

Figure 13: h adapted polygonal surfae mesh over the Alps and Himalayas. In lokwise order fromthe upper-left, these �gures depit the orographi data, quadrilateral element results, polygonal elementresults, and triangular mesh results. These results were reated using λs = 0.25 and λa = 0.75.
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Figure 14: rh adapted polygonal surfae mesh over the Alps and Himalayas. The upper �gures depittriangular mesh results, while the lower �gures show results using polygonal elements. These resultswere reated using λa = 0.75 and λs = 0.25 in the h adaptation phase, and λκ = 0.2, λs = 0.3 and
λa = 0.5 in the r adaptation phase.

These results show that r adaptation provides limited smoothing of the results of el-

ement subdivision. Further, at least visually, this result appears to combine the degree

of spatial refinement available using h refinement while smoothing the abruptness of the

transition between levels of refinement somewhat. Edge topology operations were used to

provide these results as rh refinement, used alone, resulted in several elements with very

large aspect ratios. Upon inspection, there are elements in these illustrations that possess

aspect ratios approaching 5:1. Element aspect ratio is governed by the interaction of the

edge swapping algorithm (if employed), λκ and λs in the r adaptation algorithm, and to a

lesser extent, σ in the h adaptation method. These results deliberately employ a strong r

adaptation weighting to motivate the degree of adaptation that can be achieved.

4.5. Orography field transfer

This study will now consider the application of rh adaptation to a representative set of

orography data, for use as a multiscale data representation application. Figure 15 shows

a very dense orography field represented on a uniform planar mesh with two kilometer

spatial resolution. The field data file size is two gigabytes and the file was obtained fromhttp://www.ngd.noaa.gov/mgg/topo/globe.html. The use of a uniform planar

mesh to store orography data is relatively inefficient; in this case all elements have a char-

acteristic length of two kilometers. This characteristic length is not small enough to store
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Figure 15: Coupled orography �eld transfer with rh adaptivity. Planar orography �eld (upper-diagram),
rh adapted surfae mesh (lower-left) and loseup view of the mesh (lower-right). Re�ned mesh has asimilar information ontent to the soure data, but is muh oarser at sea level (50 kilometer elements)and �ner in high elevation regions (1 kilometer elements), resulting in aggregate data set size redutionof 90%.
fine elevation detail in rapidly varying areas such as mountain ranges, but is excessively

fine out in the open ocean. Orography data storage is a typical multiscale problem; adap-

tation is needed to store this information efficiently. This section outlines a more effective

storage mechanism that is based on rh adaptation.

The two kilometer element size of the source data is not sufficiently fine for this appli-

cation. This study thus interpolates the source data to finer scales by using a combination

of h and p adaptation (p adaptation is based on the selection of higher order interpolating

polynomials within an element to more accurately represent the intra-element solution).

This hp adaptive data fit strategy a least-squares method that employs spherical harmonic

basis functions selected to give a reasonable fit of the source data. This hp representation

is used to generate the rh mesh that will store the final result.

This procedure begins with the source two kilometer uniform planar mesh and its cor-

responding orography field, and a coarse triangular mesh of 50 kilometer resolution. The

algorithm presented in [28] is used to perform the spatial search to determine which ele-

ments of the source mesh intersect with elements of the coarse target mesh. The elevation

is mapped onto the nodes of the coarse mesh using the least-squares method with spher-
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ical harmonics. Next, the basis functions are used to query the value of the elevation at

the barycenter of the triangles on the coarse mesh. This barycenter value is then compared

with a linear interpolation of the values contained on the uniform mesh. If the difference is

greater than a small value (0.1%), the element is split into three children and the process

is repeated until no further subdivisions are possible given the tolerance. This result is then

smoothed using the above r adaptation procedure. The final mesh (lower-right image of

Fig. 15) is quite coarse at sea level (50-kilometers) and fine in the high altitude regions

(1-kilometers). The resulting data file was only a fraction (10%) of the original file size.

Other applications of this approach include field transformation and mapping between

multiple meshes (physics data remapping).

5. Conclusions

The paper presents a development of algorithms and methods for the generation, op-

timization, and adaptation of polygonal meshes for climate modeling applications. These

meshes provide more flexibility than traditional approaches as a polyhedral mesh may be

composed of polygonal planar cell structures ranging from hexagons, pentagons, quads, to

simple triangles.

Algorithms were presented that implement r, h, and rh adaptation using orographic

data on the sphere. Each algorithm provides the ability to adaptively refine a polyhedral

mesh; the combined approach attempts to combine the benefits of both r and h refinement.

These results also suggest that edge topology operations may be necessary for high quality

rh meshes.

The rh method employed here is based on using a total of four outer iterations, each

consisting of an h refinement operation that subdivides each cell based on the value of a

mesh density function that is related to the node mobility expression employed in the r re-

finement to follow. The mobility function (perhaps using different values of experimentally-

derived scaling parameters λ than that used for h) control a set of ten iterations of r refine-

ment that follow the h operation. Finally, each element in the mesh is examined for quality

and edge topology operations are applied if needed to modify the local connectivity of the

mesh to improve its quality. This process then is repeated three additional iterations.

This approach is an initial attempt at coupled adaptation for climate modeling. Fu-

ture study of a tighter coupling between r and h adaptation is likely warranted, perhaps

including an implicit, simultaneous solution approach. There are possibly both solution

and quality advantages to such a method. The authors also plan to extend this research to

include element order elevation (p refinement) in the future.
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