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Abstract. In this article we detail the methodology developed to construct an effi-
cient interface description technique — the robust conservative level set (RCLS) —
to simulate multiphase flows on mixed-element unstructured meshes while conserv-
ing mass to machine accuracy. The approach is tailored specifically for industry as the
three-dimensional unstructured approach allows for the treatment of very complex
geometries. In addition, special care has been taken to optimise the trade-off between
accuracy and computational cost while maintaining the robustness of the numerical
method. This was achieved by solving the transport equations for the liquid volume
fraction using a WENO scheme for polyhedral meshes and by adding a flux-limiter
algorithm. The performance of the resulting method has been compared against es-
tablished multiphase numerical methods and its ability to capture the physics of mul-
tiphase flows is demonstrated on a range of relevant test cases. Finally, the RCLS
method has been applied to the simulation of the primary breakup of a flat liquid sheet
of kerosene in co-flowing high-pressure gas. This quasi-DNS/LES computation was
performed at relevant aero-engine conditions on a three-dimensional mixed-element
unstructured mesh. The numerical results have been validated qualitatively against
theoretical predictions and experimental data. In particular, the expected breakup
regime was observed in the simulation results. Finally, the computation reproduced
faithfully the breakup length predicted by a correlation based on experimental data.
This constitutes a first step towards a quantitative validation.

AMS subject classifications: 65M08, 76-04, 76N99

Key words: Multiphase flow, level set method, flux limiter, MULES, WENO scheme, three-
dimensional, unstructured mesh, mixed element, conservative method, atomisation, primary
breakup, flat sheet breakup.

∗Corresponding author. Email address: tp299@cam.ac.uk (T. Pringuey)

http://www.global-sci.com/ 403 c©2014 Global-Science Press



404 T. Pringuey and R. S. Cant / Commun. Comput. Phys., 16 (2014), pp. 403-439

1 Introduction

Multiphase flows are encountered in a very broad variety of fields ranging from fun-
damental physics to geophysics and engineering. As a result, the numerical simulation
of multiphase flows and in particular, the modelling of atomisation, has applications in
many industries such as: aeronautics, automotive engineering, pharmaceutical, power
generation, petro-chemical, manufacturing and agriculture.

In particular, aero-engines rely on air-blast atomisers to inject the kerosene in com-
bustion chambers. The kerosene is generally injected as an annular liquid sheet sheared
on either side by a faster co-flowing gas stream. This sheet undergoes a series of instabil-
ities (longitudinal and transverse) which lead to the fragmentation of the liquid bulk into
liquid structures that further disintegrate into droplets. This initial process of the atomi-
sation is called the primary breakup and occurs in the vicinity of the injection point. As
the prediction of fuel sprays in gas turbines is of critical importance to maximise the com-
bustion efficiency and reduce the pollutant emissions from aviation, aero-engine manu-
facturers are investing in the development of numerical methods to model the injection
process.

Various numerical methods have been developed for the simulation of multiphase
flows and the most popular ones can be categorised into two groups known as moving-
grid methods and fixed-grid methods. The moving-grid methods [22, 34, 49] treat the
interface between the two phases as a boundary between two sub-domains of the mesh.
In the case of large deformations of the interface this approach generally requires re-
meshing and becomes quite cumbersome when topological changes occur. The fixed-
grid methods can either describe the interface explicitly or implicitly. The explicit de-
scription of the interface typically involves the solution of the flow properties on a fixed
grid, together with the Lagrangian transport of a web of massless particles represent-
ing the interface. This approach using marker particles — also called the front tracking
method [20, 43, 59, 61] — generally provides a precise location for the interface and also
offers better control of the interfacial topology changes. However, its extension to 3D is
notoriously difficult.

As implicit interface description methods are able to handle changes of interface
topology automatically, they offer great potential for the simulation of atomisation. One
of the most popular approaches in this category is the Volume Of Fluid (VOF) method
[11,23,36] which captures the interface through the transport of the volume fraction. The
volume fraction represents the volume occupied by the liquid within a computational
cell. Another widely used approach is the Level Set (LS) method [40, 41, 51] which is
based on the transport of a continuous function φ(x,t) by the underlying velocity field.
In this framework, the level set (usually φΓ=0) of the function φ is taken to represent the
interface and φ takes values below φΓ in one fluid and above φΓ in the other. From a nu-
merical point of view, a smooth function is desirable and φ is generally taken to be equal
to the signed distance from the interface. The main challenge in developing an interface
description method is to produce an implicit technique that conserves mass (like Volume
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of Fluid) while providing an accurate prediction of the interface location (like Level Set)
and remaining robust.

More recently, hybrid methods have been produced which combine the advantages of
several different approaches. In particular, these include: Marker-LS (see [16]), Marker-
VOF (see [33]) and LS-VOF (see [6, 35, 56, 62]). However, these hybrid approaches can be
unwieldy, expensive and limited to the resolution of simple geometries.

Building upon recent progress in the modelling of multiphase flows, it has proved to
be possible to simulate the process of atomisation in basic geometrical configurations (see
[2,10,13,19,28,35]). However, the geometries modelled are still far from the complexity of
the injection devices typically encountered in actual gas turbines. In order to bridge this
gap, the present work has focussed on the generation of an efficient interface description
technique designed to simulate the fuel injection process in real industrial systems.

Real engineering problems are characterised by the complexity of the geometry and
the limited amount of human and computing resource available for the whole numerical
study. As a result, an industrially-relevant modelling capability must be compatible with
the use of unstructured computational grids. In addition, due to the limited amount of
resource available, it is essential to base the modelling tool on numerical methods that
provide the best trade-off in terms of accuracy (mass conservation and interface location)
against computational cost.

In order to satisfy these requirements, the work presented in this article has focussed
on the development of a novel numerical method — the Robust Conservative Level Set
(RCLS) method — to transport the interface efficiently on unstructured grids, while also
conserving mass. This approach is based on the Conservative Level Set (CLS) method of
Olsson et al. [37, 38] which generally offers a better trade-off between mass-conservation
and computational cost than other interface-description methods — including state-of-
the-art Coupled Level Set-VoF (see for example [35]). Our novel interface capturing tech-
nique has been implemented in parallel and in C++ using the framework provided by
the open source CFD tool kit OpenFOAM [64].

This article first provides a brief overview of the RCLS method and then describes the
main building blocks of the interface description technique. In particular, the transport
of the level set scalar is detailed in Section 2.1, the calculation of the interface normal is
presented in Section 2.3, while details of the flux limiter algorithm are given in Appendix
A. Then, the performance of the RCLS method is compared with established multiphase
numerical methods in Section 3.1 and the modelling capability is demonstrated on typ-
ical two-phase flow problems in Section 3.2. Finally, the RCLS method is demonstrated
on the primary breakup of a flat liquid sheet of kerosene in co-flowing high-pressure
gas (see Section 4). This test case is performed at relevant aero-engine conditions on
a three-dimensional mixed-element unstructured mesh, following a “quasi-DNS/LES”
approach [21]. The results obtained with the modelling capability are compared against
experimental data [17] in Section 4.2.
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2 Numerical formulation

The level set field transported, ϕ, can be initialised as a hyperbolic tangent profile of the
signed distance function from the interface (φ). Introducing ǫ, a coefficient controlling
the thickness of the interface, the field ϕ is given by:

ϕ=
1

2

(
1+tanh

(
φ

2ǫ

))
. (2.1)

With such a definition for the level set field ϕ, the phase boundary is located at ϕ= 1
2 .

Although the hyperbolic tangent profile localises the phase transition in the close vicinity
of the interface, ϕ only tends to zero or unity at an infinite distance in, respectively, the
gas phase or the liquid phase.

The level set field ϕ is identified with a smeared out liquid volume fraction and we are
taking advantage of the constant thickness of the interface to apply the surface tension
via the Continuum Surface Force method. As a result the material properties are given
by: {

ρ=ρgas+
(
ρliq−ρgas

)
ϕ,

µ=µgas+
(
µliq−µgas

)
ϕ.

(2.2)

As the interface is of constant thickness, this method is analogous to a Phase Field
Method (see for example [27]). Therefore, it offers the possibility to implement additional
equations to describe the interface behaviour on a mesoscopic scale.

2.1 Transport of the level set

2.1.1 Mathematical formulation

In the general case, the transport of the liquid volume fraction ϕ can be expressed by
introducing the velocity vector u=(u,v,w):

∂ϕ

∂t
+u·∇ϕ=0. (2.3)

As we are assuming an incompressible framework, (2.3) can be re-written as the follow-
ing hyperbolic conservation law:

∂ϕ

∂t
+∇·(ϕu)=0. (2.4)

Even high-order numerics such as the WENO scheme† described in [45,46] will even-
tually diffuse the interface. As a result, there is a need to re-initialise the level set profile
ϕ to maintain the interface thickness constant. To achieve that, a compressive flux is
applied normally to the interface in the transition region. Because the compressive flux

†We refer the interested reader to [15, 24, 58, 60, 70] and references therein.
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alone would reduce the interface thickness to nearly zero, leading to a less robust method,
a diffusion term is added in the re-initialisation equation. This diffusion term is also ap-
plied in the direction normal to the interface, to prevent any tangential diffusion from
moving the phase boundary. Introducing the interface normal, n̂, and the artificial time,
τ, along which the equation is solved, the re-initialisation equation reads:

∂ϕ

∂τ
+∇·(ϕ(1−ϕ)n̂)=ǫ∇·((∇ϕ·n̂)n̂), (2.5)

which can be re-written as the following conservation law:

∂ϕ

∂τ
+∇·

((
ϕ(1−ϕ)−ǫ(∇ϕ·n̂)

)
n̂
)
=0. (2.6)

The above equation is solved to steady state, i.e. until the initial level set profile is recov-
ered. All the way through this iterative process, the interface normal, n̂, is kept constant.

2.1.2 Finite volume discretisation

We choose to calculate the numerical fluxes using the exact Riemann solver for both (2.4)
and (2.6). As the numerical formulation of the advection equation has already been given
in [46], we will focus on the re-initialisation equation in this sub-section.

Outline of the numerical formulation In order to solve Eq. (2.6), we choose to view
it as a hyperbolic conservation law in which the gradient ∇ϕ, in the diffusion term, is
considered as a constant vector field during each artificial time step m. This gradient
is then updated after each iteration of the re-initialisation step. As the normal to the
interface is kept constant all the way through the re-initialisation step, the dot product in
the diffusion term is constant for each ∆τ. In the rest of this section, we note this constant

scalar field ϕ
(m)
n̂ for the mth artificial time step, so that we have:

(∇ϕ·n̂)(m)= ϕ
(m)
n̂ . (2.7)

This approach incurs a “splitting error” in artificial time. However, as we are solving
the re-initialisation problem to steady state, the accuracy of the artificial time evolution
is not important. Also, since we use a Runge-Kutta (RK) scheme for the temporal dis-
cretisation, we introduce a stronger coupling with the diffusion term as we update the
gradient field after each RK sub-step.

In [37], Olsson and Kreiss solve the above equations on Cartesian grids using a TVD
scheme with a Superbee limiter. They introduce the diffusion term in the re-initialisation
equation to stabilise their CLS method. With our numerical formulation — conservative
finite volume WENO scheme and exact Riemann solver — only simulations involving
very large density ratios (ρliq/ρgas ≈1000) require the diffusion term to be stabilised.
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Derivation of the numerical flux Let us consider a discretisation of the computational
domain involving conforming elements Ei of volume |Ei| and boundary ∂Ei. Integrating
(2.6) over the element Ei leads to:

∫∫∫

Ei

∂ϕ

∂τ
dEi+

∫∫∫

Ei

∇·
((

ϕ(1−ϕ)−ǫϕ
(m)
n̂

)
n̂
)

dEi=0. (2.8)

Applying the divergence theorem to (2.8) and simplifying leads to:

d

dτ
ϕi+

1

|Ei|

∫∫

∂Ei

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
n̂·n d(∂Ei)=0, (2.9)

where n is the outward unit vector normal to the surface ∂Ei.
Splitting the integral over the contour of the element ∂Ei into Li integrals over the

faces Fl of Ei, and introducing the outward unit vector normal to Fl: nl, we re-write (2.9)
as:

d

dτ
ϕi+

1

|Ei|

Li

∑
l=1

∫∫

Fl

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
n̂·nl d(Fl)=0. (2.10)

Introducing the coordinates of the normal to the interface n̂=
(
n̂x,n̂y,n̂z

)
, (2.6) can be

re-written in terms of the coordinates (x,y,z):

0=
∂ϕ

∂τ
+

∂

∂x

(
n̂x

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

))
+

∂

∂y

(
n̂y

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

))

+
∂

∂z

(
n̂z

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

))
(2.11)

such that the fluxes F(ϕ), G(ϕ) and H(ϕ) in respectively the x, y and z directions read:





F(ϕ)= n̂x

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
,

G(ϕ)= n̂y

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
,

H(ϕ)= n̂z

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
,

(2.12)

so that we have:




A=(F,G,H)

=
(

n̂x

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
,n̂y

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
,n̂z

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

))
,

Anl
(ϕ−,ϕ+)=A·nl .

(2.13)

The re-initialisation equation can then be expressed in the following finite volume
form:

d

dτ
ϕi+

1

|Ei|

Li

∑
l=1

∫∫

Fl

Anl

(
ϕ−,ϕ+

)
d(Fl)=0. (2.14)
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As for the linear equation and the Burgers equation (see [46]), simple manipulations
of (2.11) demonstrate its rotational invariance according to:

A·nl =(F,G,H)·nl =nlxF+nlyG+nlzH= F̂, (2.15)

where F̂ is the flux vector expressed in the direction nl, the first axis of the rotated Carte-

sian frame (nl,sl ,tl). Introducing ϕ
(m)
n̂ the face-averaged gradient of the level set in the

direction of the normal to the interface, the expression for F̂ reads:

F̂=(n̂·nl)

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
= n̂nl

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

)
. (2.16)

Therefore, the flux across Fl is given by the one-dimensional equation:

∂ϕ

∂τ
+

∂F̂

∂nl
=0. (2.17)

Eq. (2.17) leads to the Riemann problem:

PDE:
∂ϕ

∂τ
+

∂

∂nl

(
n̂nl

(
ϕ(1−ϕ)−ǫϕ

(m)
n̂

))
=0,

IC: ϕ(nl,0)= ϕ0(nl)=

{
ϕ− if nl <0,
ϕ+ if nl >0.





(2.18)

For the PDE (2.18), the characteristic speed λ(ϕ) is given by:

λ(ϕ)=
dF̂

dϕ
= n̂nl

(1−2ϕ) (2.19)

Eq. (2.18) admits an exact solution:

If λ(ϕ−)>λ(ϕ+) : ϕ(nl,τ)=

{
ϕ− if nl−Sτ<0,

ϕ+ if nl−Sτ>0,

with: S= ∆F̂
∆ϕ = n̂nl

(1−(ϕ−+ϕ+)).

If λ(ϕ−)≤λ(ϕ+) :





ϕ(nl,τ)= ϕ− if nl
τ ≤λ(ϕ−),

λ(ϕ)= nl
τ if λ(ϕ−)< nl

τ <λ(ϕ+),

ϕ(nl,τ)= ϕ+ if nl
τ ≥λ(ϕ+),





(2.20)
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so that the flux Anl
(see (2.13)) across Fl (i.e. at nl =0 with t>0), reads:

If λ(ϕ−)>λ(ϕ+) : Anl
(ϕ−,ϕ+)=





n̂nl

(
ϕ−(1−ϕ−)−ǫϕ

(m)
n̂

)
if S>0,

n̂nl

(
ϕ+(1−ϕ+)−ǫϕ

(m)
n̂

)
if S<0,

with: S= n̂nl
(1−(ϕ−+ϕ+)).

If λ(ϕ−)≤λ(ϕ+) :

Anl
(ϕ−,ϕ+)=





n̂nl

(
ϕ−(1−ϕ−)−ǫϕ

(m)
n̂

)
if 0≤ n̂nl

(1−2ϕ−),

n̂nl

(
1
4−ǫϕ

(m)
n̂

)
if n̂nl

(1−2ϕ−)<0< n̂nl
(1−2ϕ+),

n̂nl

(
ϕ+(1−ϕ+)−ǫϕ

(m)
n̂

)
if 0≥ n̂nl

(1−2ϕ+).





(2.21)
As explained in [46], when considering non-linear hyperbolic equations such as (2.7),

the Riemann problem has to be solved locally, i.e. for each point of the Gaussian quadra-
ture. The overall flux through the face is then integrated over Fl .

2.1.3 Temporal discretisation

Noting the time variation of ϕ: L(ϕ), the finite volume form of an hyperbolic conserva-
tion law then reads:

d

dt
ϕi=−

1

|Ei|

Li

∑
l=1

∫∫

Fl

Anl

(
ϕ−,ϕ+

)
d(Fl)

= L(ϕ). (2.22)

Runge-Kutta schemes We have chosen to use Runge-Kutta schemes for both the advec-
tion and the re-initialisation steps. Introducing αi,k and βi,k, the coefficients of a general
Runge-Kutta scheme, the liquid fraction at the ith Runge-Kutta iteration is given by the
formula below:

ϕ(i)=
i−1

∑
k=0

αi,k ϕ(k)+βi,k∆tL
(

ϕ(k)
)

. (2.23)

We choose the three-stage, third-order strong-stability preserving (SSP) Runge-Kutta
scheme of Shu and Osher [53]: SSP(3,3). This scheme is widely used in conjunction
with WENO schemes because of its stability and accuracy [40, 63]. The coefficients of
this scheme are given in Table 1. Other SSP Runge-Kutta schemes were tested (taken
from [63]), but the SSP(3,3) scheme offered the best trade-off between stability, accuracy
and computational cost for our numerical formulation.

The solution of the incompressible Navier-Stokes equations in OpenFOAM admits
the volumetric flow rate as a variable instead of the velocity. As a result, in order to
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Table 1: Coefficients of the Runge-Kutta scheme SSP(3,3) of Shu and Osher [53].

αi,k βi,k

1 1
3
4

1
4 0 1

4
1
3 0 2

3 0 0 2
3

update the volumetric flow rate after the transport of the liquid volume fraction ϕ, it is
necessary to derive the contribution to the flux for each Runge-Kutta step.

The expression for the liquid volume fraction at the end of the Runge-Kutta scheme
(iteration n) can be re-written as:

ϕ(n)=Kα ϕ(0)+
n−1

∑
k=0

Kβk∆tL
(

ϕ(k)
)

, (2.24)

where the coefficients Kα and Kβk are functions of the coefficients of the RK scheme, αi,k

and βi,k, designed such that:

Kα=1, (2.25)

n−1

∑
k=0

Kβk=1. (2.26)

The contribution to the total flux of the kth RK iteration has to be weighted by the
coefficient Kβk. We have demonstrated that Kβk is given by the following formula:

Kβk=
n−k−1

∑
j=0

Ck+j, (2.27)

with:
j=0: Ck=βi,k,
j=1: Ck+1=αi,k+1×βk+1,k,

j≥2: Ck+j=αi,k+j×

(
βk+j,k+

j−1

∑
m=1

αk+j,k+m×
Cm+k

αi,k+m

)
.





(2.28)

Stability restrictions on the artificial time step As the temporal discretisation of the
re-initialisation equation is performed with an explicit scheme, it is necessary to consider
the stability restrictions associated with the numerical solution of (2.6). Olsson and Kreiss
identify the viscous term in (2.6) as the driver of numerical instabilities and suggest the
following condition [37]:

∆τ≤K
(∆x)2

ǫ
. (2.29)

From numerical experiments conducted with a Runge-Kutta scheme, Olsson and Kreiss
established that the stability is typically obtained with: K= 1

4 .



412 T. Pringuey and R. S. Cant / Commun. Comput. Phys., 16 (2014), pp. 403-439

2.1.4 Addition of a flux limiter

As noted in [12, 63], WENO schemes are not necessarily Total Variation Bounded (TVB),
even when coupled with a Total Variation Diminishing (TVD) Runge-Kutta time integra-
tion. However, as our conservative level set field represents the liquid volume fraction
in the domain, non-physical values of ϕ such that ϕ<0 or ϕ>1 cannot be tolerated. In-
deed, such non-physical values may worsen over millions of time steps and eventually
the density, calculated from ϕ, may end up negative in some cells.

As a result, we decided to use the Multidimensional Universal Limiter with Explicit
Solution (MULES) of Weller [39], used by default in OpenFOAM to maintain the bound-
edness of the VOF field. To our knowledge, this algorithm has not appeared in any pub-
lication. Appendix A presents the details of the MULES method.

2.1.5 Choice of the parameter ǫ

The main parameter of the Conservative Level Set method is the coefficient ǫ that drives
the spread of the hyperbolic tangent profile in (2.1). Therefore ǫ effectively controls the
thickness of the phase transition.

It is preferable to model the interface to be as thin as possible, since a sharp inter-
face represents better the reality of the physics and involve less smearing of the material
properties and the surface tension. A small ǫ is also desirable to minimize the effect of
the re-initialisation step.

Nevertheless, the interface needs to have a minimal thickness, so that the gradient of
ϕ and the interface normal are accurately calculated. A minimum value for ǫ also results
from a “stability study” of the 1D re-initialisation equation. Olsson et al. performed this
study for a finite element method in [38]. Following the same methodology, our stability
study for the finite volume framework lead us to the same conclusion (see [44]): in order
to maintain a stable solution of the re-initialisation equation, it is necessary to choose:

ǫ≥
1

2
·∆x. (2.30)

Just like Olsson and Kreiss, we choose to take ǫ proportional to the grid size:

ǫ=C∆x. (2.31)

The consequence of that choice is twofold:

• The equations solved for the transport of the liquid volume fraction change as the
grid is refined.

• As ∆x decreases, the profile of the conservative level set in the phase transition
region is resolved using the same number of cells.
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2.1.6 Initialisation of the conservative level set field

On simple test cases, the signed distance function from the interface, φ, may be calculated
analytically so that the initial conservative level set field ϕ(0) can be easily derived by
applying the formula (2.1) in each cell of the mesh.

If the field cannot be calculated analytically, one way to obtain ϕ(0) is to compute φ
first by solving the re-distancing equation to steady state [8, 55, 57] or by using Sethian’s
Fast Marching Method [52]. However, none of these methods exists for general polyhe-
dral meshes.

Another option, described by Olsson and Kreiss in [37], is to initialise ϕ as a VOF field
— setting 0 in the cells containing gas and 1 in the cells containing liquid — and then to
solve the re-initialisation equation (2.5) to steady state. This procedure will produce an
initial conservative level set field of reasonable quality. For a generic distribution of liquid
on a general polyhedral mesh, this is the only viable method.

2.2 Solution of the incompressible Navier-Stokes equations

As our novel interface capturing technique is implemented in OpenFOAM, the solu-
tion of the Navier-Stokes equations is performed using the same methodology as Open-
FOAM’s multiphase flow solver: interFoam. This procedure is described below.

2.2.1 Conservative formulation

The governing equations for multiphase flows with interface modelling can be found
in [50]. Implementing in these equations the CSF description of the surface tension (see
[7]), leads to the following conservation formulation of the incompressible Navier-Stokes
equations:

∇·u=0, (2.32)

∂(ρu)

∂t
+∇·(ρu⊗u)=−∇p+ρg+σκ∇ϕ+∇·(2µD) , (2.33)

where the rate-of-strain tensor D reads:

D=
1

2

(
∇u+(∇u)T

)
. (2.34)

A modified pressure pd is introduced to simplify the specification of the pressure
boundary conditions [48]. pd is defined by:

pd = p−ρg·x (2.35)

such that the formulation of the momentum equation as used in the code reads:

∂(ρu)

∂t
+∇·(ρu⊗u)=−∇pd+∇·(µ∇u)+(∇u)·∇µ−(g·x)∇ρ+σκ∇ϕ. (2.36)
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2.2.2 Pressure-velocity coupling

The incompressible Navier-Stokes equations are discretised in a semi-implicit manner
such that the restriction on the time step remains low. The pressure velocity coupling is
handled with the Pressure-Implicit with Splitting Operators (PISO) method of Issa [26].
This non-iterative method proceeds through a series of predictor and corrector steps that
approximate the exact velocity and pressure fields with improving accuracy as the num-
ber of PISO loops increases.

2.3 Calculation of the interface normal

2.3.1 Mathematical formulation

The face-averaged gradient, ∇ϕx, is required for the calculation of the interface normal,
the non-linear flux and the surface tension forces. Let us recall the definition of ∇ϕx

below:

∇ϕx=
1

|Fl|

∫∫

Fl

∇ϕx d(Fl). (2.37)

Desjardins observed in [12] that the quality of the gradient field calculation was im-
portant to avoid spurious oscillations. To resolve this issue, we have chosen to take ad-
vantage of the polynomial reconstruction of the scalar field ϕ performed by the WENO
scheme [46]. As the polynomial reconstruction is performed in a reference space ξ =
(ξ,η,ζ) — where scaling effects do not apply — the smeared out liquid volume fraction
ϕ is approximated by a WENO polynomial according to the following formula [46]:

ϕWENO(ξ,η,ζ)= ϕ0+
K

∑
k=1

ãkφk(ξ,η,ζ) , (2.38)

where the ãk are the degrees of freedom of the WENO polynomial reconstruction and the
φk(ξ,η,ζ) the basis functions of the polynomial reconstruction.

This polynomial — already calculated by the high-order WENO scheme for the linear
flux of the advection equation — embeds both the essentially non-oscillatory characteris-
tic (required to avoid the spurious oscillations mentioned by Desjardins) and high-order
approximation of the gradient.

As the gradient is needed in the physical space, the Jacobian of the mapping transfor-
mation, J , has to be introduced in the calculation, according to:

∇ϕx=
(
J −1

)T
∇ϕξ. (2.39)

Based on equations (2.37), (2.38) and (2.39) and recalling that F′
l is the face Fl in the
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mapped space, the following expression can be derived for the face-averaged gradient:

∇ϕx=
K

∑
k=1

ãk

(
1∣∣F′
l

∣∣
(
J −1

)T
vk

)

︸ ︷︷ ︸
pre-computed

, (2.40)

where the vector vk reads:

vk =




Ak

∫∫

F′
l

ξ(Ak−1)ηBk ζCk d
(

F′
l

)

Bk

∫∫

F′
l

ξAk η(Bk−1)ζCk d
(
F′

l

)

Ck

∫∫

F′
l

ξAk ηBk ζ(Ck−1)d
(

F′
l

)




. (2.41)

The added cost for the above calculation is fairly small as the degrees of freedom are
computed for the flux determination and since the terms multiplying the ãk in (2.40) are
precomputed.

Also, the integrals of the monomials in (2.41) are simple combinations of the volume
integrals of the monomial and the surface integrals of the basis functions. Let us recall
the definition of the basis functions:

φk=ψk−
1∣∣E′

i

∣∣
∫∫∫

E′
i

ψk d
(
E′

i

)
, (2.42)

with: {ψk}= ξ,η,ζ,ξ2 ,ξ ·η,··· ,ζr , k=1,··· ,K.
Hence the integrals of the monomials, ψk, involved in vk can be calculated from:

∫∫

F′
l

ψk d
(
F′

l

)
=

∫∫

F′
l

φk d
(
F′

l

)

︸ ︷︷ ︸
pre-computed for the flux

−

∣∣F′
l

∣∣
∣∣E′

i

∣∣
∫∫∫

E′
i

ψk d
(
E′

i

)

︸ ︷︷ ︸
pre-computed for Ajk

. (2.43)

Both of the integrations on the r.h.s. of (2.43) have already been performed: the first
one for the flux calculation and the second one for the polynomial reconstruction.

2.4 Interpretation of the method

The RCLS method transports a scalar ϕ defined as the hyperbolic tangent profile of the
signed distance to the interface. The scalar ϕ is transported in a conservative manner
(see [46] and [44]) such that it remains conserved to machine accuracy (Lax and Wendroff
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provided some theoretical background for this assertion in [32] and our numerical exper-
iments, presented in Section 3.2 confirm it). In addition, the transition between phases,
characterised by this hyperbolic tangent profile, is kept to a constant thickness.

If applied in the same spirit as Olsson and Kreiss [37] and Desjardins et al. [13], the
RCLS method transports a function of the distance to the interface. The phase bound-
ary being defined by the contour ϕ = 0.5, all the volume encompassed by that surface
can be considered as filled with liquid. Such an interpretation of ϕ leads to a level set
formulation of the RCLS.

However, as the interface thickness is kept constant, the scalar transported ϕ can be
identified with the liquid volume fraction. When interpreting ϕ as such, the RCLS resem-
bles a VOF method with an interface of constant thickness. The interface reconstruction
generally required by VOF methods is no longer required here, as the hyperbolic tangent
profile provides a smooth field to calculate the interface gradient.

The RCLS method can therefore be perceived as both a Level Set method and a Vol-
ume of Fluid method.

3 Canonical test cases

3.1 Performance of the method

This section compares the performance of the RCLS with established multiphase numer-
ical methods:

• the VOF method of OpenFOAM: interFoam;

• the Accurate Conservative Level Set (ACLS) method of Desjardins et al. [12, 13].

For this comparative study, the RCLS transports the scalar field ϕ using a WENO3
scheme, the CLS coefficient is set to ǫ= 0.5∆x and the re-initialisation of the hyperbolic
tangent profile is only performed every five time steps.

3.1.1 Comparison with interFoam

The relative performance of the transport algorithms is assessed on the following test
cases (defined in [46]): Zalesak’s slotted disk (on a 1282 Cartesian mesh) and the disk in
a deformation field (on a 2562 Cartesian mesh).

As can be seen in Fig. 1, the RCLS method clearly outperforms interFoam on both test
cases. In particular, the ligament predicted by our transport algorithm is longer and the
interface is free from non-physical wiggles.

3.1.2 Comparison with ACLS

In order to compare the method of Desjardins et al. with the RCLS, we have performed
the computation of the disk in a deformation field as set in [13]. It is interesting to note
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RCLS interFoam

Zalesak

Spiral

Figure 1: Performance of the transport algorithms of interFoam and the RCLS method — Results for Zalesak’s
slotted disk (Zalesak) and the disk in a deformation field (Spiral).

that this deformation field differs from that given in [46]. As in [13], we set the stream
function to:

ψ=
1

π
sin2(πx)cos2(πy)cos

(
πt

T

)
, (3.1)

with T=8 s.
The resulting velocity vector u reads:

u=

(
∂ψ

∂y
,−

∂ψ

∂x

)
. (3.2)

As in [13], the calculation was performed on a 2562 Cartesian mesh with a constant
time step of ∆t = 0.002 s. The predicted level set contours are given in Fig. 2 at t = T

2 ,
when the stretching is maximal. As can be seen in Fig. 2, the RCLS clearly outperforms
the ACLS method on this test case.

3.2 Simulation of multiphase flows

The calculations presented in this sub-section are typical tests that assess the performance
of the multiphase modelling capability. In particular, we present here the results obtained
by our method on two test cases: the Rayleigh-Taylor instability and the falling drop in a
pool. Through these simulations we illustrate three features of our method:
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RCLS ACLS [13]

Figure 2: Performance of the transport algorithms of the ACLS and the RCLS methods — Results for the disk
in a deformation field (as set in [13]).

• accuracy;

• robustness;

• ability to run on different types of mesh.

3.2.1 Rayleigh-Taylor instability

The settings for the simulation of the Rayleigh-Taylor instability are given in [47]. For this
test case, the transport of the volume fraction ϕ was performed with our novel modelling
capability (RCLSFoam) using the linear high-order scheme and setting the interface thick-
ness parameter to ǫ= 0.5∆x. This highlights the robustness of our method which copes
with a density ratio of 7.4 without resorting to a WENO treatment of the discontinuity.

Ability to capture the physics The relative performance of RCLSFoam with respect to
OpenFOAM’s multiphase flow solver (interFoam) is presented in Fig. 3. This figure shows
the solution obtained by the two codes on the same triangular mesh made of 9234 cells,
for six different times in [0;1.5] seconds.

The comparison of the interface predicted by the two solvers for the first three times
(t= 0.7 s, 0.8 s, 0.9 s) demonstrates the superior performance of RCLSFoam on asymmet-
rical meshes. Indeed, while the solution predicted by our approach remains close to the
reference solution obtained with an accurate front tracking method [43], interFoam’s pre-
dictions are unrealistically asymmetrical. This is probably due to the lower order of the
numerical schemes used by interFoam (smaller stencils) to transport the volume fractions.
It suggests that interFoam is not appropriate on general unstructured grids.

The solution predicted by interFoam for the last three times (t = 1.25 s, 1.4 s, 1.45 s)
illustrates a flaw of this solver: interFoam produces non-physical wiggles in the stem of
the mushroom-shaped structure formed by the penetration of the denser phase into the
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t=0.7 s t=0.8 s t=0.9 s t=1.25 s t=1.4 s t=1.45 s

interFoam

RCLSFoam

Figure 3: Interface predicted by RCLSFoam for the Rayleigh-Taylor instability — Comparison RCLSFoam vs.
interFoam.

lighter phase. Fig. 3 shows the build up of these non-physical interfacial oscillations until
they break the mushroom-shaped structure (see results for t=1.45 s).

Handling of hybrid meshes RCLSFoam’s ability to perform accurately on different types
of grid is demonstrated by comparing the solutions obtained on a triangular and a hy-
brid (triangles-rectangles) mesh of similar size. Fig. 4 shows the two meshes considered
for this study: a triangular mesh of 9234 cells and a hybrid grid of 8580 elements. The
rectangles of the hybrid mesh are distributed all along the width, in the middle portion
of the domain — where the interface is initialised — and the rest of the domain is made
of triangular elements.

Fig. 4 presents the volume fractions and interface predicted by RCLSFoam on the two
meshes for five different times in [0;1] second. As expected the results obtained are very
similar and, thanks to the high-order scheme implemented, the method copes very well
with the change of mesh type in the hybrid grid.

Small differences in the solution at time t=1s can be perceived between the two com-
putations: the interface obtained on the hybrid mesh is slightly more symmetrical. This
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t=0.2 s t=0.7 s t=0.8 s t=0.9 s t=1 s

Triangular

(9234 cells)

Hybrid

(8580 cells)

Figure 4: Volume fractions and interface (in black) predicted by RCLSFoam for the Rayleigh-Taylor instability
— Comparison hybrid vs. triangular mesh (meshes overlaying the contours in white).

is due to the initialisation of the volume fraction field: whereas the sine interface is set
on a perfectly symmetrical Cartesian mesh for the hybrid grid, it is initialised on a non-
symmetrical mesh for the triangular grid. As the initialisation of the interface is critical to
the symmetry of the solution, the results obtained on the hybrid mesh are more symmet-
rical. It is also worth noting that the progression of the mushroom-shaped structure in
the triangular part of the hybrid mesh does not affect its symmetry. This also illustrates
how one can take advantage of the ability to run on hybrid meshes and further highlights
the relevance of this capability.

3.2.2 Falling drop in a pool

The settings for the simulation of the falling drop in a pool are given in [54] (“Impact
of drop on water surface I” with U = 4 ms−1). For this test case, the transport of the
volume fraction ϕ was performed with RCLSFoam using the WENO scheme and setting
the interface thickness parameter to ǫ = 0.5∆x. This computation is challenging as it
involves a density ratio of 816.
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t=0 s t=0.15 ms t=0.2 ms t=0.35 ms t=0.55 ms

Figure 5: Volume fractions and interface (in black) predicted by RCLSFoam for the falling drop in a pool —
Time t=0 s,0.15 ms,0.2 ms,0.35 ms,0.55 ms.

For this computation, the solution of the pressure-velocity coupling is performed us-
ing a Crank-Nicholson (CN) temporal discretisation and the resulting systems of alge-
braic equations are solved with the generalised geometric-algebraic multi-grid solver
(GAMG). Although this choice of numerics generally improves the accuracy (CN) and
the speed (GAMG) of the computation, it significantly reduces the stability margin of the
numerical method. Indeed, no stable computation was obtained for this test case with
interFoam using either of these numerical methods. This further highlights the superior
robustness of our modelling capability.

Fig. 5 presents the volume fractions and the interface predicted by RCLSFoam on a
128×256 Cartesian mesh for five different times in [0;0.55] millisecond. It can be seen in
the Fig. 5, that the RCLSFoam copes remarkably well with the very large density ratio and
that the results match closely previous solutions (see [54]).

To conclude, in this section we have demonstrated that our modelling capability cap-
tures the physics well on various unstructured grids. We also showed that RCLSFoam
conserves mass to machine accuracy. In addition, we have established that this multi-
phase modelling tool is very robust. Finally, it follows from these numerical tests that
RCLSFoam outperforms interFoam in terms of accuracy and robustness.

4 Large eddy simulation of primary liquid-sheet breakup

4.1 The Quasi-DNS/LES approach

This numerical approach involves applying a single-phase LES formulation in both phases
and extending it to the region of the interface. Due to the lack of established models, this
approach neglects the sub-grid scale effects associated with the presence of the interface.
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4.1.1 Filtered Navier-Stokes equations

The convolution of (2.32) and (2.33) with an homogeneous kernel filter G∆ provides the
following filtered incompressible Navier-Stokes equations:

∇·u=0, (4.1)

∂(ρu)

∂t
+∇·(ρu⊗u)=−∇p+ρg+σκ∇ϕ+∇·

(
2µD−ρT

)
, (4.2)

where:

• The filtered rate-of-strain tensor D reads:

D=
1

2

(
∇u+(∇u)T

)
. (4.3)

• The residual-stress tensor T is:

T =u⊗u−u⊗u. (4.4)

• Following the principle of the quasi-DNS/LES approach, the sub-grid scale contri-
butions of the capillary forces

(
fcap

)
SGS

have been neglected:

(
fcap

)
SGS

=0=σκ∇ϕ−σκ∇ϕ, (4.5)

σκ∇ϕ=σκ∇ϕ. (4.6)

4.1.2 Residual kinetic energy

Filtering the kinetic energy field E= 1
2 u·u produces E:

E=
1

2
u·u. (4.7)

Decomposing E into the kinetic energy of the filtered velocity field E f and the residual
kinetic energy kr leads to [42]:

E=E f +kr , (4.8)

where kr is expressed as:

kr =
1

2
u·u−

1

2
u·u. (4.9)

Noting that kr =
1
2 tr(T ), the decomposition of the residual-stress tensor into an isotropic

part and a deviatoric part TD can be expressed as follows:

T =
2

3
krI+TD, (4.10)

where I is the unit tensor.
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4.1.3 Sub-grid scale modelling

For this computation, we have chosen to model the sub-grid scale stress tensor T with the
constant coefficient one-equation eddy-viscosity model (OEEVM) proposed by Yoshizawa
[67]. The OEEVM is based on Boussinesq’s eddy-viscosity concept which postulates that
the mechanism governing the transfer of energy from the resolved scales to the residual
scales is analogous to the mechanism driving the molecular diffusion.

As the balance between the rate of production of the residual kinetic energy and
the rate of dissipation of kinetic energy breaks down near walls and in jets and wakes,
Yoshizawa proposed a model equation for the residual kinetic energy kr . Yoshizawa de-
rives a modelled form of this equation by using the statistical results from the direct-
interaction approximation [29–31]. This statistical approach assumes the distinct separa-
tion of the grid-scales mean motions and the sub-grid scale fluctuating motions [66, 68].
Introducing the eddy-viscosity of the residual motions νr and noting εkr

the dissipation
term, the model transport equation for the residual kinetic energy reads:

∂kr

∂t
+∇·(ukr)=∇·((νr+ν)∇kr)−εkr

−D :T , (4.11)

where εkr
is modelled as:

εkr
=

Cǫk
3
2
r

∆
. (4.12)

Yoshizawa’s model performs relatively well on the types of flow encountered in atom-
isation problems while remaining significantly cheaper than more advanced SGS mod-
els [18].

4.2 Computation results

As the emphasis of this numerical study is placed on the mechanisms driving the primary
breakup, the computational domain is limited to the close vicinity of the injection plane.

4.2.1 Settings of the computation

Domain and material properties In order to demonstrate the modelling capability on
a test case reproducing the breakup mechanisms observed at aero-engine conditions, we
have chosen to compute flat sheet breakup at We=9300.

Computational domain The computational domain is a cuboid of 3×1×1 mm3,
meshed with 2.36×106 cells. In order to demonstrate the capability on general polyhe-
dral meshes, the grid is made of 8.07×105 hexahedra, 1.5×106 tetrahedra and 5.4×104

pyramids (see bottom picture in Fig. 6).

The gas and fuel injection channels are modelled and the thickness of the plates sep-
arating the injection channels is resolved (see top picture in Fig. 6). Both of these fea-
tures have proven to be of significant importance in the numerical simulation of primary
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Domain and boundary conditions

Mesh along the centreplane (z=0)

Figure 6: Computational domain for the simulation of atomisation — In the top half: the mesh of the back
plane (edges in blue) and the boundaries (walls in grey, fuel inlet in blue and gas inlets in red) are pictured.

breakup [19]. The geometrical details of the injection configuration can be found in Ta-
ble 2.

The front and back planes — respectively defined by z=0.5 mm and z=−0.5 mm (see
top picture in Fig. 6) — are set as symmetric boundary conditions. The plane at x= 0 is
the inlet of the computational domain. In the central part of this plane — between the
two plates — the fuel (ϕ=1) is injected at a speed of 2 ms−1. Above and below the fuel
injection channel, the gas (ϕ=0) enters the domain at a speed of 40 ms−1. The rest of the
boundaries are defined as inlet/outlet boundary conditions.

In order to take advantage of the ability to run on hybrid meshes, structured hex-
ahedral grids have been fitted around walls. Similarly, to improve the accuracy of the
atomisation modelling, the regions where the breakup is expected to occur have been
meshed with hexahedral cells. Due to issues experienced with the inlet/outlet bound-
ary conditions in OpenFOAM, these boundaries have also been meshed with hexahedra.
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Table 2: Geometrical parameters for the spray calculation.

Flat sheet

Configuration prismatic

Nozzle outlet shape rectangle (h)

Nozzle outlet dimension 2×10−4 m

Separating plates thickness 2×10−5 m

Domain tangential extent width W=5h

Domain radial extent height H=5h

Channel length 5h

Domain length 15h

The rest of the domain is composed of tetrahedra and pyramids. The pyramidal mesh
consists of a single layer of cells performing the transition between the hexahedral and
the tetrahedral meshes. In the resulting mesh, the smallest edge length is ∆xmin = 5 µm
and the average characteristic length scale of the grid is ∆x=8.4 µm.

Material properties Although the material properties chosen for this study (see Ta-
ble 3) differ slightly from those of an aero-engine, the physical quantities remain similar.
The non-dimensional numbers related to this computation are given in Table 4 and the
smallest length scales associated with the flow field are reported in Table 5.

Considering that a given length scale η is resolved if η ≥ 2∆x, it can be seen in Ta-
ble 5 that only the Kolmogorov length scale in the liquid phase ηliq is properly resolved
by the mesh. This justifies the use of a sub-grid scale model for the turbulence in the
gas phase. Table 5 also suggests that the mesh is far from resolving the smallest liquid
structures produced. This further highlights the need to develop sub-grid scale models
for multiphase flows.

Table 3: Physical properties for the spray calculation.

Fuel Gas Ratio fuel/gas

Density, ρ
(
kgm−3

)
840 20 42

Viscosity, µ
(
kgm−1s−1

)
5×10−3 1.7×10−5 294

Surface tension, σ
(

Nm−1
)

2.61×10−2

Table 4: Non-dimensional numbers associated to the flow simulated.

Reliq 67

Regas 18800

We 9300

Oh 7.55×10−2
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Table 5: Smallest length scale of the flow field — assuming a turbulence intensity of 5% in the liquid and 10%
in the gas.

Liquid phase Kolmogorov scale, ηliq 81 µm

Gas phase Kolmogorov scale, ηgas 1.4 µm

Droplet diameter at We=10, dWe=10 0.22 µm

Minimum mesh size, ∆xmin 5 µm

Average mesh size, ∆x 8.4 µm

RCLS settings In the interest of robustness and because atomisation problems involve
large density ratios, we choose to use the WENO scheme for this calculation. Although
our numerical scheme [46] can formally reach arbitrarily high order in space, in this
demonstration of the modelling capability we limit ourselves to a third-order polyno-
mial reconstruction: r=3, leading to a fourth-order accurate WENO scheme.

To ensure the stability of the computation with an optimum resolution of thin liga-
ments, this computation features ǫ=0.5∆x on the whole computational domain and the
periodicity of the re-initialisation is set to Ns = 5. The chosen set of RCLS parameters is
summarised in Table 6.

Table 6: RCLS parameters for the simulation of atomisation.

Order of the polynomial reconstruction: r=3

Numerical scheme: WENO

CLS coefficient: ǫ=0.5∆x

Periodicity of the re-initialisation: Ns=5

4.2.2 Torn sheet breakup

Sheet breakup regimes Fernandez et al. studied the breakup of a flat sheet of wa-
ter (300 µm thick, Uliq ∈ [1;2] ms−1) sheared on either side by a stream of gas (Ugas ∈

[20;70] ms−1, pgas ∈ [1;6] bar) [17]. In their experimental analysis, the authors classify the
regime of the primary breakup according to the momentum flux ratio M. Using the sub-
scripts gas and liq to refer to the gas and liquid phases respectively, the momentum flux
ratio M reads:

M=
ρgasU

2
gas

ρliqU2
liq

. (4.13)

In particular, Fernandez et al. identified three regimes of liquid sheet breakup:

Up to M= 0.5: Cellular breakup. This regime is characterised by the formation of
cell-like structures in the liquid sheet through the build-up of longitudinal and trans-
verse undulations of similar wavelength. Such a combination of undulations leads to the
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bursting of the membranes associated with the cell-like structures and to the creation of
spanwise ligaments.

From M=0.5 to M=5 Stretch streamwise ligament breakup. Similarly to the cellular
breakup, this regime involves the build-up of both longitudinal and transverse undula-
tions. However, for this regime the fragmentation of the sheet occurs along the longitu-
dinal direction such that the bursting of the membranes is accompanied with the creation
of streamwise ligaments.

Above M = 5: Torn sheet breakup. As for the previous breakup regime, the torn
sheet breakup produces droplets through the disintegration of membranes and via the
fragmentation of streamwise ligaments. However, the streamwise ligaments formed
have highly irregular shapes and disintegrate through aerodynamic tearing rather than
Plateau-Rayleigh instability. This regime also involve the tearing of the continuous region
of the liquid sheet into large liquid structures further fragmented by the aerodynamic
forces.

In our simulation of the primary breakup, the momentum flux ratio is: M=9.5. Ac-
cording to the above classification, this value of M puts the calculation in the regime
of torn sheet breakup. The flow features predicted by our simulation for this breakup
regime are reported in Figs. 7 to 11.

Interaction with vortices The figures of this sub-section present the liquid phase to-
gether with an ad hoc iso-surface of the Q-criterion [25] to illustrate the interaction of the
turbulence with the liquid sheet. The Q-criterion — defined as the second invariant of
the velocity gradient tensor — is widely used to visualise the coherent vortical structures
in the flow field [12, 14]. The scalar field Q is given by:

Q=
1

2

(
(tr(∇u))2−tr(∇u·∇u)

)
. (4.14)

Due to the difference in velocity between the two phases, a shear layer appears on the
interface. As a result, a Kelvin-Helmoltz (KH) instability builds up and — as can be seen
in Figs. 7 to 11 — KH rollers form on either side of the liquid sheet, following initially
the shape of the phase interface. As these vortices progress through the computational
domain, they break up, thus increasing the level of turbulence downstream of the bulk
liquid.

The Kelvin-Helmholtz vortices evolve in shape as the interface deforms. Initially, the
sheet undulates in the longitudinal direction such that these spanwise turbulent struc-
tures remain more or less cylindrical (see Fig. 8 at t=1.09 ms). As the instabilities develop
in the transverse direction the KH vortices present more corrugated and bended shapes
(see Fig. 8 at t=1.145 ms).

At t = 1.25 ms, the transverse deformation of the liquid sheet appears closer to the
injection point, resulting in the formation of a hump right at the outlet of the top gas
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t=0.72 ms t=0.81 ms

t=0.835 ms t=0.86 ms

t=0.91 ms t=0.935 ms

Figure 7: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in grey) and an ad hoc iso-surface
of Q-criterion (in transparent red) for the build-up of instabilities.

injection channel (see Fig. 10). As a result, worm-like structures form behind and around
the hump. These structures are principally aligned with the spanwise direction.

Later on, at t=1.29 ms, flat turbulent structures form on top of the protruding interface
(see Fig. 10). Similar eddies were observed by Desjardins in his numerical simulation of
a planar liquid jet in quiescent air [12]. Desjardins related the formation of these flat
eddies to re-circulation regions above the corrugations of the interface. In line with the
phenomenological analysis of Wu and Faeth [65], this process generates a lift that further
increases the deformation of the interface [12].

Evolution of the liquid sheet The simulation of sheet breakup involves three main
phases:

• The build-up of instabilities on the two interface surfaces (t<0.935 ms).
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t=1.09 ms t=1.1 ms

t=1.115 ms t=1.12 ms

t=1.145 ms t=1.155 ms

Figure 8: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in grey) and an ad hoc iso-surface
of Q-criterion (in transparent red) for the flapping, the membrane puncturing and the ligament formation.

• The flapping of the sheet in the longitudinal and transverse directions (t ∈
[0.935;1.25] ms).

• The tearing of the liquid sheet (t>1.25 ms).

Build-up of instabilities This phase starts with the penetration of the liquid in
the computational domain and finishes with the first occurrence of the breakup at t =
0.935 ms. It involves the initial deformation of the interface in the injection channel and
the development of sinuous and varicose modes of undulation of the liquid sheet (see
Fig. 7). The growth of surface waves — in both the longitudinal and the transverse direc-
tions — leads to the thinning of the liquid sheet, thus facilitating the first pinch-off event
by aerodynamic tearing.

Sheet flapping This phase involves the flapping of the sheet in both the longitudinal
and the transverse directions, similarly to a flag. For this stage, the simulation predicts
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t=1.195 ms t=1.205 ms

t=1.215 ms t=1.225 ms

t=1.23 ms t=1.235 ms

Figure 9: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in grey) and an ad hoc iso-surface
of Q-criterion (in transparent red) for the pinch-off of a streamwise ligament.

the disintegration of the membranes formed at the peaks and the troughs of the undu-
lations (see Fig. 8). The membrane puncturing is accompanied by the formation and
the pinch-off of streamwise ligaments (see Fig. 9). These flow features suggest that the
breakup regime is the stretch streamwise ligament breakup. It constitutes a transition
before the establishment of torn sheet breakup.

Sheet tearing From t=1.25 ms, the computation predicts the tearing of the sheet in
the transverse and then the longitudinal directions (see Fig. 10 and Fig. 11 respectively).

At t=1.25 ms, the liquid sheet presents a bag-like structure bent towards the top of the
domain. As the sheet significantly obstructs the gas stream, it is subjected to relatively
high aerodynamic forces and a tear is initiated. While the tear propagates in the trans-
verse direction — following the path of minimum sheet thickness — the liquid structure
being torn away undergoes a membrane-type breakup.
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t= 1.25ms t= 1.265ms

t= 1.27ms t=1.28ms

t= 1.29ms t= 1.295ms

Figure 10: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in grey) and an ad hoc
iso-surface of Q-criterion (in transparent red) for the tearing of the sheet in the transverse direction.

Then, at time t = 1.3 ms, a bag-like structure is formed in the centre of the sheet.
This structure is punctured and the aerodynamic forces initiate a longitudinal tear in the
hole produced. As the tear propagates upstream in the liquid phase, two streamwise
ligaments are formed. These ligaments develop bag-like structures themselves and get
subsequently torn away by the gas stream.

The flow field predicted by the numerical simulation in the “sheet tearing” phase
matches closely the description of torn sheet breakup given in [17]. This validates quali-
tatively our simulation of the liquid sheet breakup. Our computation of the liquid sheet
breakup highlights the potential of the numerical approach to study the mechanisms of
the primary breakup.

4.2.3 Breakup length

As a first step towards a quantitative validation of this numerical simulation of sheet
breakup, the average breakup length predicted by the computation is compared to the
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t= 1.3ms t= 1.315ms

t= 1.325ms t=1.335 ms

t=1.355 ms t=1.37 ms

Figure 11: Simulation of flat sheet breakup with lesRCLSFoam — Liquid phase (in grey) and an ad hoc
iso-surface of Q-criterion (in transparent red) for the tearing of the sheet in the longitudinal direction.

value given by the correlation provided in [17]. We performed the averaging over the
entire span once the breakup regime was established.

In [17], the authors relate the breakup length Lb to a non-dimensional number. Recall-
ing that h is the height of the fuel injection channel and noting Weh, the Weber number
based on h, this relation reads:

Lb

h
= f




3

√√√√
Uliq

Ugas

MWeh


. (4.15)

For the conditions of the calculation, the non-dimensional number is equal to 0.008,

which leads to Lb
h = 6±2. In our numerical experiment, we observe an average breakup

length of Lb
h =5 which is well within the range predicted by the correlation.
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It is also worth noting that (4.15) is based on a restricted range of flow conditions
(water liquid sheet; air pressure below 6 bar), and that it accounts for a limited range of
parameters (ignores Reliq). A correlation based on a more exhaustive experimental test
campaign may further confirm the prediction of our simulation.

5 Conclusion

The Conservative Level Set (CLS) method of Olsson et al. [37, 38] was chosen as starting
point for our novel interface description technique because this technique conserves mass
well at a lower cost than hybrid methods [21], resolves the interface accurately as it is
based on a level set formulation and has been demonstrated on the atomisation of Diesel
jet (simple configuration) by Desjardins [13]. However, the conservative level set method
needed to be improved in terms of stability and accuracy. It was also necessary to extend
it to unstructured grids.

The extension to general polyhedral meshes and the improvement in terms of stability
were obtained by solving the advection equation and the re-initialisation equation of the
CLS method with the WENO scheme presented in [45, 46]. In particular, this numerical
scheme significantly improved the stability of the method in the presence of very large
density ratios as demonstrated by the simulation of the falling droplet (see Section 3.2.2).
For this calculation, our modelling capability remained stable regardless of the numerics
employed to solve the pressure-velocity coupling.

The improvement of the accuracy of the CLS method originated from two sources:
the high-order accurate numerical scheme and the addition of a flux-limiter algorithm to
the transport of the level set scalar. This additional step insures that the solution remains
bounded.

Whereas the conservative level set methods of Olsson et al. and Desjardins et al. treat
the scalar field as a level set, we choose to consider it as a smeared out liquid volume
fraction. The addition of the flux limiter, specific to VOF methods, extends the CLS fur-
ther towards a volume of fluid method and guarantees that the liquid volume fraction
remains physical everywhere in the computational domain (0 ≤ ϕ ≤ 1). The resulting
method named Robust Conservative Level Set conserves mass to machine accuracy (see
Section 3.2.1) and captures the physics accurately (see Section 3.2).

Our new modelling capability has also been demonstrated on the simulation of the
primary breakup of a liquid sheet in a co-flowing stream of gas. The calculation was per-
formed using a quasi-DNS/LES methodology [21] (see Section 4.1) and the problem was
formulated with material properties and boundary conditions relevant to the injection of
fuel in an aero-engine combustor (see Section 4.2.1). The computation has demonstrated
the ability of the modelling tool to capture the physics accurately (see Section 4.2) and
further illustrates the potential of the numerical approach. The numerical results have
been validated qualitatively against theoretical predictions (stability analysis) [1, 9] and
experimental data [17].
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A Multidimensional universal limiter with explicit solution

A.1 Overview of the method

Multidimensional universal limiter with explicit solution (MULES) calculates a limited
flux through the face Fl, F̂L,l, for the liquid volume fraction ϕ such that for each cell Ei, the

conservative level set at time tn+1, ϕ
(n+1)
i , remains bounded by the minimal and maximal

values of the solution in its neighbouring cells Ejl at the previous time step tn:

min
jl

(
ϕ
(n)
jl

)
≤ ϕ

(n+1)
i ≤max

jl

(
ϕ
(n)
jl

)
, jl =1,··· ,Li. (A.1)

Let us note ϕ
(n+1)
i,min and ϕ

(n+1)
i,max , respectively the minimum and the maximum admissi-

ble values for ϕ
(n+1)
i in (A.1). To ensure that no non-physical values will be propagated,

both ϕ
(n+1)
i,min and ϕ

(n+1)
i,max are then clipped between 0 and 1, using the following clipping

operator:
clip(x)=max(min(x,1) ,0). (A.2)

MULES follows the basic principles of the Flux-Corrected Transport (FCT) method
of Boris and Book [3–5], in the format described by Zalesak [69]. In order to satisfy the
boundedness criteria (A.1), MULES calculates the limited flux F̂L,l through Fl face by face
by taking the weighted average of two fluxes for ϕ:

• The flux computed with a first-order upwind scheme for the advection equation
only: F̂U,l. This flux leads to a bounded solution but is diffusive.

• The sum of the fluxes computed with the high-order scheme, F̂HO,l, for both the
advection equation and the re-initialisation equation. This flux leads to a high-
order accurate solution that is not systematically bounded.

As the weighting varies from face to face, the FCT computation of the limited flux is non
linear. Introducing the limiter factor λl — calculated for each face Fl of the mesh — the
expression for the limited flux then reads:

F̂L,l =(1−λl) F̂U,l+λl F̂HO,l. (A.3)

Introducing the correction flux F̂C,l defined as the difference between F̂HO,l and F̂U,l,
the expression for the limited flux (A.3) can then be re-written as:

F̂L,l = F̂U,l+λl F̂C,l. (A.4)
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Once the limiter factor computed and the limited flux calculated according to (A.4),
the scalar field ϕ is updated using an Euler time integration, such that:

ϕ
(n+1)
i = ϕ

(n)
i −

∆t

|Ei|

Li

∑
l=1

F̂L,l. (A.5)

A.2 Determination of the limiter factor

The limiter factor λl is calculated iteratively such that the boundedness condition (A.1)
is satisfied. λl directly derives from the re-formulation of the condition (A.1) in terms of
fluxes. The bounds for the liquid volume fraction in Ei at time tn+1 correspond, in terms

of fluxes, to the maximum temporal variation of liquid volume in Ei,
(∆Vliq

∆t

)
i
. Introducing

ϕ
(n+1)
i,min and ϕ

(n+1)
i,max , respectively the maximum decrease and increase of liquid volume in

Ei, these temporal variations — homogeneous to a flux — read respectively:





(
∆Vliq

∆t

)outmax

i

=
ϕ
(n)
i −ϕ

(n+1)
i,min

∆t
·|Ei|,

(
∆Vliq

∆t

)inmax

i

=
ϕ
(n+1)
i,max −ϕ

(n)
i

∆t
·|Ei|,

(A.6)

so that fluxes limited by the temporal variations in (A.6), will lead to a bounded solution
for ϕ.

Weller’s algorithm searches iteratively the maximum value of λl that satisfies the

boundedness criterion. Starting from λ
(0)
l = 1 — i.e. F̂L,l = F̂HO,l — which leads to a

high-order accurate solution, the algorithm progressively increases the contribution of
F̂U,l to the flux by reducing λl .

To achieve that, the fundamental principal of MULES is to split the sum of correction
fluxes for a given cell Ei into the sum of outflow and the sum of inflow correction fluxes.
Then, in each cell, and at a given iteration k of the algorithm, an average limiter factor(
λout

i

)(k)
is defined for all the faces that support an outflow correction flux and another

one
(
λin

i

)(k)
is defined for all the faces that support an inflow correction flux.

These average limiter factors are introduced in the boundedness conditions expressed
in terms of fluxes. These conditions then read:

(
∆Vliq

∆t

)outmax

i

=
(
λout

i

)(k)
∑
l,out

F̂C,l−∑
l,in

λ
(k−1)
l F̂C,l+

Li

∑
l=1

F̂U,l, (A.7)

(
∆Vliq

∆t

)inmax

i

=
(

λin
i

)(k)
∑
l,in

F̂C,l− ∑
l,out

λ
(k−1)
l F̂C,l−

Li

∑
l=1

F̂U,l, (A.8)
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where the sums of outflow and inflow fluxes in Ei are calculated the following way for a
given flux F̂l: 




∑
l,out

F̂l =
Li

∑
l=1

max
(

F̂l,0
)

,

∑
l,in

F̂l =
Li

∑
l=1

min
(

F̂l,0
)

.

(A.9)

As a flux exiting a cell is positive, the sum of upwind fluxes F̂U,l on all the faces of Ei

is then added on the r.h.s. of (A.7). Similarly, the sum of upwind fluxes is subtracted on
the r.h.s. of (A.8).

The average limiter factors
(
λout

i

)(k)
and

(
λin

i

)(k)
are then calculated from (A.7) and

(A.8) respectively.

Then, the algorithm takes as the limiter factor for the face Fl at the current iteration k,

λ
(k)
l , the minimum of three values:

• The relevant average limiter factor in the one of the adjacent cells Ei:
(
λout

i

)(k)
if the

correction flux through Fl is exiting Ei,
(
λin

i

)(k)
otherwise.

• The relevant average limiter factor in the other adjacent cell Ej:
(
λin

j

)(k)
if the cor-

rection flux through Fl is entering Ej,
(
λout

j

)(k)
otherwise.

• The limiter factor at the previous iteration: λ
(k−1)
l .

The algorithm iterates m times — with m specified by the user — to produce a final

limiter factor λ
(m)
l for each face Fl of the mesh.
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