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Abstract. The scattering of the open cavity filled with the inhomogeneous media is
studied. The problem is discretized with a fourth order finite difference scheme and
the immersed interface method, resulting in a linear system of equations with the high
order accurate solutions in the whole computational domain. To solve the system of
equations, we design an efficient iterative solver, which is based on the fast Fourier
transformation, and provides an ideal preconditioner for Krylov subspace method.
Numerical experiments demonstrate the capability of the proposed fast high order
iterative solver.

AMS subject classifications: 65N06, 78M20

Key words: Helmholtz equation, compact finite difference scheme, discontinuous wave numbers,
immerse interface method, fast iterative solver.

1 Introduction

The scattering properties of open cavities are of high interest to the engineering com-
munity, with a number of applications including the design of jet engine inlet ducts and
cavity-backed antenna for military and civil use. In this paper we mainly develop a
fast high order iterative solver concerning with the electromagnetic scattering from a
two-dimensional open cavity filled with inhomogeneous media for large wave number,
which is shown in Fig. 1. The ground plane and the walls of the open cavity are as-
sumed as perfect electric conductors (PEC), and the interior of the open cavity is filled
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Figure 1: The geometry of the cavity.

with non-magnetic materials which may be inhomogeneous. The half space above the
ground plane is filled with a homogenous and isotropic medium with its permittivity ε0

and permeability µ0. In this setting, the electromagnetic scattering by the cavity is gov-
erned by the Helmholtz equation along with Sommerfeld’s radiation conditions imposed
at infinity.

Since the solutions to the Helmholtz equation are waves, it is evident that mesh size
h must follow the wave number k in order to achieve a given accuracy. For a large wave
number, the phase error (pollution) of the computed solution obtained with low order
discretization is large unless fine meshes are used per wavelength. See [1] for detailed in-
formation. A fine mesh would lead to a large system of equations which may be compu-
tationally prohibitive. The memory requirement might be a bottle-neck. Many numerical
approaches have been proposed to reduce the phase error. For example, the high order
finite element method was proposed in [2]; the h-version and h-p-version finite element
methods were proposed in [3, 4]. In [5], a standard bilinear finite element together with
a modified quadrature rule was used, which led to fourth order phase accuracy on or-
thogonal uniform meshes. The high order spectral method and compact high order finite
difference method have been presented to solve the Helmholtz equation in [6–10, 12, 13].
In [14], a fully high-order finite element with curvilinear tetrahedral elements was devel-
oped to simulate the scattering by cavities. High order methods are attractive for solving
the Helmholtz problem with large wave number since they can offer relatively higher
accurate solution by utilizing fewer mesh points and spending less computational costs
than the low order approaches.

In this paper we first construct a high order finite difference discretization for the
scattering of electromagnetic plane waves by a two-dimensional (2-D) rectangular cavity
filled with inhomogeneous media. In the cavity domain, the compact fourth order finite
difference scheme is used for the discretization of the equation, and at the aperture, a
fourth order approximation is also designed by a special technique. In the discontinuous
interface of various medium, in terms of the immersed interface method (IIM), see [16,
17], high order accuracy can be obtained. In [19, 20], the related fourth order method
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for the scattering by open cavity filled with the homogeneous medium for large wave
number was considered, and the method with eight points per wavelength sufficiently
well achieves the resolution we need and thus leads to a linear system with much smaller
numbers of unknowns.

The resulting system of linear equations for large wave number is too large to be
solved using a direct method. Many preconditioners have been developed for solving
Helmholtz problem. One class is called as the operator-based precondtioning, such as
the preconditioner based on separation of variables in [22] and Laplace preconditioner
in [23]. They is built on an operator for the spectrum of preconditioned system is fa-
vorably clustered. Later work in [24], a complex perturbation to the Laplace operator
is introduced to improve the convergence rate, which is so-called shifted-Laplace pre-
conditioner. Incomplete LU factorization, such as [25, 28], can be seen as matrix-based
preconditioner. In [30] by perturbing the diagonal of entries of an indefinite system with
a small complex perturbation one can significantly improve the quality of the incomplete
LU factorization of the coefficient matrix. We refer to [26, 27] for detailed discussions.
These preconditioners are efficient to solve the Helmholtz equations with local boundary
conditions, but not suitable to be directly used for the solution of the cavity scattering
problem, which has a nonlocal boundary condition. In this work, we propose an iter-
ative solver with a preconditioner which coincides with the system matrix constructed
by high order scheme without special treatment to the rows corresponding to unknowns
near the interfaces. Then we reduce iterations on a small sparse subspace as has been
shown in [31], which leads to much reduced storage and computational requirements in
GMRES iterations.

The remainder of the paper is organized as follows. In the next section, the scattering
model from open cavity is stated and further is reduced to a bounded domain problem.
In Section 3, the high order immersed interface method (IIM) for cavity model filled with
the inhomogeneous media is constructed in detail. Then the fast iterative solver based
on high order discretization is presented in Section 4. Numerical experiments are given
to illustrate the competitive behavior of the method in Section 5, including the accuracy
observation for the presented method and the efficiency study of the fast iterative solver.
The paper ends with some conclusions in the last section.

2 The scattering problem of open cavity model

We consider the plane wave scattering problem by an open cavity embedded in an infi-
nite ground plane as in Fig. 1. Assume that the cavity and the medium is z-invariant. The
ground plane and the cavity wall are perfect electric conductors. The cavity may be filled
with inhomogeneous media, which has the relative electric permittivity εr(x,y). And the
medium is assumed to be nonmagnetic, having the relative permeability µr = 1. Let us
denote Ω ∈ R2 as the cavity embedded in the ground plane with boundary ∂Ω, which
consists of the cavity aperture Γ and the cavity wall ∂Ω\Γ. Let R2

+ be the region above
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the ground plane
{

(x,y)∈R2 : y>0
}

. ∂R2
+\Γ is the ground plane without the aperture.

In the transverse magnetic (TM) case, the magnetic field is transverse to the invariant
direction. The incident electric field and the electric field are parallel to the longitudi-
nal z-axis, i.e., EI = (0,0,ui) and Etol = (0,0,u). By the electric continuity conditions, u
vanishes on the cavity walls and on the ground plane except over the aperture Γ. The
time-harmonic Maxwell equation is reduced to

∆u+k2u= f (x,y), (x,y)∈Ω∪R+
2 , (2.1a)

u=0 on ∂Γc∪(∂Ω\Γ), (2.1b)

together with the radiation boundary condition

lim
r→∞

√
r
(∂us

∂r
−ik0us

)

=0, (2.2)

where us is the tangential component of the scattered field ES =(0,0,us) and k2 =ω2εµ=
k2

0εr(x,y)µr . The fields are said to be source free if the source term f =0.

Assume that a plane wave ui = ei(αx−βy) is incident on the cavity from above, where
α = k0sinθ, β = k0 cosθ and −π/2< θ < π/2 is the angle of incident with respect to the
positive y-axis. The scattered field us can be expressed by us = u−ui+ei(αx+βy). Clearly,
us satisfies

∆us+k2us = f (x,y), (x,y)∈R+
2 , (2.3a)

us=u(x,0) on Γ, (2.3b)

us=0 on Γc. (2.3c)

By using the Green’s theorem, we have

us(x,y)=
∫

Γ

∂Gd(x,x′)
∂n′ us(x′,0)dx′, x∈Γ. (2.4)

In (2.4), Gd(x,x′) is the upper half-plane Dirichlet Green’s function for the Helmholtz
equation

Gd(x,x′)=
i

4

[

H1
0(k0|x−x′|)−H1

0(k0|x−x̄′|)
]

,

where x and x′ denote source point and field point separately, and x̄′ is the image of x′

with respect to the real axis. By the boundary conditions and the field continuity, the total
field u satisfies the condition on Γ

∂u

∂y

∣

∣

∣

y=0+
= I(u)+g(x), x∈Γ,

where

I(u)=
ik0

2

∫

Γ

1

|x−x′|H
(1)
1 (k0|x−x′|)u(x′,0)dx′
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is called the nonlocal boundary condition or the transparent boundary condition and
g(x)=−2iβeiαx , x∈Γ. Consequently, the scattering problem can be reduced to a bounded
problem:

∆u+k2u= f (x,y), (x,y)∈Ω, (2.5a)

u=0 on ∂Ω\Γ, (2.5b)

∂u

∂n
= I(u)+g(x) on Γ. (2.5c)

In the TE case, the formulation process can be similarly deduced (see [37]), and the total
field satisfies

∇·
( 1

εr
∇u

)

+k2
0µru= f (x,y), (x,y)∈Ω, (2.6a)

∂u

∂n
=0 on ∂Ω\Γ, (2.6b)

u= Ĩ(u)+ g̃(x) on Γ, (2.6c)

where

Ĩ(u)=−1

2

∫

Γ

1

εr(x
′)

H1
0(k0|x′−x|)∂u(x′,y′)

∂y′

∣

∣

∣

y′=0−
dx′, g̃(x)=2eiαx.

3 High order immersed interface method for the scattering of

cavity filled with the layered media

3.1 High order immersed interface method

When the cavity is filled with the inhomogeneous media, the usual high order method
will fail because of the discontinuity across the interface of various media. In this sec-
tion, we take the cavity filled with the layered media as example, and use the immersed
interface method to develop a compact fourth order scheme in the whole domain.

Let {xi,yj}M+1,N+1
i,j=0 define a uniform partition of Ω= [0,a]×[−b,0]. For ease of nota-

tions, we only consider ∆x=∆y= h, and the main ideas in this work can be extended to
rectangular cavities with ∆x 6=∆y. Using the notation

δ2
xui,j=

ui−1,j−2ui,j+ui+1,j

h2
, δ2

yui,j =
ui,j−1−2ui,j+ui,j+1

h2
, (3.1)

the discrete fourth order finite difference system in the TM case can be given by

(

1+
k2(x,y)h2

12

)

(δ2
x+δ2

y)ui,j+
h2

6
δ2

xδ2
yui,j+k2(x,y)ui,j

= fi,j+
h2

12
(δ2

x+δ2
y) fi,j, i=1,2,··· ,M, j=1,2,··· ,N+1, (3.2)
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where k(x,y)= k2
0εr(x,y)µ0.

If k is a constant in the computational domain, in another form, (3.2) can be written as

a0ui−1,j−1+a1ui−1,j+a2ui−1,j+1+a3ui,j−1+a4ui,j+a5ui,j+1+a6ui+1,j−1

+a7ui+1,j+a8ui+1,j+1=Fij, i=1,2,··· ,M, j=1,2,··· ,N+1, (3.3)

where

a0= a2 = a6= a8 =
1

6
, a1= a3 = a5= a7=

h2k2

12
+

2

3
, a4 =

8h2k2

12
− 10

3

and the right hand side

Fij =
h2

12
( fi+1,j+ fi−1,j+ fi,j+1+ fi,j−1+8 fij).

If the cavity is filled with the layered media, (3.3) can not be used directly. Below exploit-
ing the immersed interface method, we modify (3.3) at the irregular grid points in the
discontinuous interface to get the global high order scheme. Any point on the interface is
set as in the domain of Ω−, that is, ΓI ∈Ω−. Since the discontinuity is across the interface
that is parallel to the x-axis, we set the interface as one of grid lines. Across the interface,
we assume that the following natural jump conditions

[u]=u+−u−=0, [ux]=u+
x −u−

x =0, [uy]=u+
y −u−

y =0, (3.4)

where u+ reflects solutions in Ω+ and u− are those in Ω−.
Let (xi,yj) be an irregular grid point on the interface ΓI . As noted before, it belongs to

the Ω− domain. Thus the grid points (xl ,yj+1), l = i−1,i,i+1 are three grid points from
the Ω+ side. Based on the continuity from (3.4) between the Ω− and Ω+ domain, the
finite difference scheme can be written as

1

6
(ui+1,j+1+ui−1,j+1+ui−1,j−1+ui+1,j−1)

+
(h2k2

12
+

2

3

)

(ui+1,j+ui−1,j+ui,j+1+ui,j−1)+
(8h2k2

12
− 10

3

)

uij

=
h2

12
( f−i+1,j+ f−i−1,j+ f−i,j+1+ f−i,j−1+8 f−i,j )

+C1(ui−1,j−1,··· ,ui+1,j+1)+C2([k
2],[ f ]i,j−1,··· ,[ fx]i,j−1), (3.5)

where C1 and C2 are the correction terms, and they are zero at regular points.

Lemma 3.1. Assume f (x,y) is piecewise C2(Ω±) which leads to the fact that u(x,y) is piecewise
C4(Ω±). In addition to the condition (3.4), We have the following jump conditions

[uxx]=0, [uxy]=0, [uyy]=−[k2]u−+[ f ], (3.6a)

[uyyy]=−[k2]u−
y +[ fy], [uyyx]=−[k2]u−

x +[ fx], (3.6b)

[uxxy]=0, [uxxx]=0, (3.6c)
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and

[uxxxy]=0, [uxxxx]=0, [uyyxx]=−[k2]u−
xx+[ fxx], (3.7a)

[uyyyy]=2[k2]u−
xx+[k4]u−−[k2 f ]+[ fyy]−[ fxx]. (3.7b)

Proof. The proof for (3.6) is straightforward. We show the proof for (3.7). Differentiating
the original differential equation twice with respect to x and then taking the jump, we get

[uxxxx]+[uyyxx]+[k2uxx]= [ fxx ].

Since u is continuous with respect to x, we get

[uyyxx]=−[k2uxx]+[ fxx].

Note that uxx is continuous, so we can write uxx =u−
xx. Differentiating the original equa-

tion twice with respect to y and then taking the jump, we get

[uxxyy]+[uyyyy]+[k2uyy]= [ fyy].

Multiplying k2 to the original differential equation and then taking the jump, we have

[k2uyy]=−[k2]u−
xx−[k4]u−+[k2 f ].

Thus using [uxxyy] and [k2uyy], we get

[uyyyy]=−[uxxyy]−[k2uyy]+[ fyy]

=[k2]u−
xx−[ fxx]+[k2]u−

xx+[k4]u−−[k2 f ]+[ fyy ]

=2[k2]u−
xx+[k4]u−−[k2 f ]+[ fyy]−[ f ]xx .

This completes the proof.

The idea of deriving the correction term C1 and C2 comes from the immersed inter-
face method. See in [17, 32]. Use almost the same procedure, we replace the values of
u+(xi+1,yj+1), u+(xi,yj+1) and u+(xi−1,yj+1) in terms of those from ”−” side, then we
can get their contribution to C1 and C2.

u+(xi+1,yj+1)=u−(xi+1,yj+1)+
(

− h2

6
[k2]+

h4

24
[k4]

)

u−(xi,yj)−
h2

2
[k2]u−(xi+1,yj)

+
h2

6
[k2]u−(xi−1,yj)−

h2

12
[k2]u−(xi,yj+1)+

h2

12
[k2]u−(xi,yj−1)

+
h2

12
[k2]u−(xi+1,yj−1)−

h2

12
[k2]u−(xi−1,yj−1)+

(h2

2
[ f ]+

h3

2
[ fx]

+
h3

6
[ fy]−

h4

24
[k2 f ]+

5h4

24
[ fxx]+

h4

24
[ fyy]+

h4

6
[ fxy]

)∣

∣

∣

(xi,yj)
+O(h5), (3.8a)
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u+(xi,yj+1)=
(

1− h2

12
[k2]

)

u−(xi,yj+1)+
(

− 2h2

3
[k2]+

h4

24
[k4]

)

u−(xi,yj)

+
h2

12
[k2]u−(xi,yj−1)+

h2

12
[k2]u−(xi+1,yj)+

h2

12
[k2]u−(xi−1,yj)

+
(h2

2
[ f ]+

h3

6
[ fx]−

h4

24
[k2 f ]+

h4

24
[ fyy]−

h4

24
[ fxx]

)∣

∣

∣

(xi,yj)
+O(h5), (3.8b)

u+(xi−1,yj+1)=u−(xi−1,yj+1)+
(

− h2

6
[k2]+

h4

24
[k4]

)

u−(xi,yj)+
h2

6
[k2]u−(xi+1,yj)

− h2

2
[k2]u−(xi−1,yj)−

h2

12
[k2]u−(xi,yj+1)+

h2

12
[k2]u−(xi,yj−1)

− h2

12
[k2]u−(xi+1,yj−1)+

h2

12
[k2]u−(xi−1,yj−1)+

(h2

2
[ f ]− h3

2
[ fx]

+
h3

6
[ fy]−

h4

24
[k2 f ]+

5h4

24
[ fxx]+

h4

24
[ fyy]−

h4

6
[ fxy]

)∣

∣

∣

(xi,yj)
+O(h5). (3.8c)

Let R1, R2, and R3 denote the following formulation:

R1=
(h2

2
[ f ]+

h3

2
[ fx]+

h3

6
[ fy]−

h4

24
[k2 f ]+

5h4

24
[ f ]xx+

h4

24
[ fyy]+

h4

6
[ fxy]

)∣

∣

∣

(xi,yj)
, (3.9a)

R2=
(h2

2
[ f ]+

h3

6
[ fy]−

h4

24
[k2 f ]− h4

24
[ f ]xx+

h4

24
[ fyy]

)∣

∣

∣

(xi,yj)
, (3.9b)

R3=
(h2

2
[ f ]− h3

2
[ fx]+

h3

6
[ fy]−

h4

24
[k2 f ]+

5h4

24
[ f ]xx+

h4

24
[ fyy]−

h4

6
[ fxy]

)∣

∣

∣

(xi,yj)
. (3.9c)

Using the above derivation into (3.5), we can obtain the high order immersed method for
scattering of cavity filled with the layered media.

Lemma 3.2. The compact fourth order scheme for the scattering of the cavity filled with layered
media is given as follows

ã0ui−1,j−1+ ã1ui−1,j+ ã2ui−1,j+1+ ã3ui,j−1+ ã4ui,j+ ã5ui,j+1+ ã6ui+1,j−1

+ ã7ui+1,j+ ã8ui+1,j+1= F̃ij, i=1,2,··· ,M, j=1,2,··· ,N+1, (3.10)

where

ã0= ã2 = ã6= ã8 =
1

6
,

ã1= ã7 =β
(

1− α

1−α

)

+
2α

3

(

1− α

2(1−α)

)

,

ã3=β
(

1− α

1−α

)

− α

3

(

1+
α

1−α

)

,
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ã4=−26

3
+8β+

2α

3
− γ

3
− 1

1−α

(

β+
α

3

)

(−8α+γ),

ã5=
1

1−α

(

β+
α

3

)

,

and

F̃ij =
1

6
R1+

1

1−α

(

β+
α

3

)

R2+
1

6
R3+

h2

12

(

f−i+1,j+ f−i−1,j+ f−i,j+1+ f−i,j−1+8 f−i,j

)

,

α=
h2

12
[k2], β=

2

3
+

h2

12
k2
−, γ=

h4

24
[k4].

3.2 The treatment of boundary conditions

Next we introduce the fourth order approximation of the nonlocal boundary condition
in (2.5). Using the Taylor expansion at (xi,yN+1), we can obtain

ui,N+2−uiN

2h
=(uy)i,N+1+O(h2)

=
M

∑
l=1

Gilul,N+1+g(xi)+O(h2), i=1,2,··· ,M,

where ∑
M
l=1 Gilul,N+1 is the approximation of the hypersingular integral in (2.5), and it can

be calculated numerically (see in [33]).
Assuming f is sufficiently smooth in Ω, and k(x,y) is a constant k(yN+1) in the aper-

ture Γ. Add the (3.2) on the boundary Γ, we can express

ui,N+2−uiN

2h
=(uy)i,N+1+

h2

6
( fy−k2(yN+1)uy−uxxy)i,N+1+O(h4)

=Gui,N+1+gi+
h2

6
( fy)i,N+1−

k2(yN+1)h
2

6

ui,N+2−ui,N

2h

− h2

6

δ2
xui,N+2−δ2

xui,N

2h
+O(h4),

which leads to a fourth order approximation expression for the boundary condition ∂u
∂n =

I(u)+g(x),

(

1+
k2(yN+1)h

2

6

)ui,N+2−uiN

2h
+

h2

6

δ2
xui,N+2−δ2

xui,N

2h
−2hGui,N+1

=2hgi+
h2

6
( fy)i,N+1. (3.11)

Combining (3.11) and (3.10), the ghost points ui,N+2 will be eliminated, then the global
system is formed.
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4 Fast iterative solver for the scattering of cavity filled with the

inhomogeneous media

4.1 Linear system

Without employing the immersed interface method, (3.2) can also be written

(

(

IMN+
h2

12
(IM⊗D)

)

(AM⊗ IN+ IM⊗AN)+
h2

6
(AM⊗AN)+ IM⊗D

)

U1

+

(

(

IMN+
h2

12
(IM⊗D)

)

(IM⊗aN)+
h2

6
(AM⊗aN)

)

u:,N+1

=
h2

12

(

(AM⊗ IN+ IM⊗AN)
)

F1+
1

12

(

IN

0

)

f0,:+
1

12

(

0

IN

)

fM+1,:

+
1

12
(IM⊗bN) f:,0+

1

12
(IM⊗aN) f:,N+1+ IMN F1, (4.1)

where ⊗ denotes the tensor product (Kronecker product), IMN is the MN×MN identity
matrix, and IM is the M×M identity matrix,

AM=
1

h2











−2 1
1 −2 1

. . .
. . .

. . .

1 −2











, AN =
1

h2











−2 1
1 −2 1

. . .
. . .

. . .

1 −2











,

D=ω2µ0diag
(

ε(y1),ε(y2),··· ,ε(yN)
)

,

aN =
1

h2
(0,0,··· ,0,1)T, bN =

1

h2
(1,0,··· ,0,0)T

and

U1=(u11,··· ,u1N ,u21,··· ,u2N ,··· ,uM1,··· ,uMN)
T,

u:,N+1=(u1,N+1,u2,N+1,··· ,uM,N+1),

F1=( f11,··· , f1N , f21,··· , f2N ,··· , fM1,··· , fMN)
T,

AM is an M×M matrix, and AN is an N×N matrix. aN and bN are also N dimension vec-
tors. f0,:, fM+1,: and f:,0, f:,N+1 denote the vectors when x=0,a and y=−b,0 respectively.

In the same time, (3.11) can be expressed by matrix form

(

IM+
h2

6
D0+

h2

6
AM

)

u:,N+2−
(

IM+
h2

6
D0+

h2

6
AM

)

u:,N

=2hGu:,N+1+2hg+
h3

3
( fy):,N+1, (4.2)

where D0=ω2µ0ε(yN+1)IM and D0 is M dimensional diagonal matrix.
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To eliminate the values of u at the ghost points, we add the difference equation on
(3.2) at the boundary points (xi,yN+1)(1≤ i≤M),

(

IM+
h2

12
D0+

h2

6
AM

)

u:,N+2+
(

IM+
h2

12
D0+

h2

6
AM

)

u:,N

+

(

(

IM+
h2

12
D0

)

(h2 AM−2IM)− h2

3
AM+h2D0

)

u:,N+1

=h2 f:,N+1+
h4

12
∆ f:,N+1. (4.3)

By eliminating the terms u:,N+2 from (4.3) with (4.2), we obtain a fourth order approxi-
mation of the transparent boundary Γ as follows,

(

(

IM+
h2

12
D0

)

(h2 AM−2IM)− h2

3
AM+h2D0+2hJ2 J−1

1 G

)

u:,N+1+2J2u:,N

=−2hJ2 J−1
1 g− h3

3
J2 J−1

1 ( fy):,N+1+h2 f:,N+1+
h4

12
∆ f:,N+1, (4.4)

where

J1=
(

IM+
h2

6
D0+

h2

6
AM

)

, J2 =
(

IM+
h2

12
D0+

h2

6
AM

)

.

Finally, combining (4.1), (3.10) and (4.4) yields the global system for the cavity model
filled with the layered media

(

A11 A12

A21 A22

)(

U1

u:,N+1

)

=

(

FI

fb

)

, (4.5)

where

A12=

(

(

IMN+
h2

12
(IM⊗D)

)

(IM⊗aN)+
h2

6
(AM⊗aN)

)

, (4.6a)

A21=2h2 J2⊗aT
N , (4.6b)

A22=

(

(

IM+
h2

12
D0

)

(h2 AM−2IM)− h2

3
AM+h2D0+2hJ2 J−1

1 G

)

, (4.6c)

FI =
h2

12

(

AM⊗ IN+ IM⊗AN

)

F1+
1

12

(

IN

0

)

f0,:+
1

12

(

0

IN

)

fM+1,:

+
1

12
(IM⊗bN) f:,0+

1

12
(IM⊗aN) f:,N+1+ IMNF1+FT, (4.6d)

fb =−2hJ2 J−1
1 g− h3

3
J2 J−1

1 ( fy):,N+1+h2 f:,N+1+
h4

12
∆ f:,N+1, (4.6e)

and

A11=

(

(

IMN+
h2

12
(IM⊗D)

)

(AM⊗ IN+ IM⊗AN)+
h2

6
(AM⊗AN)+ IM⊗D

)

+T

=B11+T. (4.7)
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Note the matrix FT and T depend on the interface situation, in the simple case that the
cavity is filled with two kinds of vertically layered media, TU1=FT has the corresponding
expression, that is, the difference of (3.10) and (3.3)

(ã1−a1)ui−1,j0+(ã3−a3)ui,j0−1+(ã4−a4)ui,j0 +(ã5−a5)ui,j0+1

+(ã7−a7)ui+1,j0 = F̃ij0 −Fij0 , i=1,2,··· ,M, (4.8)

where j0 is the index indicating the discontinuous interface. Thus MN-dimensional ma-
trix T is very sparse, which has only M nonzero rows.

4.2 Preconditioning iteration

Now we use the following block triangular form as our right preconditioner

B=

(

B11 0

A21 A22

)

, (4.9)

where A21 and A22 come from the coefficient matrix of (4.5), B11 = A11−T. If (4.5) is
simply denoted by Au= f , using the right preconditioning B yields the system like

AB−1v= f . (4.10)

After solving this system the solution of the original problem (4.5) is u=B−1v.
The choice of the preconditioner is motivated by the Neumann-Dirichlet domain de-

composition preconditioner, see [5, 31], for example. For a Poisson equation this precon-
ditioner leads to a well conditioned matrix AB−1 and a rapid convergence of a precon-
ditioned iteration, see [34]. Based on this we can expect the conditioning to be good for
the cavity model filled with inhomogeneous media, which is also tested by the numerical
experiment in Section 5.

4.3 Reduction to sparse subspace

We consider the structure of the vectors needed during (4.10). Particularly, it is worth
mentioning that the vectors are very sparse. This reduces memory usage by orders of
magnitude. We recommend [31,35] for a more detailed description of iterations on sparse
subspace.

We solve (4.10) on the Krylov subspace

span
{

f ,AB−1 f ,··· ,(AB−1)k−1 f
}

. (4.11)

Find a vector vk from the subspace by minimizes the norm of the residual AB−1vk− f ,
and vk is a linear combination of the vectors f , f 1=AB−1 f , ··· , f k =(AB−1)k−1 f . Here

f 1=AB−1 f = f +(A−B)B−1 f (4.12)
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and similarly

f j =(AB−1)j f =AB−1 f j−1= f +(A−B)B−1 f j−1, j=2,··· ,k−1. (4.13)

From the above we can see f j ∈X= span{ f}+range(A−B), and Krylov subspace (4.11)
is a subspace of X. Then any iterative method based on this Krylov subspace for the
solution of (4.10) generates a sequence of approximate solution vk on X if the initial guess
v0 belongs to X. Hence all required operations are carried out on the sparse subspace X.

We consider the sparsity of X. Recall that

A−B=

(

T A12

0 0

)

. (4.14)

As mentioned that T is very sparse, which reflects the discontinuous interface of different
medium. In addition, A12 has only M nonzero lines from (4.5). Thus, for the simple case
of vertically two layered medium, the vectors in the sparse subspace X have 2M nonzero
components, and this can greatly reduce computational costs. Moreover it is predicted
that the complexity of the medium filled in open cavity, reflected by T, will influence the
sparsity of X and the computational spent.

4.4 Technique in each iteration

When given a vector y∈X, at each iteration, the multiplication AB−1z will be performed,
which includes the linear system

By=

(

B11 0

A21 A22

)(

y1

y2

)

=

(

z1

z2

)

= z. (4.15)

The fast Poisson solver can be applied for solving

B11y1= z1, (4.16)

since SM AMSM = Λ = diag
(

λ1,λ2,··· ,λM

)

, where SM denotes the discrete Fourier-sine
transformation,

SM =

√

2

M+1

(

sin
lmπ

M+1

)M

l,m=1
, λl =−4(M+1)2

a2
sin2 lπ

2(M+1)

and S2
M = IM. Using the discrete Fourier sine transformation, the discrete system (4.16)

can be written as
(

(

IMN+
h2

12
(IM⊗D)

)(

Λ⊗ IN+ IM⊗AN

)

+
h2

6
(Λ⊗AN)+ IM⊗D

)

y1= z1, (4.17)

where y1 = (SM⊗ IN)y1, z1 = (SM⊗ IN)z1. By the fast algorithm the linear system (4.16)
can be solved with O(NMlog M) operations.

Summing up the above discussion each iteration can be done by three steps:
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1. Solve

B11y1=z1

using the fast discrete Fourier transformation.

2. Solve

A22y2=z2−A21y1.

Because G is a Toeplitz matrix, the system can be computed by the fast Toeplitz solvers.
(See [36]).

3. Compute

(A−B)y=Ty1+A12y2.

5 Numerical experiments

We have solved many cavity models filled with layered media or inhomogeneous media
and confirmed the expected order of accuracy and efficiency of the proposed high order
fast iterative solver. Several typical examples in TM case will be presented in this section.
All computations are performed on a PC with an Intel Core2 Duo 2.25GHz processor
with 1.72GBytes of memory.

5.1 Example 1

We consider an artificial example defined by (2.5) with the cavity a=b=1.0 which is filled
with layered media, and the discontinuous interface is the line y=−b/2. In this example,
the f (x,y) and g(x) are chosen such that the exact solution is

u(x,y)=











(

y− 1

2

)2
sinπxcosπy, (x,y)∈Ω+=(0,a)×

(

− b

2
,0
)

,
(

y− 1

2

)2
sinπxsinπy, (x,y)∈Ω−=(0,a)×

(

−b,− b

2

]

.

First, for testing the accuracy of the proposed method, we compute the cavity model
filled with the following layered media

εr(x,y)=











4.0+2.0i, − b

2
≤y≤0,

2.39+1.84i, −b≤y<− b

2
.

(5.1)

Error measures in L2 norm and L∞ norm in the domain Ω are defined by

eM(Ω)=max|uh
i,j−u(xi,yj)|, e2(Ω)=

(

ab

M(N+1)

M,N+1

∑
i,j=1

|uh
ij−u(xi,yj)|2

)
1
2

,
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respectively, where uh
ij denotes the numerical solution at the point (xi,yj). The solution at

the aperture of cavity is more interesting for the scattering calculation, so we also define
the following error measures on Γ,

eM(Γ)=maxi|uh
i,N+1−u(xi,0)|, e2(Γ)=

(

a

M

M

∑
i=1

|uh
i,N+1−u(xi,0)|2

)
1
2

.

The errors in the domain and aperture with a grid refinement analysis for different wave
number are listed in Tables 1 and 2.

Table 1: Errors for Example 1 with layered media (5.1) by the proposed method with k0=2π.

Meshes 16×16 Order 32×32 Order 64×64 Order 128×128

eM(Γ) 3.7506e−05 4.0352 2.2877e−06 4.0094 1.4205e−07 4.0040 8.8533e−09
e2(Γ) 2.6915e−05 4.0413 1.6347e−06 4.0133 1.0123e−07 4.0064 6.2989e−09

eM(Ω) 9.4050e−05 3.8591 6.4813e−06 3.9292 4.2545e−07 3.9644 2.7254e−08

e2(Ω) 2.3941e−05 4.0067 1.4894e−06 4.0073 9.2619e−08 4.0045 5.7708e−09

Table 2: Errors for Example 1 with layered media (5.1) by the proposed method with k0 =32π and k0 =36π.

k0 Error 64×64 Order 128×128 Order 256×256

32π eM(Γ) 5.0819e−06 4.8294 1.7874e−07 4.3635 8.6831e−09

e2(Γ) 3.6222e−06 4.8350 1.2691e−07 4.3663 6.1531e−09

36π eM(Γ) 4.9861e−06 4.4246 2.3218e−07 4.5547 9.8792e−09
e2(Γ) 3.5537e−06 4.4301 1.6485e−07 4.5576 7.0003e−09

From Tables 1 and 2, one can see that although the second order derivative uyy is
discontinuous at the interface y = −b/2, we use the compact high order scheme and
immersed interface method to obtain the fourth order convergence in the whole compu-
tational domain and at the aperture for different wave number. In Table 2, for relatively
large wave number, such as 32π, 36π, quite high accuracy can be obtained only with 4
points per wavelength, which can not be achieved by low order method [37, 38].

Next we illustrate the power of the preconditioning. The spectrum of the original
and preconditioned coefficient matrices of the model filled with (5.1) are shown in (a)
and (b) of Fig. 2 separately when k0 = 8π. For the original coefficient matrix in (a), the
real parts of almost all eigenvalues are negative, and a few even equal zero, while, in (b),
all eigenvalues are on the right side of the complex plane, and in fact most of eigenvalues
equal 1. The preconditioned spectrum exhibits a high degree of clustering around one,
which is favorable for Krylov subspace methods [39]. Moreover, the ratio of the absolute
value of the imaginary part and the real part of eigenvalues is also an important factor for
most iterative algorithms. The eigenvalues with a large ratio will lead to ill-conditioning
systems. For most eigenvalues shown in (b) of Fig. 2, the absolute value of the imaginary
part is smaller than the real part.
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Figure 2: The eigenvalues distribution of the unpreconditioned A and preconditioned AB−1 for the cavity filled
with layered media (5.1) with 40×40 meshes when k0 =8π in the TM case.

Then we apply our preconditioning iterative method for solving the cavity model
filled with different layered media. Other layered media

εr(x,y)=











3.78+1.6i, − b

2
≤y≤0,

10.27+2.56i, −b≤y<− b

2
,

(5.2)

is also considered. The Krylov subspace method, GMRES with no restarts is used to solve
the final system. The stopping criterion is ‖rm‖/‖r0‖≤ 10−6, where rm is the residual at
the mth iteration.

The iteration number and CPU time are obtained in Table 3 with different wave num-
ber for the open cavity filled with the layered media (5.1) and (5.2). For each wave num-

Table 3: Iteration counts (Iter) and CPU times (in sec.) for computing the cavity filled with different layered
media (5.1) and (5.2) with the proposed precondtioning solver and full GMRES.

k0 Meshes Iter with (5.1) Time with (5.1) Iter with (5.2) Time with (5.2)

8π 8×8 5 0.087 6 0.085

16×16 6 0.278 8 0.358
32×32 7 0.762 7 0.862

16π 16×16 3 0.285 5 0.295

32×32 6 1.790 6 1.731
64×64 5 5.341 6 6.341

32π 32×32 3 1.937 3 1.957

64×64 5 11.24 5 11.28

64π 64×64 3 14.36 3 14.34
128×128 5 86.45 4 74.46

100π 100×100 3 43.55 4 43.29

200×200 4 90.86 4 98.21
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ber, we observe that the convergence rate of GMRES is almost less sensitive to the mesh
size h and also is independent of the layered media parameter εr, confirming the robust-
ness of the method. It is unexpected that the wave number seems to have minimal impact
on the iterations number, and this is probably caused by the low complexity of the media
filled in the cavity, which is verified by the later numerical examples.

5.2 Example 2

We consider the cavity with a= b= 1.0 which is filled with the general inhomogeneous
media as in Fig. 3, where

εr =

{

εr0 , (x,y)∈Ω\Ω1,
εr1

, (x,y)∈Ω1.

In this cavity, a small rectangular penetrable object Ω1 with a/2 wide and b/8 deep is
placed on the bottom, which is filled with a dielectric having εr1

6=εr0 . Two different cases
are considered as follows.

θ

Ω
1

Ω

Figure 3: The cavity geometry of Example 2.

First we verify the accuracy of the proposed high order method when the field of the
aperture is given as

u(x,y)= exy sin
(k0x

2

)

sin

(

( k0

2
+

π

4

)

y

)

.

The solutions are converged to a tolerance of 10−10 in the relative residual. The maximum
number of GMRES iterations to 300. Tables 4 and 5 show that the numerical approxi-
mation has fourth order accuracy when the cavity is filled with inhomogeneous media,
which is an good agreement with the theoretical analysis.

Then we study the case that the analytic solution of the field of the aperture do not
exist, which demonstrate the accuracy comparison of the fourth order and second order
method. We take the cavity model filled with the inhomogeneous media εr0 = 1.0, εr1

=
4.0+i when k0 = 18π as example. Since the analytic solution is not available, numerical
solutions with 1024×1024 meshes are calculated to confirm the convergence. We conduct
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Table 4: Errors for the cavity filled with the inhomogeneous media εr0 =1.0, εr1 =4.0+i when k0 =2π.

Meshes 16×16 Order 32×32 Order 64×64 Order 128×128

eM(Γ) 5.0760e−04 4.2963 2.5835e−05 4.0762 1.5316e−06 4.0128 9.4882e−08
e2(Γ) 3.6647e−04 4.3099 1.8477e−05 4.0853 1.0885e−06 4.0175 6.7212e−08

eM(Ω) 9.0237e−04 4.7837 3.2761e−05 4.0662 1.9557e−06 4.0070 1.2164e−07
e2(Ω) 3.3342e−04 4.4941 1.4796e−05 4.0928 8.6713e−07 4.0168 5.3569e−08

Table 5: Errors for the cavity filled with the inhomogeneous media εr0 =2.0, εr1 =1.0+4.0i when k0=8π.

Meshes 32×32 Order 64×64 Order 128×128 Order 256×256

eM(Γ) 8.8756e−03 5.3437 2.1856e−04 5.0037 6.8127e−06 4.3446 3.3533e−07

e2(Γ) 4.1663e−03 5.4625 9.4490e−05 4.9704 3.0140e−06 4.2519 1.5820e−07
eM(Ω) 1.3287e−02 4.7751 4.8525e−04 4.2527 2.5455e−05 4.0832 1.5018e−06

e2(Ω) 3.0499e−03 5.2829 7.8336e−05 4.6023 3.2249e−06 4.1095 1.8683e−07

a grid convergence description in Fig. 4. The coarsest mesh we have taken has 14 points
per wavelength, and the finest mesh is 1024×1024, which corresponds to 114 points per
wavelength. It can be seen that the numerical solutions have good convergence, and the
solutions with 128×128 meshes is close to that with 1024×1024 meshes. In Fig. 5, (a)
illustrates the comparison between the present method and the second order method,
and (b) focuses on the field of the aperture around x = 0.5. We note that the present
method and 128×128 meshes yield the comparable accuracy of the solutions as those of
the second order method with 1024×1024 meshes. This means the proposed method can
drastically reduce the number of grid nodes needed while retain the desired accuracy.

5.3 Example 3

We apply the proposed method to solve plane wave scattering from a rectangular
groove with 1.0 meter wide and 0.25 meter deep, i.e., the computational domain Ω

is [0.0m,1.0m]×[−0.25m,0.0m]. There are third penetrable objects with relative per-

Table 6: Iteration counts by the proposed preconditioning solver with full GMRES with 20 mesh points per
wavelength for Example 3.

k0 Meshes Iter with θ=0 Iter with θ= π
4

2π 20×5 8 8
4π 40×10 19 18

8π 80×20 36 34
10π 100×25 41 45

16π 160×40 72 73

30π 300×75 177 180
36π 360×90 235 232

40π 400×100 268 269
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Figure 4: The magnitude of the aperture field at θ=0 by the fourth order method with k0=18π.
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Figure 5: The comparison of the magnitude of the aperture field at θ=0 by the fourth order method and second
order method with k0 =18π.

mittivity εr1
, which is denoted by Ω1 = [0.0m,0.2m]×[−0.15m,−0.1m]∪[0.4m,0.6m]×

[−0.15m,−0.1m]∪[0.8m,1.0m]×[−0.15m,−0.1m]. The domain Ω\Ω1 has relative per-
mittivity εr0 , which εr0 6= εr1

.

We take into account the performance of the present preconditioning solver. The full
GMRES method is used to solve the model with various wave number. The iteration is
terminated when then norm of the residual vector was reduced by the factor 10−6.

Table 6 shows the computational performance in terms of number of iterations and
computational time to reach the specified convergence with εr0=1.0 and εr1

=4+i. For k0=
2π, 4π, 8π, 16π, 30π, 36π and 40π, we use 20×5, 40×10, 80×20, 160×40, 300×75, 360×90
and 400×100 meshes leading to 20 points per wavelength. It is indicated that the GMRES
iterations number grows as the wave number increases, approximately proportionally to
k0.

We notice that the iteration counts for this model is more than Example 1, especially
for relatively large wave number. This coincides with our discussion in Section 4.3, that
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θ

Ω
1Ω

Figure 6: The cavity geometry of Example 3.

is, the complexity of the media in the cavity influences the iteration number of the fast
iterative solver. Nevertheless, thanks to reducing the GMRES iterations onto a small
sparse subspace associated with the discontinuous interface of different medium, we can
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Figure 7: The magnitude of the aperture field at θ = 0 (in (a)) and backscatter RCS (in (b)) with 400×100
meshes when k0=30π.
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Figure 8: The magnitude of the aperture field at θ = 0 (in (a)) and backscatter RCS (in (b)) with 400×100
meshes when k0=40π.
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use the GMRES without restart to solve this model on the PC, which can not usually done
in the scattering of complex model.

In addition, we give the magnitude of aperture field and scattering RCS of the cavity
filled with the inhomogeneous media when k0 = 30π and 40π on a 400×100 mesh in
Fig. 7 and Fig. 8 respectively. The discretized system has the size of 40,299 elements. If
using the conventional method, the computation burden is considerable resulting in low
efficiency in person computer.

6 Conclusions

We have developed an efficient fast high order preconditioning solver for the scattering
of open cavity filled with the inhomogeneous media. The fourth order finite scheme and
the immersed interface method (IIM) are applied in the interior domain of cavity, and
the fourth order discretization is simultaneously enforced on the truncation boundary at
the aperture of open cavity, which leads to high order accuracy solutions for practical
application.

More complex is the media filled in the open cavity becomes, more fine mesh subdivi-
sion needs to be carried, which causes a large system of equations. The proposed precon-
ditioning iterative solver makes coefficient matrices with favorable spectral distributions
and ideal candidates for Krylov subspace algorithms. The numerical experiments show
the high efficiency of the preconditioner, which is independent of problem parameter,
such as the mesh size h, the incidence angle of the electromagnetic wave, etc. However
the complexity of media filled in the open cavity has shown influence on iterations to a
certain extent. Nevertheless, it is satisfying that by reducing the GMRES iterations onto
the sparse subspace we can use the GMRES method without restarts for the case of rel-
atively complex inhomogeneous media with large wave number, which usually needs
restarts to avoid the degradation of convergence in complicated scattering problem.

Acknowledgments

The author is grateful for Professor Tao Tang and Dr. Zhonghua Qiao for many helpful
and fruitful discussions, and would like to thank Professor Weiwei Sun for constructive
suggestions.

References

[1] F. IHLENBURG, Finite element analysis of acoustic scattering, Applied Mathematical Sciences,
Springer-Verlag, New York, 1998.

[2] J. LIU AND J. M. JIN, A special high-order finite element method for scattering by deep cavity, IEEE
Tran. Antennas Propag., 48 (2000), pp. 694–703.



256 M. L. Zhao / Adv. Appl. Math. Mech., 5 (2013), pp. 235-257

[3] F. IHLENBURG AND I. BABUSKA, Finite element solution of the Helmholtz equation with high
wave number Part I: the h-version of FEM, Comput. Math. Appl., 30 (1995), pp. 9–37.

[4] F. IHLENBURG AND I. BABUSKA, Finite element solution of the Helmholtz equation with high
wave number Part II: the h-p version of the FEM, SIAM J. Numer. Anal., 34 (1997), pp. 315–358.

[5] K. ITO, Z. QIAO AND J. TOIVANEN, A domain decomposition solver for acoustic scattering by
elastic objects in layered media, J. Comput. Phys., 227 (2008), pp. 8685–8698.

[6] Q. FANG, D. P. NICHOLLS AND J. SHEN, A stable, high-order method for three-dimensional,
bounded-obstacle, acoustic scattering, J. Comput. Phys., 224 (2007), pp. 1145–1169.

[7] Y. FU, Compact fourth-order finite difference schemes for helmholtz equation with high wave num-
bers. J. Comput. Math., 26 (2008), pp. 98–111.

[8] B. GUSTAFSSON AND E. MOSSBERG, Time compact high order difference methods for wave prop-
agation, SIAM J. Sci. Comput., 26 (2004), pp. 259–271.

[9] G. BARUCH, G. FIBICH, S. TSYNKOV AND E. TURKEL, Fourth order schemes for time-harmonic
wave equations with discontinuous coefficients, Commun. Comput. Phys., 5 (2009), pp. 442–455.

[10] G. BARUCH, G. FIBICH AND S. TSYNKOV, High-order numerical method for the nonlinear
Helmholtz equation with material discontinuities, J. Comput. Phys., 227 (2007), pp. 820–850.

[11] Q. CHEN, P. MONK, X. WANG AND D. WEILE, Analysis of convolution quadrature applied to the
time-domain electric field integral equation, Commun. Comput. Phys., 11 (2012), pp. 383–399.

[12] K. ITO AND Z. QIAO, A high order compact MAC finite difference scheme for the Stokes equations:
augmented variable approach, J. Comput. Phys., 227 (2008), pp. 8177–8190.

[13] K. ITO AND Z. QIAO, A high order finite difference scheme for the Stokes equations, AMS Contem.
Math., 466 (2008), pp. 35–51.

[14] J. JIN, J. LIU, Z. LOU AND S. LIANG, A fully high-order finite-element simulation of scattering
by deep cavities, IEEE Trans. Antennas Propag., 51 (2003), pp. 2420–2429.

[15] R. S. CALLIHAN AND A. W. WOOD, A modified Helmholtz equation with impedance boundary
conditions, Adv. Appl. Math. Mech., 4 (2012), pp. 703–718.

[16] R. J. LEVEQUE AND Z. LI, The immersed interface method for elliptic equations with discontinuous
coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019–1044.

[17] Z. LI AND K. ITO, The immersed interface method-numerical solutions of pdes involving interfaces
and irregular domains, SIAM Frontier Series in Applied Mathematics, FR33, 2006.

[18] Z. LI AND M.-C. LAI, New finite difference methods based on IIM for inextensible interfaces in
incompressible flows, East Asian J. Appl. Math., 1 (2011), pp. 155–171.

[19] M. ZHAO, Z. QIAO AND T. TANG, A fast high order method for electromagnetic scattering by
large open cavities, J. Comput. Math., 29 (2011), pp. 287–304.

[20] C. LI AND Z. QIAO, A fast preconditioned iterative algorithm for the electromagnetic scattering
from a large cavity, J. Sci. Comput., 53 (2012), pp. 435–450.

[21] G. BAO, J. GAO AND P. LI, Analysis of direct and inverse cavity scattering problems, Numer.
Math. Theor. Meth. Appl., 4 (2011), pp. 335–358.

[22] R. E. PLESSIX AND W. A. MULDER, Separation of variables as a preconditioner for an iterative
Helmholtz solver, Appl. Numer. Math., 44 (2003), pp. 385–400.

[23] A. L. LARID AND M. B. GILES, Preconditioned iterative solution of the 2D Helmholtz equa-
tion, Report NA-02/12, Oxford University Computing Laboratory, 2002.

[24] Y. A. ERLANGGA, C. VUIK AND C. W. OOSTERLEE, On a class of preconditioners for solving
the Helmholtz equation, Appl. Numer. Math., 50 (2004), pp. 409–425.

[25] Y. SAAD, ILUT: a dual threshold incomplete LU factorization, Numer. Linear Algebra Appl., 4
(1994), pp. 387–402.

[26] B. BIALECKI, G. FAIRWEATHER AND A. KARAGEORGHIS, Matrix decomposition algorithms for



M. L. Zhao / Adv. Appl. Math. Mech., 5 (2013), pp. 235-257 257

elliptic boundary value problems: a survey, Numer. Algor., 56 (2011), pp. 253–295.
[27] Y. A. ERLANGGA, Advances in iterative methods and preconditioners for the Helmholtz equation,

Arch. Comput. Methods Eng., 15 (2008), pp. 37–66.
[28] J. LEE, J. ZHANG AND C. C. LU, Incomplete LU preconditioning for large scale dense complex

linear systems from electromagnetic wave scattering problems, J. Comput. Phys., 185 (2003), pp.
158–175.

[29] Q. SHENG AND H.-W. SUN, Asymptotic stability of an eikonal transformation based ADI method
for the paraxial Helmholtz equation at high wave numbers, Commun. Comput. Phys., 12 (2012),
pp. 1275–1292.

[30] D. O. KUFFUOR AND Y. SAAD, Preconditioning Helmholtz linear systems, Appl. Numer. Math.,
60 (2010), pp. 420–431.

[31] K. ITO AND J. TOIVANEN, A fast iterative solver for scattering by elasitc objects in layered media,
Appl. Numer. Math., 57 (2007), pp. 811–820.

[32] X. FENG, Z. QIAO AND Z. LI, High order compact finite difference schemes for Helmholtz equation
with discontinuous coefficient. J. Comput. Math., 29 (2011), pp. 324–340.

[33] J. WU, Y. WANG, W. LI AND W. SUN, Toeplitz-type aooroximations to the Hadamard integral op-
erators and their applications in electromagnetic cavity problems, Appl. Numer. Math., 58 (2008),
pp. 101–121.

[34] B. F. SMITH, P. E. BJORSTAD AND W. D. GROOP, Domain Decomposition, Cambridge Uni-
versity Press, Cambridge, 1996.

[35] K. ITO AND J. TOIVANEN, Preconditioned iterative methods on sparse subspaces, Appl. Math.
Lett., 19 (2006), pp. 1191–1197.

[36] R. H. CHAN AND M. K. NG, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), pp. 427–482.

[37] G. BAO AND W. SUN, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM
J. Sci. Comput., 27 (2005), pp. 553–574.

[38] Y. WANG, K. DU AND W. SUN, A second-order method for the electromagnetic scattering from a
large cavity, Numer. Math. Theor. Meth. Appl., 1 (2008), pp. 357–382.

[39] O. AXELSSON, Iterative Solution Meshods, Cambridge University Press, New York, 1994.


