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Abstract. In this paper, we derive a multi-symplectic Fourier pseudospectral scheme
for the Kawahara equation with special attention to the relationship between the spec-
tral differentiation matrix and discrete Fourier transform. The relationship is crucial for
implementing the scheme efficiently. By using the relationship, we can apply the Fast
Fourier transform to solve the Kawahara equation. The effectiveness of the proposed
methods will be demonstrated by a number of numerical examples. The numerical
results also confirm that the global energy and momentum are well preserved.
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1 Introduction

In this paper, we consider the Kawahara equation [1]

2
∂u

∂t
+α

∂3u

∂x3
+β

∂5u

∂x5
=

∂

∂x
f (u,ux,uxx), (1.1)

where u(x,t) is a scalar function, α,β 6=0 are real parameters and f (u,ux,uxx) is a smooth
function. Eq. (1.1) is a model equation for plasma waves, capillary-gravity waves and
other dispersive phenomena when the cubic KdV-type dispersion is weak. The form
of (1.1) which occurs most often in applications is with f (u,ux,uxx) = au2, where a is
a nonzero constant. Eq. (1.1) was first proposed by Kawahara [2] in 1972, as a model
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equation describing solitary-wave propagation in dispersive media. By studying sys-
tematically Eq. (1.1) with f (u,ux,uxx)=−3u2, Kawahara observed that the solitary wave
states could have oscillatory tails, and computed examples of such waves numerically. A
more general nonlinearity was derived for water waves by Olver [3], using Hamiltonian
perturbation theory, with further generalization given by Craig and Groves [4]. Existence
and uniqueness of solutions to nonlinear Kawahara equations are obtained in [5].

As far as we know, numerical methods for this equation are very limited. Yuan,
Shen and Wu [6] developed a Dual-Petrov-Galerkin method for the equation and showed
some excellent numerical results. In Ref. [7], Hu and Deng developed a multi-symplectic
Preissmann scheme. In this paper, we aim to develop a new multi-symplectic method for
the Kawahara equation.

Many PDEs could be written as multi-symplectic Hamiltonian PDEs [8]

Mzt+Kzx =∇zS(z), (1.2)

where z(x,t)∈R
n(n≥ 3), M and K are skew-symmetric matrices, and S(z) is a smooth

function. It is well known that Eq. (1.2) has multi-symplectic conservation law

∂

∂t
ω+

∂

∂x
κ=0, (1.3)

where ω = 1
2 dz∧Mdz,κ = 1

2 dz∧Kdz. As the multi-symplectic conservation law is a sig-
nification geometric property of the Hamiltonian PDEs, numerical integrators which
can preserve corresponding discrete multi-symplectic conservation law are expected.
Bridges and Reich [9, 10] called such integrators are multi-symplectic integrators. Many
equations were constructed as multi-symplectic Hamiltonian PDEs and integrated by
some multi-symplectic methods (please refer to review paper [11]). These methods in-
clude multi-symplectic Preissmann scheme [9], multi-symplectic Fourier pseudospectral
method [12, 13], multi-symplectic wavelet collocation method [14, 15], multi-symplectic
Euler box scheme [16–19], multi-symplectic splitting method [20, 21] and so on. A great
many numerical experiments show that multi-symplectic methods perform better than
traditional numerical methods in long time simulations.

Bridges and Reich [12] suggested the idea of multi-symplectic spectral discretization
on Fourier space. Based on their theory, Chen and Qin [13] proposed multi-symplectic
Fourier pseudospectral (MSFP) method for Hamiltonian PDEs and applied it to integrate
nonlinear Schrödinger (NLS) equation with periodic boundary conditions. Then, Wang
[23] made some numerical analysis for the NLS equation. Later, the MSFP method was
widely applied to other equations [14, 22, 24, 25] and so on. The key of the MSFP method
is the spectral differentiation matrix (SDM) which can be obtained easily by proposed
method in Ref. [13]. However, it needs a lot of storage space and a large amount of
calculations to apply SDM directly, especially when the number of the nodes is large. In
this paper, we develop a relationship between the SDM and discrete Fourier transform
(DFT). By the relationship, we can apply Fast Fourier transform (FFT) easily in numerical
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calculation. To our knowledge, it has not been discussed that applying FFT to multi-
symplectic scheme.

An outline of the paper is as follows. In Section 2, we review multi-symplectic struc-
ture for the Kawahara equation. In Section 3, we present the standard Fourier pseu-
dospectral method and develop the relationship between the SDM and DFT. In Section 4,
a MSFP method for the Kawahara equation is proposed by using Fourier pseudospectral
method in space and midpoint implicit symplectic method in time. Numerical experi-
ments are reported in Section 5. We finish the paper with conclusions in Section 6.

2 Multi-symplectic formulation of the Kawahara equation

In this section, we consider the Kawahara equation (1.1) with [1]

f (u,v,s)=Fu(u,v)−vFuv(u,v)−sFvv(u,v)+2sEu(u,v)+svEuv(u,v)+v2Euu(u,v).

Eq. (1.1) can be rewritten as the multi-symplectic Hamiltonian PDEs (1.2) with

z=[ϕ,u,v,w,p,q]T ,

S(z)=
1

2
αv2+

1

2β
q2+wu+pv+F(u,v)+

1

2β
(2q+E(u,v))E(u,v),

M=




0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, K=




0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




.

It is well known that when S(z) is independent of x and t then the multi-symplectic
Hamiltonian PDEs (1.2) has a local energy conservation law

Et+Fx =0 with E(z)=S(z)− 1

2
zTKzx, F(z)=

1

2
zTKzt (2.1)

and a local momentum conservation law

It+Gx =0 with G(z)=S(z)− 1

2
zT Mzt, I(z)=

1

2
zT Mzx. (2.2)

For the Kawahara equation, the corresponding local conservation laws (1.3)-(2.2) are
given by

ω=du∧dϕ, κ=dw∧dϕ+dp∧du+dq∧dv,

E(z)= 1

2
αv2+F+

1

2β
(E2−q2), F(z)=wϕt+put+qvt,

G(z)=S(z)−uϕt, I(z)=u2.



38 Y. Gong, J. Cai and Y. Wang / Commun. Comput. Phys., 16 (2014), pp. 35-55

Under periodic boundary conditions, the above local conservation laws can be integrated
in x-direction to obtain the global symplectic, energy and momentum conservation laws

∫
ω(x,t)dx=C1,

∫
E(x,t)dx=C2,

∫
I(x,t)dx=C3,

where C1, C2 and C3 are constants which are independent of t.

3 The relationship between the SDM and DFT

Letting the spatial domain I = [a,b] and L= b−a, we first consider Eq. (1.1) with the pe-
riodic boundary condition u(x+L,t)=u(x,t) and recall Fourier pseudospectral method.
Special attention is paid to the relationship between the SDM and DFT, which plays a
crucial role in numerical computation.

The Fourier pseudospectral method involves two basic steps. First, we should con-
struct the discrete representation of the solution through interpolate trigonometric poly-
nomial of the solution at collocation points. Second, equations for the discrete values of
the solution are obtained from the original equation. This second step involves finding an
approximation for the differential operator in terms of the discrete values of the solution
at collocation points.

We approximate u(x,t) by INu(x,t) which interpolate u(x,t) at the following set of
collocation points:

xj = a+
L

N
j, j=0,1,··· ,N−1,

where N is an even number. The approximation INu(x,t) has the form

INu(x,t)=
N−1

∑
n=0

ungn(x), (3.1)

where un=u(xn,t), gn(xk)=δk
n. Therefore, we have

INu(xj,t)=uj, j=0,1,··· ,N−1.

In fact, gn(x) can be given explicitly by

gn(x)=
1

N

N/2

∑
l=−N/2

1

cl
eilµ(x−xn), (3.2)

where cl = 1(|l| 6= N/2), c−N/2 = cN/2 = 2, µ= 2π
L . By directly computing, we can easily

verify that gn(xk)=δk
n.

The crucial step here is to obtain values for the derivative ∂k INu(x,t)/∂xk at the col-
location points xj in terms of the values uj. We can do this by differentiating (3.1) and
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evaluating the resulting expressions at the points xj:

∂k INu(xj,t)

∂xk
=

N−1

∑
n=0

un

dkgn(xj)

dxk
=(Dku)j, (3.3)

where Dk is an N×N matrix with elements

(Dk)j,n=
dkgn(xj)

dxk
, (3.4)

and u=[u0,u1,··· ,uN−1]
T. We call Dk SDM. According to [13], we can obtain the following

results explicitly

(D1)j,n =





1

2
µ(−1)j+n cot

(
µ

xj−xn

2

)
, j 6=n,

0, j=n,

(3.5)

(D2)j,n =





1

2
µ2(−1)j+n+1 1

sin2(µ(xj−xn)/2)
, j 6=n,

−µ2 2(N/2)2+1

6
, j=n.

(3.6)

Remark 3.1. If k is odd, Dk and Dk
1 are real antisymmetric matrices; if k is even, Dk and

Dk
1 are real symmetric matrices. Moreover, if k is odd, Dk =Dk

1; if k is even, Dk 6=Dk
1 and

Dk=D
k
2
2 .

In order to study the property of the SDM, we reform (3.4) as follows

(Dk)j,n =
1

N

N/2

∑
l=−N/2

(ilµ)k

cl
eilµ(xj−xn)=

1

N

N/2

∑
l=−N/2

(ilµ)k

cl
ei 2π

N l(j−n)=
1

N

N/2

∑
l=−N/2

(ilµ)k

cl
W

l(j−n)
N

=
1

N

N/2−1

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N +(−1)j+n µk

2N

[(
i
N

2

)k
+
(
−i

N

2

)k]

=





1

N

N/2−1

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N , k odd,

1

N

N/2

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N , k even,

=





1

N

N/2

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N −(−1)j+n 1

N

(
i
N

2
µ
)k

, k odd,

1

N

N/2

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N , k even,

(3.7)
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where WN = ei 2π
N . Let

(Ak)j,n =
1

N

N/2

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N , (Bk)j,n =−(−1)j+n 1

N

(
i
N

2
µ
)k

, (3.8)

we have

Dk=

{
Ak+Bk, k odd,

Ak, k even.
(3.9)

According to (3.8), we have followings very important conclusions.

Theorem 3.1. Let

ml =





ilµ, l=0,1,··· , N

2
,

i(l−N)µ, l=
N

2
+1,··· ,N−1,

(3.10)

and M=diag(m0,m1,··· ,mN−1). Then we have

Ak =F−1MkF, (3.11)

where F is discrete Fourier transform, and F−1 is discrete inverse Fourier transform.

Proof. First, we have from (3.8) and WkN
N =1(k∈Z)

(Ak)j,n =
1

N

[N/2

∑
l=0

(ilµ)kW
l(j−n)
N +

−1

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N

]

=
1

N

{N/2

∑
l=0

(ilµ)kW
l(j−n)
N +

N−1

∑
l=N/2+1

[i(l−N)µ]kW
(l−N)(j−n)
N

}

=
1

N

[N/2

∑
l=0

mk
l W

l(j−n)
N +

N−1

∑
l=N/2+1

mk
l W

l(j−n)
N

]

=
1

N

N−1

∑
l=0

mk
l W

l(j−n)
N .

Now we compute F−1MkF directly. First,

Fj,n =W
−jn
N , (F−1)j,n =

1

N
W

jn
N , Mk =diag(mk

0,mk
1,··· ,mk

N−1),

we have

(MkF)j,n =
N−1

∑
l=0

(Mk)j,lFl,n =(Mk)j,jFj,n =mk
j W

−jn
N ,

(F−1MkF)j,n =
N−1

∑
l=0

(F−1)j,l(MkF)l,n=
N−1

∑
l=0

1

N
W

jl
Nmk

l W−ln
N =

1

N

N−1

∑
l=0

mk
l W

l(j−n)
N .

Hence, we obtain (3.11).
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Theorem 3.2. Let D1 be defined by (3.5), Ak and Bk be defined by (3.8). Then we have

Dk
1=Ak+Bk. (3.12)

Proof. First, it follows from (3.7) that

(D1)j,n =
1

N

N/2−1

∑
l=−N/2+1

ilµW
l(j−n)
N .

Now we compute (D1)
k directly. Note that

1

N

N−1

∑
m=0

W lm
N =

{
0, l 6=nN, n is an integer,

1, l=nN,

we have

(D2
1)j,n =

N−1

∑
m=0

(D1)j,m(D1)m,n

=
N−1

∑
m=0

(
1

N

N/2−1

∑
l=−N/2+1

ilµW
l(j−m)
N

)(
1

N

N/2−1

∑
p=−N/2+1

ipµW
p(m−n)
N

)

=
1

N

N/2−1

∑
l=−N/2+1

N/2−1

∑
p=−N/2+1

(ilµ)(ipµ)W
lj−pn
N

(
1

N

N−1

∑
m=0

W
m(p−l)
N

)

=
1

N

N/2−1

∑
l=−N/2+1

(ilµ)2W
l(j−n)
N .

Similarly, we have

(D3
1)j,n =

N−1

∑
m=0

(D2
1)j,m(D1)m,n

=
N−1

∑
m=0

(
1

N

N/2−1

∑
l=−N/2+1

(ilµ)2W
l(j−m)
N

)(
1

N

N/2−1

∑
p=−N/2+1

ipµW
p(m−n)
N

)

=
1

N

N/2−1

∑
l=−N/2+1

N/2−1

∑
p=−N/2+1

(ilµ)2(ipµ)W
lj−pn
N

(
1

N

N−1

∑
m=0

W
m(p−l)
N

)

=
1

N

N/2−1

∑
l=−N/2+1

(ilµ)3W
l(j−n)
N .

Applying induction on k leads to

(Dk
1)j,n =

1

N

N/2−1

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N .
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Hence, we obtain

(Dk
1)j,n =

1

N

N/2

∑
l=−N/2+1

(ilµ)kW
l(j−n)
N −(−1)j+n 1

N

(
i
N

2
µ
)k

=(Ak)j,n+(Bk)j,n.

This verifies (3.12).

Remark 3.2. 1. We note that

Bk=− 1

N

(
i
N

2
µ
)k

bbT , (3.13)

where b=[1,−1,··· ,1,−1]T ∈R
N .

2. By the relation (3.11) and (3.12), we can evaluate the derivatives by using the FFT
algorithm instead of spectral differentiation matrix in O(N logN) operations rather than
O(N2) operations.

4 The MSFP method for the Kawahara equation

In this section, we derive the multi-symplectic structure of the Fourier pseudospectral
method for the Kawahara equation. We can rewrite the multi-symplectic formulation of
Eq. (1.1) as





−ut−wx=0,

ϕt−px =w+Fu+
1

β
(q+E)Eu,

−qx =αv+p+Fv+
1

β
(q+E)Ev,

ϕx=u, ux =v,

vx =
1

β
(q+E).

(4.1)

Applying the Fourier pseudospectral method in space to the multi-symplectic system
(4.1) and using the notations

U=[u0,u1,··· ,uN−1]
T, V=[v0,v1,··· ,vN−1]

T, W=[w0,w1,··· ,wN−1]
T,

P=[p0,p1,··· ,pN−1]
T, Q=[q0,q1,··· ,qN−1]

T, Φ=[ϕ0,ϕ1,··· ,ϕN−1]
T,

E(U,V)= [E(u0,v0), E(u1,v1),··· ,E(uN−1,vN−1)]
T ,

UV=[u0v0, u1v1,··· ,uN−1vN−1]
T,
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we can get a semi-discrete system of (4.1)





− duj

dt
−(D1W)j =0,

dϕj

dt
−(D1P)j =wj+Fu(uj,vj)+

1

β
(qj+E(uj,vj))Eu(uj,vj),

−(D1Q)j=αvj+pj+Fv(uj,vj)+
1

β
(qj+E(uj,vj))Ev(uj,vj),

(D1Φ)j =uj, (D1U)j=vj,

(D1V)j=
1

β
(qj+E(uj,vj)).

(4.2)

Theorem 4.1. The Fourier pseudospectral semi-discretization (4.2) has N semi-discrete multi-
symplectic conservation laws

d

dt
ωj+

N−1

∑
k=0

(D1)j,kκj,k =0, j=0,1,··· ,N−1, (4.3)

where ωj=
1
2 dzj∧Mdzj, κj,k =dzj∧Kdzk.

Proof. We rewrite (4.2) in the compact form

M
d

dt
zj+K

N−1

∑
k=0

(D1)j,kzk =∇zS(zj). (4.4)

The variational equation associated with (4.4) is

M
d

dt
dzj+K

N−1

∑
k=0

(D1)j,kdzk =Szz(zj)dzj. (4.5)

Taking the wedge product with dzj and noting the fact

dzj∧Szz(zj)dzj =0, dzj∧Mdzk =dzk∧Mdzj ,

we obtain the N multi-symplectic conservation laws (4.3).

Since D1 is antisymmetric and κjk = κkj, we can sum (4.3) over the spatial index, and
then obtain

d

dt

N−1

∑
j=0

ωj=0, (4.6)

which implies conservation of the total symplecticity over time [12]. Thus it is natural
to integrate with respect to time using a symplectic integrator. Applying the midpoint
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symplectic integration in time, we obtain the MSFP method for Eq. (1.1)





−Dtu
n
j −(AtD1Wn)j =0,

Dt ϕ
n
j −(AtD1Pn)j =Atw

n
j +Fu(Atu

n
j ,Atv

n
j )

+
1

β
(Atq

n
j +E(Atu

n
j ,Atv

n
j ))Eu(Atu

n
j ,Atv

n
j ),

−(AtD1Qn)j=αAtv
n
j +At p

n
j +Fv(Atu

n
j ,Atv

n
j )

+
1

β
(Atq

n
j +E(Atu

n
j ,Atv

n
j ))Ev(Atu

n
j ,Atv

n
j ),

(AtD1Φn)j=Atu
n
j , (AtD1Un)j=Atv

n
j ,

(AtD1Vn)j=
1

β
(Atq

n
j +E(Atu

n
j ,Atv

n
j )),

(4.7)

where Dtu
n
j =(un+1

j −un
j )/∆t and Atu

n
j =(un+1

j +un
j )/2.

Theorem 4.2. The scheme (4.7) has N full-discrete multi-symplectic conservation laws

ωn+1
j −ωn

j

∆t
+

N−1

∑
k=0

(D1)j,kκn+1/2
j,k =0, j=0,1,··· ,N−1, (4.8)

where ωn
j =

1
2 dzn

j ∧Mdzn
j , κn+1/2

j,k =dzn+1/2
j ∧Kdzn+1/2

k , zn+1/2
k =(zn+1

k +zn
k )/2.

Proof. From Theorem 4.1, we know that (4.7) can be rewritten in the compact form

M
zn+1

j −zn
j

∆t
+K

N−1

∑
k=0

(D1)j,kzn+1/2
k =∇zS(zn+1/2

j ). (4.9)

The variational equation associated with (4.9) is

M
dzn+1

j −dzn
j

∆t
+K

N−1

∑
k=0

(D1)j,kdzn+1/2
k =Szz(z

n+1/2
j )dzn+1/2

j . (4.10)

Taking the wedge product with dzn+1/2
j and noting the fact

dzn+1/2
j ∧Szz(z

n+1/2
j )dzn+1/2

j =0, dzn+1/2
j ∧Mdzn+1/2

k =dzn+1/2
k ∧Mdzn+1/2

j ,

we obtain the full-discrete multi-symplectic conservation laws (4.8).

Since D1 is antisymmetric and κn+1/2
jk = κn+1/2

kj , summing (4.8) over the spatial index
gives

N−1

∑
j=0

ωn+1
j =

N−1

∑
j=0

ωn
j . (4.11)
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The system (4.7) can be written into a vector form





DtU
n+AtD1Wn =0,

DtΦ
n−AtD1Pn =AtW

n+Fu(AtU
n,AtV

n)

+
1

β
(AtQ

n+E(AtU
n,AtV

n))Eu(AtU
n,AtV

n),

−D1AtQ
n =αAtV

n+AtP
n+Fv(AtU

n,AtV
n)

+
1

β
(AtQ

n+E(AtU
n,AtV

n))Ev(AtU
n,AtV

n),

AtD1Φn =AtU
n, AtD1Un=AtV

n,

AtD1Vn =
1

β
(AtQ

n+E(AtU
n,AtV

n)).

(4.12)

Further, eliminating the auxiliary variables ϕ,v,w,p,q in Eq. (4.12), we obtain an equiva-
lent scheme

2AtDtU
n+αA2

t D3
1Un+βA2

t D5
1Un

=AtD1(Fu(AtU
n,AtV

n)+(AtD
2
1Un)Eu(AtU

n,AtV
n))+AtD

3
1E(AtU

n,AtV
n)

−AtD
2
1Fv(AtU

n,AtV
n)−AtD

2
1((AtD

2
1Un)Ev(AtU

n,AtV
n)). (4.13)

Then we give a two time levels scheme for (1.1)

2DtU
n+αAtD

3
1Un+βAtD

5
1Un

=D1(Fu(AtU
n,AtV

n)+(AtD
2
1Un)Eu(AtU

n,AtV
n))+D3

1E(AtU
n,AtV

n)

−D2
1Fv(AtU

n,AtV
n)−D2

1((AtD
2
1Un)Ev(AtU

n,AtV
n)). (4.14)

In the numerical experiments, we can use the two time levels scheme (4.14) to give
the initial datum for the second level values of the three time levels scheme (4.13). In
order to apply FFT to solve scheme (4.13), we would use the relationship Dk

1 = Ak+Bk

(see Section 3).

5 Numerical results

In this section, we present some numerical results for the Kawahara and modified Kawa-
hara equations.

5.1 Solitary waves

We consider first the Kawahara equation [6]

ut+uux+uxxx−uxxxxx=0, u(x,0)=uex(x,0), (5.1)
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where

uex(x,t)=
105

169
sech 4

(
1

2
√

13

(
x− 36t

169
−x0

))
(5.2)

is an exact soliton solution of (5.1); and the modified Kawahara equation

ut+ux+u2ux+puxxx+quxxxxx=0, u(x,0)=uex(x,0), (5.3)

where

uex(x,t)=± 3p√
−10q

sech 2

(
1

2

√
−p

5q

(
x− 25q−4p2

25q
t−x0

))
(5.4)

is an exact soliton solution of (5.3) and p, q are two parameters.
We fix x0 =0 and restrict the problem to the finite interval [−L,L] with L sufficiently

large such that the solution uex(±L,t), ∂xuex(±L,t), ∂2
xuex(L,t) are essentially zero for

t∈ [0,T] (where T is given). We apply the scaling x̃= L−1x, t̃= L−1t, and for the sake of
simplicity, still use (x,t) to denote (x̃, t̃). Then we are led to consider the following scaled
Kawahara equation

ut+uux+
1

L2
uxxx−

1

L4
uxxxxx=0, x∈ (−1,1), (5.5a)

u(±1)=ux(±1)=uxx(1)=0, (5.5b)

u(x,0)=
105

169
sech 4

( L

2
√

13
x
)

, (5.5c)

and the modified Kawahara equation

ut+ux+u2ux+
1

L2
uxxx−

1

L4
uxxxxx=0, x∈ (−1,1), (5.6a)

u(±1)=ux(±1)=uxx(1)=0, (5.6b)

u(x,0)=
3√
10

sech 2
( L

2
√

5
x
)

. (5.6c)

5.1.1 The Kawahara equation

For Eq. (5.5), we fix the parameters L=200, α= 2
L2 , β=− 2

L4 , and the function E=0, F=

−u3/3.
We choose T= 1 and △t= 1.0E−4. The error due to spatial discretization decreases

quickly as the number of grid points N is increased, but the error will not decrease after
a critical value of N (see Table 1). If we instead keep N = 256 and N = 1024 fixed, re-
spectively, and decrease the time step, we get the result shown in Tables 2 and 3. Table 2
(N=256) shows that the convergence rate declines with the decrease of time step. Note
that in Table 3, the spatial error (N=1024) is negligible and the error is dominated by the
time discretization error. Table 3 clearly indicates that the midpoint implicit symplectic
scheme is of second-order in time. Next, we make some comparison with the method
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Table 1: The error due to spatial discretization decreases quickly as the number of grid points N is increased
(T=1, △t=1.0E−4).

N L∞-error Ratio

128 7.5877e-003

256 7.3931e-007 10263

512 7.7065e-007 0.9593

1024 7.7065e-007 1.0000

2048 7.7067e-007 1.0000

Table 2: The error due to temporal discretization decreases as time step △t is decreased (T=1, N=256).

△t L2-error Ratio

0.001 1.6189e-005

2−1 ·0.001 4.0474e-006 3.9999

2−2 ·0.001 1.0121e-006 3.9990

2−3 ·0.001 2.5402e-007 3.9843

2−4 ·0.001 6.7677e-008 3.7534

2−5 ·0.001 2.9005e-008 2.3333

Table 3: The error due to temporal discretization decreases as time step △t is decreased (T=1, N=1024).

△t L2-error Ratio

0.001 1.6189e-005

2−1 ·0.001 4.0474e-006 3.9999

2−2 ·0.001 1.0119e-006 3.9998

2−3 ·0.001 2.5296e-007 4.0002

2−4 ·0.001 6.3241e-008 3.9999

2−5 ·0.001 1.5810e-008 4.0001

Table 4: L2-error for solitary wave solutions in the Kawahara equation (Ref. [6]).

Time △t=1.0E−4 △t=2.0E−4 Ratio

0.5 3.44E-7 1.374E-6 3.99

1.0 5.926E-7 2.358E-6 3.98

2.0 1.104E-6 4.389E-6 3.98

4.0 2.147E-6 8.494E-6 3.96

in [6]. The results are displayed in Tables 4 and 5. One can see that the results obtained
by our method are better than those of method in Ref. [6].

In order to further testing the proposed method, we solve Eq. (5.5) for t∈(0,10) (which
corresponds to the real time t∈(0,2000)). Fig. 1 shows the variation of the solution errors
obtained with N = 256 (N = 1024) and △t= 1.0E−4. We note that solitary waves of the
Kawahara equation have shape stability but not phase stability [26]. Because a phase
drift is linear in t, the numerical errors look like to show linear growth.



48 Y. Gong, J. Cai and Y. Wang / Commun. Comput. Phys., 16 (2014), pp. 35-55

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−6

t

S
ol

ut
io

ns
 e

rr
or

 (
L∞

)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−6

t

S
ol

ut
io

ns
 e

rr
or

 (
L∞

)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−6

t

S
ol

ut
io

ns
 e

rr
or

 (
L2 )

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−6

t

S
ol

ut
io

ns
 e

rr
or

 (
L2 )

Figure 1: For the Kawahara equation, maximum solution errors L∞ (upper) and average solution errors L2

(lower) with N=256 (left) and N=1024 (right) (△t=1.0E−4).
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Figure 2: For the Kawahara equation, global energy errors (upper) and global momentum errors (lower) with
N=256 (left) and N=1024 (right) (△t=1.0E−4).
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Table 5: L2-error for solitary wave solutions in the Kawahara equation (N=1000).

Time △t=1.0E−4 △t=2.0E−4 Ratio

0.5 8.2236e-008 3.2894e-007 4.0000

1.0 1.6190e-007 6.4759e-007 3.9999

2.0 3.2117e-007 1.2847e-006 4.0001

4.0 6.3981e-007 2.5592e-006 3.9999

Now, we display the energy and momentum preservation of the proposed scheme.
Eqs. (5.5) and (5.6) with periodic boundary condition have global energy and momentum
conservation law ∫

E(x,t)dx=C2, E= α

2
u2

x−
β

2
u2

xx+F

and global momentum conservation law

∫
I(x,t)dx=C3, I=u2.

Define the errors in discrete global energy and momentum as

GE=
N−1

∑
j=0

(En
j −E0

j )∆x and GI=
N−1

∑
j=0

(In
j − I0

j )∆x,

where

En
j =

α

2
(D1Un)2

j −
β

2
(D2

1Un)2
j +Fn

j and In
j =(un

j )
2.

In Fig. 2, we present the errors in discrete global energy and momentum. From these
graphs, we also see that the numerical errors look like to show linear growth. Neverthe-
less, global energy and momentum are preserved well.

5.1.2 The modified Kawahara equation

For Eq. (5.6), we fix the parameters L=200, α= 2
L2 , β=− 2

L4 , and the function E=0, F=

−u2− 1
6 u4. Similarly, we make comparison with the method in [6]. We can get the same

conclusions as Subsection 5.1.1 (see Tables 6,7 and Figs. 3,4).

5.2 Oscillatory solitary waves

We now consider the following Kawahara equation [6]

ut−6uux−uxxx−uxxxxx=0, (5.7)
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Figure 3: For the modified Kawahara equation, maximum solution errors L∞ (upper) and average solution errors

L2 (lower) with N=256 (left) and N=1024 (right) (△t=1.0E−4).
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Figure 4: For the modified Kawahara equation, global energy errors (upper) and global momentum errors (lower)
with N=256 (left) and N=1024 (right) (△t=1.0E−4).
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Table 6: L2-error for solitary wave solutions in the modified Kawahara equation (Ref. [6]).

Time △t=1.0E−4 △t=2.0E−4 Ratio

0.1 1.77E-5 7.071E-5 4

0.2 2.93E-5 1.173E-4 4

0.4 5.19E-5 2.076E-4 4

0.5 6.33E-5 2.531E-4 4

Table 7: L2-error for solitary wave solutions in the modified Kawahara equation (N=1000).

Time △t=1.0E−4 △t=2.0E−4 Ratio

0.1 5.3255e-006 2.1300e-005 3.9996

0.2 9.7775e-006 3.9106e-005 3.9996

0.4 1.8279e-005 7.3106e-005 3.9995

0.5 2.2506e-005 9.0011e-005 3.9994

which has the following asymptotic solution

uex(x,t)=

√
2

19
ǫcosθsech X+ǫ2

{
187

57
√

19
sinθsech XtanhX

− 4

19

(
3+

1

3
cos2θ

)
sech 2X

}
+O(ǫ3) := ū(x,t)+O(ǫ3), (5.8)

where θ=
√

0.5(x−0.25t), X=ǫ(x−0.25t), 0<ǫ≪1.
We rescale (5.7) with (x̃, t̃)= (L−1x,L−1t), still use (x,t) to denote (x̃, t̃), we are led to

consider the following initial- and boundary-value problem:

ut−6uux−
1

L2
uxxx−

1

L4
uxxxxx=0, (5.9a)

u(±1,t)=ux(±1,t)=uxx(1,t)=0, (5.9b)

u(x,0)= ū(Lx,0). (5.9c)

In our numerical experiments, we take ǫ= 0.01, L= 2000, α=− 2
L2 , β=− 2

L4 , and the

function E = 0, F = 2u3. Note that for smaller ǫ, larger L is needed to ensure that the
boundary conditions in (5.9) are sufficiently accurate. In all the computations presented
below, we use ∆t=1.0E−5 and N=2000. In Table 8, we list the L2 and L∞ errors between
the computed solutions of (5.9) and the asymptotic solution at three different (scaled)
times t=0.05, 0.1, 0.2 which correspond to original times t=100, 200, 400. Note that the
accuracy is limited by the accuracy of the asymptotic solution which is accurate to the
order of ǫ3.

In Figs. 5-10, we plot the computed solutions and the asymptotic solutions at three
different times on the whole interval (Figs. 5, 7 and 9) and on a shorter interval (Figs. 6,
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Table 8: Differences between the computed solutions of (5.9) and the asymptotic solution with ǫ= 0.01 and
∆t=1.0E−5.

t L2 L∞

0.05 1.0249e-005 4.5470e-005

0.1 2.0497e-005 9.0700e-005

0.2 4.0991e-005 1.8187e-004
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Figure 5: ǫ=0.01 and t=0.05, asymptotic solution (left) and numerical solution (right).
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Figure 6: Continued. ǫ=0.01 and t=0.05, asymptotic solution (left) and numerical solution (right).
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Figure 7: ǫ=0.01 and t=0.1, asymptotic solution (left) and numerical solution (right).
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Figure 8: Continued. ǫ=0.01 and t=0.1, asymptotic solution (left) and numerical solution (right).
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Figure 9: ǫ=0.01 and t=0.2, asymptotic solution (left) and numerical solution (right).
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Figure 10: Continued. ǫ=0.01 and t=0.2, asymptotic solution (left) and numerical solution (right).

8 and 10). We notice that the solutions to (5.9) exhibit highly oscillatory behaviors which
are extremely difficult to compute but are well captured by the MSFP method. Fig. 11
shows the errors in discrete global energy and momentum.
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Figure 11: Global energy errors (left) and global momentum errors (right).

6 Conclusions

We propose a MSFP method for the Kawahara equation with periodic boundary condi-
tion and derive the relationship between the SDM and DFT. By using the FFT algorithm
in numerical experiments, we save a lot of storage space and a large amount of calcula-
tions. Numerical experiments show that the MSFP method for the Kawahara equation is
very effective. We also note that highly oscillatory behaviors can be captured well.
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