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Abstract. An iterative discontinuous Galerkin (DG) method is proposed to solve the
nonlinear Poisson Boltzmann (PB) equation. We first identify a function space in which
the solution of the nonlinear PB equation is iteratively approximated through a series
of linear PB equations, while an appropriate initial guess and a suitable iterative pa-
rameter are selected so that the solutions of linear PB equations are monotone within
the identified solution space. For the spatial discretization we apply the direct dis-
continuous Galerkin method to those linear PB equations. More precisely, we use one
initial guess when the Debye parameter λ=O(1), and a special initial guess for λ≪1
to ensure convergence. The iterative parameter is carefully chosen to guarantee the ex-
istence, uniqueness, and convergence of the iteration. In particular, iteration steps can
be reduced for a variable iterative parameter. Both one and two-dimensional numer-
ical results are carried out to demonstrate both accuracy and capacity of the iterative
DG method for both cases of λ=O(1) and λ≪ 1. The (m+1)th order of accuracy for
L2 and mth order of accuracy for H1 for Pm elements are numerically obtained.
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1 Introduction

In this paper, we propose an iterative discontinuous Galerkin method to solve the non-
linear Poisson Boltzmann (PB, for short) equation, following the direct discontinuous
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Galerkin (DDG) method introduced by Liu and Yan [12] for parabolic equations, and
then further developed by Huang et al. [13] for linear elliptic equations.

We restrict ourselves to the following nonlinear Poisson Boltzmann model,

−λ2∆u= f (x)+e−u, in Ω, (1.1a)

u= g(x), on ∂Ω, (1.1b)

where Ω is a convex bounded domain in R
d(d=1,2) with smooth boundary ∂Ω, λ>0 is

a physical parameter, f (x),g(x) are given functions.
The PB equation (1.1a) arises in many applications in physics, biology and chem-

istry. It was first introduced by Debye and Hückel [2] almost a century ago and further
developed by Kirkwood [3]. In past twenty years a growing interest in this model has
been driven mainly by numerical and experimental advances. Two examples of applica-
tions are particularly worth mentioning: the PB continuum electrostatic model has been
widely accepted as a tool in theoretical studies of interactions of biomolecules such as
proteins and DNAs in aqueous solutions, see e.g., [9]. The PB equation has also been
used as a standard tool in modeling the electrostatic potential in plasma physics, see
e.g., [10], where an asymptotic preserving numerical method is proposed to compute the
PB equation arising in plasma physics.

There are two main challenges in numerically solving the PB problem (1.1), one is
the nonlinear term e−u, which requires some iteration techniques, instead of a direct dis-
cretization by standard methods. The other is the smallness of the parameter λ ≪ 1,
which needs to be properly resolved to maintain the approximation accuracy. Several
numerical techniques have been applied to solve the PB equation, such as finite differ-
ence methods [4, 6, 7, 10, 15, 16], boundary element methods [9], multigrid methods [14]
and finite element methods [1, 8].

The discontinuous Galerkin (DG) method we discuss in this paper is a class of finite
element methods, using a completely discontinuous piecewise polynomial space for the
numerical solution and the test functions. The flexibility of the DG method is afforded by
local approximation spaces combined with the suitable design of numerical fluxes cross-
ing cell interfaces, leading to several obvious advantages such as high order accuracy,
flexibility in hp-adaptation, capacity to handle the domain with complex geometry, over
the usual continuous Galerkin method even for elliptic problems. Indeed our primary
motivation of considering the PB equation is to extend the recent developed direct DG
method [11,12] to nonlinear elliptic problems. Our strategy is to couple an iteration with
the DDG spatial discretization. The iteration techniques have been exploited by many au-
thors to prove the existence of solutions to nonlinear elliptic equations, see e.g., [17, 18].
The monotone iteration can also be used as a numerical method to approximate the so-
lution, see e.g., [19]. However, when the parameter λ≪ 1, solving (1.1) by a monotone
iteration with a constant iterative parameter may be inappropriate, as evidenced by our
numerical experiments.

The iterative DG method is based on a series of linear PB equations with a variable
iterative parameter. Through a careful analysis we identify an appropriate iterative pa-
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rameter kn in each step to ensure convergence of the iteration. Indeed a numerical com-
parison shows that the iteration with a variable iterative parameter is more efficient. In
addition, we propose two initial guesses, in order to better handle two cases of λ≪1 and
λ =O(1), respectively. Indeed, the iterative DG method presented in this paper offers
an effective and accurate algorithm for solving the PB equation. Illustration of this is the
main objective of this work.

In some applications employing the PB equation, say, in the study of the electrostatic
field of biomolecular systems, the domain is the whole space consisting of a molecular
region and a solvent region. In such cases a practical approach is to transfer the original
equation posed on the whole space to a truncated domain using an artificial boundary
condition, which is usually taken from an approximate analytical solution, see e.g. [8,
Section 3]. With such a reformulation, our analysis and results can be easily generalized
to this case as well.

We also point out that computational efficiency is a main concern when employ-
ing the PB equation to simulate large molecular structures in modern biophysical pro-
cesses. There exist some successful iterative approaches, e.g., the package APBS (Adap-
tive Poisson-Boltzmann Solver), by Baker et al [5], using the (algebraic) multigrid type
iterations. As illustrated in this work, the iterative DG method has linear complexity
in terms of the degree of freedom even for small λ and enjoys all nice features of DG
methods, therefore worth further investigation.

The rest of the paper is organized as follows: in Section 2, we describe the formula-
tion of a series of linear PB equations, followed by a discussion of how to prepare initial
guess u0, and how to choose kn such that the solutions of the linear PB equations con-
verge to that of the nonlinear PB equation. In Section 3, we utilize the DDG method to
discretize these linear PB equations, and discuss the existence, uniqueness and stability
of the solutions of every discretized scheme, and the corresponding set of flux formulae
is also derived. In Section 4, numerical examples of both one and two dimensions with
rectangular and triangular meshes are provided. Finally, in Section 5, conclusions are
given.

2 Iteration scheme

In this section, we present a method of iteration to approximate the solution of nonlinear
PB equation (1.1).

2.1 Weak formulation and initial guess

In order to conquer the nonlinear difficulty, we introduce the following iteration to ap-
proximate (1.1): starting with an initial guess u0, we find un (n= 1,2,···) iteratively by
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solving the following linear PB equation

{
−λ2∆un+1+knun+1= knun+ f (x)+e−un

, in Ω,
un+1= g(x), on ∂Ω,

(2.1)

where g(x)∈H3/2(∂Ω), f (x)∈L2(Ω) is the given function, and kn≥0 is to be determined
for convergence.

We first show how to prepare u0.

(i) If λ=O(1), we take
u0

1=w, (2.2)

where w solves {
−λ2∆w= f (x), in Ω,
w= g(x), on ∂Ω.

(2.3)

Our numerical simulation shows that this choice is efficient when λ=O(1).

(ii) If λ≪1, there are two cases: (a) If f (x)≥0, x∈Ω, we also take u0=u0
1 as the initial

guess. However, for other cases, this choice can lead to divergence of iteration (2.1). We
thus consider a second choice for u0. (b) If there exists x0 ∈Ω, such that f (x0)< 0, then
we take the following initial guess

u0
2=min

{
ln

(
1

esssup(− f0)

)
, essinf(g(x))

}
, x∈Ω, (2.4)

where f0=
f−| f |

2 .
From now on we use H1

g(Ω) to denote the space of H1(Ω) with v= g(x) on ∂Ω. For

weak solutions, it is suggested to adopt the weak formulation of (1.1): find u∈ H1
g(Ω),

such that
A(u,v)=( f (x),v)+(e−u,v), ∀v∈H1

0(Ω), (2.5)

where (u,v)=
∫

Ω
uvdx denotes the inner product in the L2 space, and

A(u,v)=(λ2∇u,∇v)=
∫

Ω
λ2∇u·∇vdx,

denotes the bilinear operator generated from the diffusion. With Holst’s theory in [8],
one can show that Eq. (2.5) admits a unique solution u∈M, where

M :={v| v∈H1(Ω), e−v ∈L∞(Ω), v= g(x) on ∂Ω}.

The weak form of (2.1) is: from un ∈M, we find un+1∈H1
g(Ω) such that

A(un+1,v)+kn(un+1,v)= kn(un,v)+( f (x),v)+(e−un
,v), ∀v∈H1

0(Ω). (2.6)

The monotone iterative scheme is a standard approach to deal with nonlinear PDEs; we
present a self-contained justification by some standard arguments.

Regarding the proposed initial guesses, we assert the following.
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Lemma 2.1. u0
i ∈M and u0

i ≤u in Ω a.e. for i=1,2.

Proof. For g(x) ∈ H3/2(∂Ω), f (x)∈ L2(Ω), by the standard elliptic theory, (2.3) admits a
unique solution w ∈ H2(Ω) →֒ C0(Ω) [20, 22], so that e−w ∈ L∞(Ω)⊆ L2(Ω). Hence the
initial guess u0

1=w∈M. It is obvious u0
2∈M. For ξ∈H1

g(Ω), set the nonlinear operator

L(ξ,v) :=A(ξ,v)−( f +e−ξ ,v), ∀v∈H1
0 (Ω), v≥0 a.e.

(i) By calculation we have

L(u0
1,v)=−(e−w,v)≤0= L(u,v).

Hence u0
1 is a weak subsolution of (1.1). This together with u0

1 = u= g(x) on ∂Ω yields
u0

1≤u(x) in Ω a.e. by the comparison principle.

(ii) From the choice of u0
2 it follows that

f (x)+e−u0
2 ≥0, x∈Ω,

hence

L(u0
2,v)=−( f (x)+e−u0

2 ,v)≤0= L(u,v).

Hence u0
2 is a weak subsolution, which together with u0

26g(x) yields u0
2≤u in Ω a.e.

2.2 Existence, uniqueness and monotonicity

We first prepare the following lemma.

Lemma 2.2. Let k̃ be a non-negative number. If ξ with ξ|∂Ω =0 satisfies

A(ξ,v)+ k̃(ξ,v)60, ∀v∈H1
0 (Ω), v>0, (2.7)

then

ξ6 0 in Ω a.e.

Proof. We choose v= ξ+ with (·)+=max{·,0}, so that v∈H1
0 (Ω),v>0 a.e. Hence

A(ξ,ξ+)+ k̃(ξ,ξ+)60. (2.8)

This implies ∫

{ξ≥0}
λ2|∇ξ|2+ k̃|ξ|2dx60, in Ωa.e., (2.9)

which along with ξ|∂Ω =0 infers ξ60 in Ω a.e. since k̃≥0.

This is used to establish the following result by the mathematical induction.
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Theorem 2.1 (Existence, uniqueness and monotonicity). Let the iterative parameter be kn =

e−essinf(un) or kn ≡ k0 = e−essinf(u0). If u0 = u0
i (i = 1,2), then (2.6) admits a unique solution

un+1∈M, and this solution sequence {un(x)} (n=0,1,···) satisfies

u0
6u1

6 ···6un
6un+1

6 ···6u in Ω a.e., (2.10)

where u is the solution of (2.5).

Proof. We present the proof for u0 = u0
1, the proof for u0 = u0

2 is entirely similar. First,
from (2.6) it follows that if un ∈ M and kn ≥0, then (2.6) admits a unique solution un+1∈

H2(Ω) →֒ C0(Ω), so e−un+1
∈ L∞(Ω)⊆ L2(Ω), which means un+1 ∈ M. By induction we

conclude that un ∈M for all n for u0∈M.
Next we show the monotonicity in two steps. (i) u06u1 in Ω a.e. Relation (2.6) with

n=0 and A(u0,v)=( f ,v) gives

A(u0−u1,v)+k0(u0−u1,v)=−(e−u0
,v)≤0 (2.11)

for all v∈H1
0 (Ω),v≥0 a.e. By Lemma 2.2 we have u06u1 in Ω a.e. for k0>0.

(ii) Assume u06u16 ···6un in Ω a.e., we only need to show

un
6un+1 in Ω a.e.

Note that the assumption implies the following

0< kn
6 ···6k1

6k0,

for ki = e−essinf(ui) or ki ≡ k0= e−essinf(u0).
In order to show un6un+1 in Ω a.e., we subtract (2.6) for un and un+1, respectively, to

obtain

A(un−un+1,v)+kn(un−un+1,v)=
∫

Ω
kn−1(un−1−un)v+(e−un−1

−e−un
)vdx

=
∫

Ω
(kn−1+

e−un−1
−e−un

un−1−un
)(un−1−un)vdx. (2.12)

For kn−1= e−essinf(un−1) or kn−1≡ k0= e−essinf(u0) we have

kn−1+
e−un−1

−e−un

un−1−un
>0,

for (un−1−un)≤ 0. This shows that the right hand side of (2.12) is non-positive for all
v∈H1

0(Ω),v≥0 a.e. By Lemma 2.2 we have un6un+1 in Ω a.e.
Finally we show un6u in Ω a.e. for all n, still by induction using u0≤u. Subtraction

of (2.5) from (2.6) for un+1 gives

A(un+1−u,v)+kn−1(un+1−u,v)=
∫

Ω
(kn+

e−un
−e−u

un−u
)(un−u)vdx. (2.13)

Similarly as above, for un−u60, the right hand side of (2.13) is non-positive for all v∈
H1

0(Ω),v≥0 a.e. By Lemma 2.2 we have un+16u in Ω a.e.
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2.3 Convergence and convergence speed

The following lemma indicates the effect of the iteration parameter on the convergence
speed.

Lemma 2.3. Given un, let un+1
1 and un+1

2 be the solutions of (2.6) with the choices of the param-

eter kn to be e−essinf(u0) and e−essinf(un), respectively. Then

un+1
1 6un+1

2 .

Proof. Subtracting (2.6) for un+1
2 and (2.6) for un+1

1 we obtain

A(un+1
1 −un+1

2 ,v)+(k0un+1
1 −knun+1

2 ,v)=
∫

Ω
(k0−kn)unvdx,

which leads to

A(un+1
1 −un+1

2 ,v)+kn(un+1
1 −un+1

2 ,v)=
∫

Ω
(k0−kn)(un−un+1

1 )vdx. (2.14)

For 0< kn ≤ k0,un ≤ un+1
1 , we have (kn−k0)(un−un+1

1 )≤ 0, hence the right hand side of

(2.14) is non-positive for all v∈H1
0(Ω),v≥0 a.e. By Lemma 2.2 we have un+1

1 6un+1
2 in Ω

a.e.

Regarding the convergence of the solution sequence {un}, we have the following re-
sult.

Theorem 2.2 (Convergence). The solution sequence {un} of (2.6) converges to the solution u
of (2.5) in M.

Proof. For u,un∈M, we set ξn =un−u, then ξn ∈H1
0(Ω); and (2.13) with v= ξn+1 yields

A(ξn+1,ξn+1)+kn(ξn+1,ξn+1)=

((
kn+

e−un
−e−u

ξn

)
ξn,ξn+1

)
. (2.15)

The right hand side is bounded above by

kn

2
‖ξn+1‖2+

knα2
n

2
‖ξn‖2,

where

αn =esssup
Ω

∣∣∣∣1+
e−un

−e−u

knξn

∣∣∣∣≤α :=1−
e−esssupu

k0
<1,

by using the fact that u0≤un ≤u and 0< kn ≤ k0. Hence

2λ2

kn
‖∇xξn+1‖2+‖ξn+1‖2

6α2‖ξn‖2. (2.16)
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From the Poincaré inequality of the form ‖ξn+1‖2 ≤ 1
CΩ

‖∇ξn+1‖2, where CΩ is a constant
related to the domain Ω, (2.16) yields

‖ξn+1‖≤
α√

1+ 2CΩλ2

kn

‖ξn‖≤
α√

1+ 2CΩλ2

k0

‖ξn‖. (2.17)

Hence ‖ξn‖→ 0, from which and (2.16) again we see that ξn → 0 in H1
0(Ω). Therefore

un→u in M.

Remark 2.1. From (2.17) we also obtain the convergence rate

‖un−u‖≤


 α√

1+ 2CΩλ2

k0




n

‖u0−u‖, (2.18)

which indicates that the larger λ is, the faster the convergence is.

3 DDG discretization

3.1 One dimensional formulation

In one-dimensional case, we partition the domain I = [a,b] into computational elements
Ij =(xj−1/2,xj+1/2), ∆x= xj+1/2−xj−1/2, with x1/2 = a and xN+1/2= b. And we define the
finite element space

Vm={v∈L2(I) : v|Ij
∈Pm(Ij), j=1,2,··· ,N}.

Eq. (2.3) for u0=w in one dimensional case reduces to





−λ2u0
xx = f (x) in I,

u0(a)= g1,
u0(b)= g2.

(3.1)

By the DDG method we find u0
h∈Vm such that

λ2
∫

Ij

u0
hxvxdx−λ2 (̂u0

hx)v|∂Ij
+

λ2

2
[u0

h](vx)
−
j+1/2+

λ2

2
[u0

h](vx)
+
j−1/2=

∫

Ij

f vdx, (3.2)

for all v∈Vm. Here and in what follows the notation v|∂Ij
is used to denote v−j+1/2−v+j−1/2.

The iteration (2.1) becomes





−λ2un+1
xx +knun+1= knun+ f (x)+e−un

in I,
un+1(a)= g1,
un+1(b)= g2.

(3.3)
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The DDG scheme for (3.3) is to find un+1
h ∈Vm so that for all v∈Vm,

λ2
∫

Ij

un+1
hx vxdx+kn

∫

Ij

un+1
h vdx−λ2 (̂un+1

hx )v|∂Ij

+
λ2

2
[un+1

h ](vx)
−
j+1/2+

λ2

2
[un+1

h ](vx)
+
j−1/2=

∫

Ij

Fn
h vdx, (3.4)

where Fn
h = knun

h+ f (x)+e−un
h , kn = e−min(un

h). The numerical flux for both (3.2) and (3.4)
on each cell interface is of the form:

ûhx=β0
[uh]

∆x
+uhx+β1∆x[uhxx]. (3.5)

Here u±
h =uh(x±0), [uh]=u+

h −u−
h , uh=

u+
h +u−

h
2 . On the boundary we take

[uh]1/2 =u+
h1/2−g1, [uh]N+1/2= g2−u−

h(N+1/2),

so that the numerical flux for both (3.2) and (3.4) on the boundary becomes

ûhx1/2=β0

(u+
h1/2−g1)

∆x
+(uhx)

+
1/2, (3.6a)

ûhx N+1/2=β0

(g2−u−
h(N+1/2)

)

∆x
+(uhx)

−
N+1/2. (3.6b)

We remark that for non-uniform meshes ∆x in the numerical flux formula needs to be
replaced by (xj+1−xj)/2. The iteration algorithm is complete once the parameters β0

and β1 are chosen to make the scheme stable.

3.2 Two dimensions with rectangular meshes

In two-dimensional case, we present DDG schemes on uniform rectangular meshes and
triangular meshes. If the domain Ω is rectangular, i.e., Ω=[a,b]×[c,d]. We partition Ω by
rectangular meshes

Ω=
N,M

∑
j,k

Kj,k, Kj,k = Ij× Jk =[xj− 1
2
,xj+ 1

2
]×[yk− 1

2
,yk+ 1

2
] (3.7)

of uniform mesh sizes ∆=max{∆x,∆y}, where ∆x= xj+1/2−xj−1/2, ∆y=yj+1/2−yj−1/2.
The DDG scheme is to find un|Kj,k

∈Vm (n=0,1,2,···) such that

λ2
∫∫

Kj,k

∇u0
h ·∇vdxdy−

∫

Jk

Ĵ1
0
v|

x
j+ 1

2
x

j− 1
2

dy−
∫

Ij

Ĵ2
0
v|

y
k+ 1

2
y

k− 1
2

dx+B0=
∫∫

Kj,k

f vdxdy, (3.8)
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λ2
∫∫

Kj,k

∇un+1
h ·∇vdxdy+kn

∫

Kj,k

un+1vdxdy−
∫

Jk

Ĵ1
n+1

v|
x

j+ 1
2

x
j− 1

2

dy

−
∫

Ij

Ĵ2
n+1

v|
y

k+ 1
2

y
k− 1

2

dx+Bn+1=
∫∫

Kj,k

Fn
h vdxdy, (3.9)

where

Bn =
1

2

{∫

Jk

([un
h ]v

−
x )x

j+ 1
2

+([un
h ]v

+
x )x

j− 1
2

dy+
∫

Ij

([un
h ]v

−
y )y

k+ 1
2

+([un
h ]v

+
y )y

k− 1
2

dx

}
,

[uh]x
j+ 1

2

:=uh(x+
j+ 1

2

,y)−uh(x−
j+ 1

2

,y), [uh]y
k+ 1

2

:=uh(x,y+
k+ 1

2

)−uh(x,y−
k+ 1

2

).

The numerical flux Ĵi
n
(i=1,2) on each cell interface is of the form:

Ĵ1
n
|x

j+ 1
2

=

(
β0

[un
h ]

∆x
+un

hx+β1∆x[un
hxx]

)
|x

j+ 1
2

, (3.10a)

Ĵ2
n
|y

k+ 1
2

=

(
β0

[un
h ]

∆y
+un

hy+β1∆y[un
hyy]

)
|y

k+ 1
2

. (3.10b)

Incorporating the boundary data g(a,y)= g1, g(b,y)= g2, g(x,c)= g3 and g(x,d)= g4 into

the numerical flux Ĵi
n
(i=1,2) on the boundary, so that

Ĵ1
n
|x 1

2

=

(
β0

(un
h−g1)

∆x
+(un

hx)
+

)
|x 1

2

, (3.11a)

Ĵ2
n
|y 1

2

=

(
β0

(un
h−g3)

∆y
+(un

hy)
+

)
|y 1

2

, (3.11b)

Ĵ1
n
|x

N+ 1
2

=

(
β0

(g2−un
h)

∆x
+(un

hx)
−

)
|x

N+ 1
2

, (3.11c)

Ĵ2
n
|y

N+ 1
2

=

(
β0

(g4−un
h)

∆y
+(un

hy)
−

)
|y

N+ 1
2

, (3.11d)

[uh]x 1
2

=uh(x+1
2

,y)−g1, [uh]x
N+ 1

2

= g2−uh(x−
N+ 1

2

,y), (3.11e)

[uh]y 1
2

=uh(x,y+1
2

)−g3, [uh]y
N+ 1

2

= g4−uh(x,y−
N+ 1

2

). (3.11f)

3.3 Two dimensions with unstructured meshes

We partition a general domain Ω into shape-regular meshes T∆ = {K}, consisting of a
nonoverlapping open element covering completely the domain Ω. We denote by ∆ the
piecewise constant mesh function with ∆(x)≡∆K =diam{K}, when x is in element K.

The DDG schemes for (2.3) and (2.1) are to find u0
h|K ∈ Vm(K) and un+1

h |K ∈ Vm(K)
(n=0,1,2,···), respectively, such that

λ2
∫∫

K

∇u0
h ·∇vdx−λ2

∫

∂K
û0

hnvds+
λ2

2

∫

∂K
[u0

h]vnds=
∫∫

K

f vdx, (3.12)
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λ2
∫∫

K

∇un+1
h ·∇vdx+kn

∫

K
un+1

h vdx−λ2
∫

∂K
ûn+1

hn vds

+
λ2

2

∫

∂K
[un+1

h ]vnds=
∫∫

K

Fn
h vdx, (3.13)

where n=(nx,ny) is the outward normal unit along the cell boundary ∂K and uhn=∇uh·n.
The numerical flux on each interior cell interface is of the form:

ûhn =β0
[uh]

∆
+

∂uh

∂n
+β1∆[uhnn], (3.14)

where ∆=diam{K} is the mesh size and

[uh]=uextK

h −uintK

h , uhn =
uextK

hn +uintK

hn

2
.

Here uextK

hn represents uh evaluated from outside of K (inside the neighboring cell). Using
the boundary data g= g0, we take the numerical flux ûn on the boundary as

ûhn =β0
g0−uintK

h

∆
+∂nuintK

h . (3.15)

If the cell boundaries are straight lines, such as the triangular meshes, the above numeri-
cal fluxes become

ûhn= ûhxnx+ûhyny

with

ûhx =β0
[uh]

∆
nx+uhx+β1∆([uhxx]nx+[uhxy]ny), (3.16a)

ûhy=β0
[uh]

∆
ny+uhx+β1∆([uhyx]nx+[uhyy]ny). (3.16b)

In other words:

ûhn=β0
[uh]

∆
+uhxnx+uhyny+β1([uhxx]n

2
x+2[uhxy]nxny+uhyy]n

2
y). (3.17)

The numerical flux on the boundary then becomes

ûhn=β0
g0−uintK

h

∆
+uintK

hx nx+uintK
hy ny. (3.18)
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3.4 Existence, uniqueness and stability

For simplicity, we discuss the existence, uniqueness and stability of the DDG schemes
only for one-dimensional case; similar analysis applies to the two-dimensional DDG
scheme as well.

Summation of (3.4) over j=1,2···N gives

λ2
N

∑
j=1

∫

Ij

un+1
hx vxdx+kn

∫

Ω
un+1

h vdx−λ2
N

∑
j=1

(̂un+1
hx )v|∂Ij

+
λ2

2

N

∑
j=1

[un+1
h ](vx)

−
j+1/2

+
λ2

2

N

∑
j=1

[un+1
h ](vx)

+
j−1/2=

∫

Ω
Fn

h vdx, (3.19)

which can be rewritten as

A(un+1
h ,v)=

∫

Ω
Fn

h vdx ∀v∈Vm, (3.20)

where the bilinear operator A(·,·) is defined as

A(un+1
h ,v)=λ2

N

∑
j=1

∫

Ij

un+1
hx vxdx+kn

∫

Ω
un+1

h vdx+λ2
N

∑
j=0

(
ûn+1

hx [v]

)

j+1/2

+λ2
N

∑
j=0

(
[un+1

h ](vx)
)

j+1/2
. (3.21)

Here (un+1
h1/2)

−= g1, (un+1
h(N+1/2)

)+= g2 and we have used the notation

[v]1/2 =v+1/2, [v]N+1/2=v−N+1/2, (vx)1/2=
1

2
(vx)

+
1/2, (vx)N+1/2=

1

2
(vx)

−
N+1/2.

We now discuss the stability of scheme (3.20), which implies both uniqueness and the
existence of the scheme.

To identify the admissible parameters (β0,β1), we define the discrete DG norm of
v∈Vm

‖v‖2
E =

N

∑
j=1

∫

Ij

|vx|
2dx+

β0

∆x

N

∑
j=0

[v]2j+1/2 (3.22)

and the quantity

Γ(β1)= sup
u∈Pm−1([−1,1])

(u(1)−2β1∂τu(1))2

∫ 1
−1u2(τ)dτ

. (3.23)

Remark 3.1. It is shown in [23] that Γ(β1) is related to the numerical flux through the
following inequality

(2∂xv+β1∆x[∂2
xv])2|xj+1/2

≤
4Γ(β1)

∆x

(∫

Ij

+
∫

Ij+1

|vx|
2dx

)
. (3.24)
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Remark 3.2. A quantitative estimate for Γ(β1) is known, see [24]: for any k≥ 1, it holds
that

Γ(β1)=2m2

(
1−β1(m

2−1)+
β2

1

3
(m2−1)2

)
. (3.25)

The stability of the DDG scheme (3.20) is ensured for some parameters (β0,β1).

Theorem 3.1 (Stability). If

β0>β∗
0 :=max

{
2Γ(β1),

9

4
Γ(0)

}
, (3.26)

then there exists a constant C such that

‖un+1
h −ũn+1

h ‖E ≤
C

λ2γ+C−2kn
‖Fn

h − F̃n
h ‖, γ=1−

√
β∗

0

β0
, (3.27)

where un+1
h and ũn+1

h are the solutions of (3.20) associated with Fn
h and F̃n, respectively.

Proof. From (3.20) it follows that

A(un+1
h −ũn+1

h ,v)=
∫

Ω
(Fn

h − F̃n
h )vdx. (3.28)

If we set v=un+1
h −ũn+1

h , then v|∂Ω =0 and

A(v,v)≤‖Fn
h − F̃n

h ‖‖v‖. (3.29)

Note that with v = 0 on the boundary, it can be verified that ‖v‖E is a norm. By norm
equivalence in finite dimensional space, we have

C−1‖v‖E ≤‖v‖6C‖v‖E , (3.30)

for some constants C. On the other hand, for β0 satisfying (3.26), we claim that

(λ2γ+C−2kn)‖v‖2
E ≤A(v,v) (3.31)

for some 0<γ<1. These put together lead to

(λ2γ+C−2kn)‖v‖2
E 6A(v,v)6C‖Fn

h − F̃n
h ‖‖v‖E .

This gives (3.27).
We now complete the proof by showing claim (3.31). By regrouping terms in A(v,v),

we have

A(v,v)−kn
∫

Ω
v2dx≥λ2

(
1

2

∫

I1

v2
xdx+(v̂x+vx)[v]1/2

)
+λ2

(
1

2

∫

IN

v2
xdx+(v̂x+vx)[v]N+1/2

)

+λ2
N−1

∑
j=1

[
1

2

(∫

Ij

+
∫

Ij+1

)
v2

xdx+(v̂x+vx)[v]j+1/2

]
.
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The last term in the bracket [·] is shown in [23] bounded from below by

γ1

(
1

2

(∫

Ij

+
∫

Ij+1

)
v2

xdx+β0

[v]2j+1/2

∆x

)

for

γ1=1−

√
2Γ(β1)

β0
∈ (0,1).

A similar analysis can be applied to boundary terms, which we present here for illustra-
tion. For the first term, we have

1

2

∫

I1

|vx|
2dx+(v̂x+vx)[v]1/2

=
1

2

∫

I1

|vx|
2dx+

(
β0

[v]1/2

∆x
+

3

2
(vx)

+
1/2

)
[v]1/2

≥
1

2

∫

I1

|vx|
2dx+γ2

β0

∆x
[v]21/2−

9∆x

16β0(1−γ2)
((vx)

+
1/2)

2

=γ2

(
1

2

∫

I1

|vx|
2dx+

β0

∆x
[v]21/2

)
+

1−γ2

2

∫

I1

|vx|
2dx−

9∆x

16β0(1−γ2)
((vx)

+
1/2)

2

=


γ2+

1−γ2

2

∫
I1
|vx|2dx− 9∆x

16β0(1−γ2)
((vx)

+
1/2)

2

1
2

∫
I1
|vx|2dx+ β0

∆x [v]
2
1/2



(

1

2

∫

I1

|vx|
2dx+

β0

∆x
[v]21/2

)

=


γ2+

1−γ2

2

(∫
I1
|vx|2dx− 1

2Γ(0)((vx)
+
1/2)

2
)

1
2

∫
I1
|vx|2dx+ β0

∆x [v]
2
1/2



(

1

2

∫

I1

|vx|
2dx+

β0

∆x
[v]21/2

)
,

where we have chosen β0=
9

4(1−γ2)2 Γ(0) so that

γ2=1−
3

2

√
Γ(0)

β0
∈ (0,1).

Note that

Γ(0)= sup
u∈Pm−1([−1,1])

u2(1)∫ 1
−1u2(τ)dτ

≥
∆x((vx)

+
1/2)

2

2
∫

I1
|vx|2dx

,

we therefore obtain

1

2

∫

I1

|vx|
2dx+(v̂x+vx)[v]1/2 ≥γ2

(
1

2

∫

I1

|vx |
2dx+

β0

∆x
[v]21/2

)
.

Similarly,

1

2

∫

IN

|vx|
2dx+(v̂x+vx)[v]N+1/2 ≥γ2

(
1

2

∫

IN

|vx|
2dx+

β0

∆x
[v]2N+1/2

)
.
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Taking γ=min{γ1,γ2}, we thus obtain

A(v,v)≥λ2γ‖v‖2
E+kn‖v‖2 ≥ (λ2γ+C−2kn)‖v‖2

E.

The proof is complete.

Remark 3.3. From the stability estimate (3.27) we see that the amplification factor is in-
versely proportional to

λ2

(
1−

√
β∗

0

β0

)
+C−2kn.

This implies that the convergence may be affected by three factors: λ, (β0,β1) and the
step size kn. For a fixed kn and the given numerical flux, the smaller λ is, the poorer the
numerical performance (see Fig. 3) is. For small λ, this suggests the use of a numerical
flux with larger β0 to improve the performance of the iterative DG method.

Remark 3.4. The error estimate of optimal order O((∆x)m+1) is more involved, and may
be obtained by using some global projection similar to that introduced in [24]. However,
we choose not to pursue these details in this paper.

4 Numerical examples

In this section we present several numerical examples to solve one-dimensional and two-
dimensional Poisson-Boltzmann problems. In these examples we demonstrate both the
accuracy of the iterative DG method and the effectiveness of the iteration in terms of both
initial guess and the iterative parameter. Also, we investigate the numerical performance
of the iterative DG method as the parameter λ varies, ranging from O(1) to o(1). In the
following examples, three typical values of λ are tested.

Example 4.1. We solve the nonlinear Poisson-Boltzmann equation of the form

−λ2uxx= f +e−u, u(0)=0, u(1)=1 (4.1)

on the domain [0,1], where f =−λ2π2sinπx−e−sinπx−x. The exact solution is

u=−sinπx−x.

Test case 1. We test problem (4.1) with λ = 1, using the numerical flux (3.5) with β0 =
2,β1=

1
12 , as introduced by Liu and Yan [12]:

uhx =2
[uh]

∆x
+uhx+

1

12
∆x[uhxx]. (4.2)

The iterative DG method based on polynomials of degree m with m=1,2,··· ,7 is tested,
(m+1)th order of accuracy for L2 and mth order of accuracy for H1 are obtained. The
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Figure 1: L2 errors and H1 errors for 1D PB equation using the iterative DG method with numerical flux (4.2),

kn=e−min(un), λ=1. (a) P1 approximation; (b) P2 approximation; (c) P3 approximation; (d) P4 approximation.
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Figure 2: The L2 errors and H1 errors between numerical solutions at every step and the exact solution for
the 1D nonlinear PB equation, using the iterative DG method with numerical flux (4.2) and mesh number N,

kn = e−min(un),λ=1, P2 approximation. (a) N=10; (b) N=20; (c) N=40 and (d) N=80.
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Table 1: 1D PB equation with numerical flux (4.2), kn = e−min(un), λ=1.

m steps
N=10 N=20 N=40 N=80

error error order error order error order

1 15
‖u−uh‖L2 0.00375734 0.00105854 1.83 0.000284523 1.90 7.38155e-05 1.95

‖u−uh‖H1 0.203656 0.101007 1.01 0.0503995 1.00 0.025187 1.00

2 15
‖u−uh‖L2 0.00135051 0.000149582 3.17 1.76829e-05 3.08 2.15174e-06 3.04

‖u−uh‖H1 0.0331646 0.00742854 2.16 0.00176604 2.07 0.000430958 2.04

3 15
‖u−uh‖L2 5.00619e-06 2.20369e-07 4.51 1.06276e-08 4.37 5.84378e-10 4.19

‖u−uh‖H1 0.000315741 3.12041e-05 3.34 3.53595e-06 3.14 4.28119e-07 3.05

4 15
‖u−uh‖L2 5.60650e-07 2.13301e-08 4.72 7.18633e-10 4.89 2.31376e-11 4.96

‖u−uh‖H1 4.60193e-05 3.78428e-06 3.60 2.64381e-07 3.84 1.73076e-08 3.93

N=4 N=8 N=16 N=32

5 15
‖u−uh‖L2 1.42907e-07 1.83359e-09 6.28 2.69864e-11 6.09 4.14942e-13 6.02

‖u−uh‖H1 8.20283e-06 2.21214e-07 5.21 6.58277e-09 5.07 2.02953e-10 5.02

6 15
‖u−uh‖L2 1.09212e-08 1.07461e-10 6.67 9.10789e-13 6.88 7.36054e-15 6.95

‖u−uh‖H1 4.88549e-07 1.05659e-08 5.53 1.88938e-10 5.81 3.1199e-12 5.92

7 15
‖u−uh‖L2 8.93136e-11 3.01587e-13 8.21 1.14287e-15 8.04 9.54879e-17 −

‖u−uh‖H1 6.88814e-09 4.96217e-11 7.12 3.77111e-13 7.04 3.82719e-15 −

Table 2: 1D PB equation with numerical flux (4.2), kn ≡ e−min(u0), λ=1.

m steps
N=10 N=20 N=40 N=80

error error order error order error order

1 24
‖u−uh‖L2 0.00375734 0.00105854 1.83 0.000284523 1.90 7.38155e-05 1.95

‖u−uh‖H1 0.203656 0.101007 1.01 0.0503995 1.00 0.025187 1.00

2 24
‖u−uh‖L2 0.00135051 0.000149582 3.18 1.76829e-05 3.08 2.15174e-06 3.04

‖u−uh‖H1 0.0331646 0.00742854 2.16 0.00176604 2.07 0.000430958 2.04

3 24
‖u−uh‖L2 5.00619e-06 2.20369e-07 4.51 1.06276e-08 4.37 5.84378e-10 4.19

‖u−uh‖H1 0.000315741 3.12041e-05 3.34 3.53595e-06 3.14 4.28119e-07 3.05

4 24
‖u−uh‖L2 5.60650e-07 2.13301e-08 4.72 7.18633e-10 4.89 2.31378e-11 4.96

‖u−uh‖H1 4.60193e-05 3.78428e-06 3.60 2.64381e-07 3.84 1.73076e-08 3.93

N=4 N=8 N=16 N=32

5 24
‖u−uh‖L2 1.42907e-07 1.83359e-09 6.28 2.69864e-11 6.09 4.14945e-13 6.02

‖u−uh‖H1 8.20283e-06 2.21214e-07 5.21 6.58277e-09 5.07 2.02953e-10 5.02

6 24
‖u−uh‖L2 1.09212e-08 1.07461e-10 6.67 9.10798e-13 6.88 7.34704e-15 6.95

‖u−uh‖H1 4.88549e-07 1.05659e-08 5.53 1.88937e-10 5.81 3.12018e-12 5.92

7 24
‖u−uh‖L2 8.93136e-11 3.01589e-13 8.21 1.14813e-15 8.04 8.87827e-17 −

‖u−uh‖H1 6.88814e-09 4.96218e-11 7.12 3.77157e-13 7.04 7.08744e-15 −

L2 errors and H1 errors are reported in Table 1 with kn = e−min(un), and in Table 2 with
kn ≡ e−min(u0). From Tables 1 and 2 we find that the iterative DG scheme (3.4) with kn =
e−min(un) converges quicker than that with kn ≡ e−min(u0), where the iteration process is
terminated when ‖un+1

h −un
h‖2<1.0×10−15.
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In Fig. 1, the L2 errors and H1 errors for one dimensional PB problem are shown by
using the data in Table 1. In Fig. 2, we show the L2 errors and H1 errors between nu-
merical solutions and the exact solution at every step as the iteration proceeds. From this
figure, we see that the iterative DG method only needs few steps for numerical solutions
to converge to the exact solution.

Remark 4.1. Since the iterative DG scheme (3.4) with the variable iteration parameter
kn = e−min(un) converges more quickly, we choose to use kn = e−min(un) in the remaining
numerical tests.

Test case 2. We test problem (4.1) again with the parameter λ=0.1 and λ=0.01. For these
cases, the iterative DG method with flux (4.2) does not seem to converge to the correct
solution, as shown in Fig. 3, and explained in Remark 3.3 earlier. The remedy is to take the
numerical flux (3.5) with β0,β1 listed in Table 3, where α0,α1,α2,α3 are parameters adapted
in terms of the degree of the polynomial elements. We choose α0=α1=α2=α3=4.5 in this
test case so that the theoretical bound (3.26) is satisfied. The comparison of results using
flux (4.2) and flux (3.5), as given in Fig. 3, indicates that Theorem 3.1 indeed provides
a reliable guide of selecting numerical fluxes to ensure the convergence to the correct
solution.

Table 3: The choice of βi for Pm polynomials.

m 1 2 3 4 5

β0
9
4

15α0
4

225α1
32

225α2
32

225α3
32

β1 0 3
80

1
64

1
64

1
64
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Figure 3: Some wrong numerical results for 1D PB equation of using the flux (4.2), kn = e−min(un), λ=1. (a)
P5 approximation, N=8; (b) P6 approximation, N=8.
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Table 4: 1D PB equation with numerical flux (3.5), kn = e−min(un), λ=0.1.

m steps
N=10 N=20 N=40 N=80

error error order error order error order

1 41
‖u−uh‖L2 0.00272401 0.000660542 2.04 0.00016337 2.02 4.07333e-05 2.00

‖u−uh‖H1 0.202102 0.100825 1.00 0.0503763 1.00 0.025184 1.00

2 41
‖u−uh‖L2 0.000196287 2.38116e-05 3.04 2.9066e-06 3.03 3.59369e-07 3.02

‖u−uh‖H1 0.0110174 0.00249597 2.14 0.000590115 2.08 0.000143552 2.04

3 41
‖u−uh‖L2 2.36491e-06 1.44073e-07 4.04 8.95017e-09 4.01 5.58557e-10 4.00

‖u−uh‖H1 0.000232211 2.75155e-05 3.08 3.40055e-06 3.02 4.24034e-07 3.00

N=4 N=8 N=16 N=32

4 41
‖u−uh‖L2 2.89394e-06 9.75097e-08 4.89 3.13445e-09 4.96 9.91100e-11 4.98

‖u−uh‖H1 0.000175772 1.0715e-05 4.04 6.63452e-07 4.01 4.13049e-08 4.01

5 41
‖u−uh‖L2 1.02671e-07 1.66779e-09 5.94 2.63473e-11 5.98 4.19109e-13 5.97

‖u−uh‖H1 6.71679e-06 2.07011e-07 5.02 6.46345e-09 5.00 2.07793e-10 4.96

Table 5: 1D PB equation with numerical flux (3.5), kn = e−min(un),λ=0.01.

m steps
N=10 N=20 N=40 N=80

error error order error order error order

1 80
‖u−uh‖L2 0.00260376 0.000651137 2.00 0.00016264 2.00 4.06445e-05 2.00

‖u−uh‖H1 0.201373 0.100753 1.00 0.0503707 1.00 0.0251835 1.00

2 80
‖u−uh‖L2 7.10296e-05 9.58057e-06 2.89 1.35586e-06 2.82 1.78935e-07 2.92

‖u−uh‖H1 0.00907876 0.00230191 1.98 0.000581707 1.98 0.000144037 2.01

3 80
‖u−uh‖L2 1.40190e-06 9.68992e-08 3.86 7.39186e-09 3.71 5.25593e-10 3.81

‖u−uh‖H1 0.000250604 2.94131e-05 3.09 3.46043e-06 3.09 4.24843e-07 3.02

N=4 N=8 N=16 N=32

4 80
‖u−uh‖L2 2.17520e-06 7.53449e-08 4.85 2.63829e-09 4.84 8.89299e-11 4.89

‖u−uh‖H1 0.000208239 1.18607e-05 4.13 6.93167e-07 4.10 4.1928e-08 4.05

5 80
‖u−uh‖L2 7.02893e-08 1.1915e-09 5.88 2.21184e-11 5.75 4.50900e-13 5.62

‖u−uh‖H1 8.60295e-06 2.40058e-07 5.16 6.71722e-09 5.16 2.03235e-10 5.05

The iterative DG method based on polynomials of degree m with m = 1,2,··· ,5 is
tested. We observe (m+1)th order of accuracy for L2 and mth order of accuracy for
H1. The L2 errors and H1 errors are reported in Table 4 (λ= 0.1) and Table 5 (λ= 0.01),
respectively. The iteration process is terminated when ‖un+1

h −un
h‖2<1.0×10−12.

We also record the CPU times of these three tests in Table 6 (λ=1), Table 7 (λ=0.1),
and Table 8 (λ=0.01), respectively. And we find that the complexity of using the iterative
DG method to solve one-dimensional PB equations is O(N).

This example shows that the iterative DG method with a variable iteration parameter
kn and appropriate initial guess u0 is quite efficient for solving the one-dimensional non-
linear Poisson-Boltzmann equation (4.1) for a large range of λ. The iteration steps may
increase dramatically as λ becomes smaller, as explained in Remark 3.3.
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Table 6: CPU time for solving 1D PB equation with numerical flux (3.5), kn = e−min(un), λ=1.

m steps
N=10 N=20 N=40 N=80

CPU(s) CPU(s) times CPU(s) times CPU(s) times

1 15 0.01 0.03 3.00 0.05 1.67 0.11 2.20

2 15 0.02 0.04 2.00 0.08 2.00 0.15 1.88

3 15 0.02 0.05 2.50 0.10 2.00 0.19 1.90

4 15 0.03 0.06 2.00 0.12 2.00 0.25 2.08

N=4 N=8 N=16 N=32

5 15 0.02 0.03 1.50 0.06 2.00 0.13 2.17

6 15 0.02 0.04 2.00 0.08 2.00 0.14 1.75

7 15 0.03 0.05 1.67 0.09 1.80 0.18 2.00

Table 7: CPU time for solving 1D PB equation with numerical flux (3.5), kn = e−min(un), λ=0.1.

m steps
N=10 N=20 N=40 N=80

CPU(s) CPU(s) times CPU(s) times CPU(s) times

1 41 0.05 0.09 1.80 0.18 2.00 0.35 1.94

2 41 0.06 0.12 2.00 0.24 2.00 0.48 2.00

3 41 0.08 0.16 2.00 0.31 1.94 0.64 2.06

N=4 N=8 N=16 N=32

4 41 0.04 0.08 2.00 0.16 2.00 0.32 2.00

5 41 0.05 0.10 2.00 0.20 2.00 0.41 2.05

Table 8: CPU time for solving 1D PB equation with numerical flux (3.5), kn = e−min(un), λ=0.01.

m steps
N=10 N=20 N=40 N=80

CPU(s) CPU(s) times CPU(s) times CPU(s) times

1 80 0.10 0.19 1.90 0.35 1.84 0.70 2.00

2 80 0.13 0.24 1.85 0.46 1.92 0.95 2.07

3 80 0.15 0.30 2.00 0.63 2.10 1.28 2.03

N=4 N=8 N=16 N=32

4 80 0.08 0.16 2.00 0.32 2.00 0.64 2.00

5 80 0.10 0.19 1.90 0.39 2.05 0.80 2.05

Remark 4.2. In this example, we find that when λ is small, fluxes with β0,β1 listed in
Table 3 work well and will be adopted in the following example. However, as shown in
Fig. 3, (4.2) leads to the wrong solution when λ is small.

Example 4.2. We consider
{

−λ2∆u= f (x)+e−u, (x,y)∈Ω=[0,1]2 ⊂R
2,

u= g(x), on ∂Ω.
(4.3)

We test the case with f =2λ2π2cosπxcosπy−e−(cosπxcosπy) and with g=cosπycosπx on
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the boundary. The exact solution is

u=cosπxcosπy.

In our numerical simulation the numerical flux (3.10) with β0,β1 listed in Table 3 is
adopted, where we take α0=α1=α2=α3=25 so that (3.26) is satisfied.

Table 9: 2D PB equation with numerical flux (3.10), kn = e−min(un), λ=1.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 10
‖u−uh‖L2 0.0384311 0.00907175 2.08 0.00200517 2.18 0.000438976 2.19

‖u−uh‖H1 0.571003 0.273687 1.06 0.131827 1.05 0.0644315 1.03

2 10
‖u−uh‖L2 0.00146901 0.000148121 3.31 1.72802e-05 3.10 2.12061e-06 3.03

‖u−uh‖H1 0.0580651 0.0141317 2.04 0.00350617 2.01 0.000874728 2.00

3 10
‖u−uh‖L2 0.000259793 1.86371e-05 3.80 1.21185e-06 3.94 7.65025e-08 3.99

‖u−uh‖H1 0.00614743 0.000716945 3.10 7.83854e-05 3.19 8.77698e-06 3.16

4 10
‖u−uh‖L2 2.48821e-06 8.52127e-08 4.87 3.22777e-09 4.72 1.84377e-10 −

‖u−uh‖H1 0.000170959 1.11810e-05 3.93 8.19604e-07 3.77 8.04222e-08 −

Table 10: 2D PB equation with numerical flux (3.10), kn = e−min(un), λ=0.1.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 58
‖u−uh‖L2 0.0231556 0.0056022 2.05 0.00138851 2.01 0.000347826 2.00

‖u−uh‖H1 0.505541 0.252421 1.00 0.126003 1.00 0.0629688 1.00

2 58
‖u−uh‖L2 0.00127086 0.00014274 3.15 1.71164e-05 3.06 2.11542e-06 3.02

‖u−uh‖H1 0.0571981 0.014094 2.02 0.00350399 2.01 0.000874592 2.00

3 58
‖u−uh‖L2 0.000186514 1.37671e-05 3.76 9.00703e-07 3.93 5.69821e-08 3.98

‖u−uh‖H1 0.006235 0.000738052 3.08 7.97449e-05 3.21 8.84077e-06 3.17

4 58
‖u−uh‖L2 2.41178e-06 8.44386e-08 4.84 3.22323e-09 4.71 1.84220e-10 −

‖u−uh‖H1 0.000171034 1.11785e-05 3.94 8.19411e-07 3.77 8.03926e-08 −

Table 11: 2D PB equation with numerical flux (3.10), kn = e−min(un), λ=0.01.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 139
‖u−uh‖L2 0.0165748 0.0042745 1.96 0.00107781 1.99 0.000267543 2.01

‖u−uh‖H1 0.503224 0.253107 0.99 0.126554 1.00 0.0631373 1.00

2 139
‖u−uh‖L2 0.00108095 0.000135074 3.00 1.68938e-05 3.00 2.1097e-06 3.00

‖u−uh‖H1 0.0558528 0.0139832 2.00 0.00349775 2.00 0.000874302 2.00

3 139
‖u−uh‖L2 5.69636e-05 4.4864e-06 3.67 3.71585e-07 3.59 2.72899e-08 3.78

‖u−uh‖H1 0.00418383 0.000556026 2.91 7.23784e-05 2.94 8.79737e-06 3.04

4 139
‖u−uh‖L2 1.92748e-06 7.25892e-08 4.73 3.0392e-09 4.58 1.73680e-10 −

‖u−uh‖H1 0.000177023 1.12462e-05 3.98 8.1001e-07 3.80 7.81402e-08 −
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Table 12: CPU time for solving 2D PB equation with numerical flux (3.10), kn = e−min(un), λ=1.

m steps
N=4 N=8 N=16 N=32

CPU(s) CPU(s) times CPU(s) times CPU(s) times

1 10 0.31 1.47 4.74 7.19 4.89 38.67 5.38

2 10 0.96 4.99 5.20 25.16 5.04 170.24 6.77

3 10 4.20 20.50 4.88 89.65 4.37 575.97 6.42

For λ = 1,0.1,0.01, the iterative DG method based on Pm polynomial elements with
m=1,2,3,4 is tested, (m+1)th order of accuracy for L2 and mth order of accuracy for H1

are obtained. The L2 errors and H1 errors are reported in Tables 9, 10 and 11.
In Table 12 (λ= 1), we recorded the CPU times of using the iterative DG method to

solve 2D PB equations on rectangular meshes.

Example 4.3. We still consider the problem in Example 4.2 but on triangular meshes.
Let a partition of Ω be denoted by triangular meshes T∆={K}. We apply the iterative

DG schemes (3.8)-(3.9) to solve problem (4.3). The numerical flux (3.17) with β0,β1 listed
in Table 3 is adopted, where we take α0=α1=α2=25 to satisfy (3.26).

For λ=1,0.1,0.01, the iterative DG schemes on triangular meshes are tested with Pm

polynomials, where m = 1,2,3, and (m+1)th order of accuracy for L2 and mth order of
accuracy for H1 are obtained. The L2 errors and H1 errors are reported in Tables 13, 14
and 15.

Table 13: 2D PB equation with numerical flux (3.17), kn = e−min(un), λ=1.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 10
‖u−uh‖L2 0.0259938 0.00781174 1.73 0.00214009 1.87 0.000557754 1.95

‖u−uh‖H1 0.647868 0.328298 0.98 0.163701 1.00 0.0815838 1.00

2 10
‖u−uh‖L2 0.00324821 0.000418215 2.96 5.22119e-05 3.00 6.49584e-06 3.01

‖u−uh‖H1 0.110847 0.0283651 1.97 0.00714056 1.99 0.00178911 2.00

3 10
‖u−uh‖L2 0.00061284 3.53173e-05 4.12 2.19363e-06 4.01 1.30518e-07 4.07

‖u−uh‖H1 0.0187405 0.00204057 3.20 0.000266413 2.94 2.63866e-05 3.34

Table 14: 2D PB equation with numerical flux (3.17), kn = e−min(un), λ=0.1.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 49
‖u−uh‖L2 0.0206556 0.00533035 1.95 0.0013348 2.00 0.00033237 2.01

‖u−uh‖H1 0.642811 0.326972 0.98 0.163471 1.00 0.0815497 1.00

2 49
‖u−uh‖L2 0.00239552 0.000314025 2.93 4.01245e-05 2.97 5.06518e-06 2.99

‖u−uh‖H1 0.111528 0.0284419 1.97 0.00714915 1.99 0.00179009 2.00

3 49
‖u−uh‖L2 0.000275597 1.76915e-05 3.96 1.10900e-06 4.00 6.92706e-08 4.00

‖u−uh‖H1 0.0122049 0.00153368 2.99 0.000191629 3.00 2.39329e-05 3.00
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Table 15: 2D PB equation with numerical flux (3.17), kn = e−min(un), λ=0.01.

m steps
N=4 N=8 N=16 N=32

error error order error order error order

1 112
‖u−uh‖L2 0.0195516 0.00496765 1.98 0.00125193 1.99 0.00031442 1.99

‖u−uh‖H1 0.624371 0.318817 0.97 0.161208 0.98 0.0811283 0.99

2 112
‖u−uh‖L2 0.00219109 0.000279128 2.97 3.60964e-05 2.95 4.6591e-06 2.95

‖u−uh‖H1 0.110065 0.0280879 1.97 0.00710074 1.98 0.00178588 1.99

3 112
‖u−uh‖L2 0.000201862 1.39748e-05 3.85 9.63149e-07 3.86 6.51691e-08 3.89

‖u−uh‖H1 0.0134849 0.00162723 3.05 0.000194973 3.06 2.39792e-05 3.02

Table 16: CPU time for solving 2D PB equation with numerical flux (3.17), kn = e−min(un), λ=1.

m steps
N=4 N=8 N=16 N=32

CPU(s) CPU(s) times CPU(s) times CPU(s) times

1 10 0.34 1.62 4.76 8.63 5.33 53.26 6.17

2 10 0.76 3.84 5.05 21.10 5.49 136.00 6.45

3 10 1.91 10.38 5.43 57.93 5.58 507.08 8.75

In Table 16 (λ= 1), we recorded the CPU times of using the iterative DG method to
solve the 2D PB problem on triangular meshes.

For both rectangular and triangular meshes, the complexity is found of order O(N2),
and the tests were carried out on a PC with 1.86GB memory, which may lead to the
increase of the CPU time greatly as mesh is refined. The 2D results in the above two
examples indicate that the iterative DG method is also quite efficient for solving the two
dimensional Poisson-Boltzmann equation (4.3), for a large range of λ.

5 Conclusion

In this paper, we have developed an iterative discontinuous Galerkin method to solve
the nonlinear Poisson Boltzmann (PB) equation. The iteration with a variable iterative
parameter kn is more efficient than a constant one, and robust in terms of the size of the
Debye length parameter. The corresponding initial guess u0 proposed works well for
different cases in the numerical tests. The numerical fluxes were selected to assure the
existence, uniqueness and stability of the resulting DG schemes. Both one-dimensional
and two-dimensional numerical results show that the numerical fluxes with a large set
of (β0,β1) pairs gives the optimal accuracy. The optimal error estimation of the iterative
DG method for nonlinear Poisson-Boltzmann equation is left for a future work.

Acknowledgments

The authors thank the anonymous referees who provided valuable comments resulting
in improvements in this paper. Yin’s research was partially supported by NSFC Project



514 P. Yin, Y. Huang and H. Liu / Commun. Comput. Phys., 16 (2014), pp. 491-515

(11201397), Hunan Education Department Project (12B127) and Hunan Provincial Inno-
vation Foundation for Postgraduate (CX2012B272). Huang’s research was supported
in part by the NSFC Key Project (11031006), IRT1179 of PCSIRT and ISTCP of China
(2010DFR00700). Liu’s research was partially supported by the National Science Foun-
dation under the Grant DMS09-07963 and DMS13-12636.

References

[1] M. Holst, J. A. McCammom, Z. Yu, Y. C. Zhou, Y. Zhu. Adaptive finite element modeling
techniques for the Poisson-Boltzmann equation. Commun. Comput. Phys., 11(1):179–214,
2012/01.

[2] P. Debye, E. Hückel. Zur theorie der elektrolyte. Phys. Zeitschr., 24:185-206, 1923.
[3] J. G. Kirkwood. On the theory of strong electrolyte solutions. J. Chem. Phys., 2:767-781,

1934.
[4] A. H. Boschitsch, M. O. Fenley. Hybrid boundary element and finite difference method for

solving the nonlinear Poisson-Boltzmann equation. J. Comput. Chem., 25(7):935-955, 2004.
[5] N. A. Baker, D. Sept D., S. Joseph, M. J. Holst, J. A. McCammon. Electrostatics of nanosys-

tems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA, 98:10037-
10041, 2001.

[6] Z.-H. Qiao, Z.-L. Li, T. Tang. A finite difference scheme for solving the nonlinear Poisson-
Boltzmann equation modeling charged spheres. J. Comput. Math., 24(3):252-264, 2006/03.

[7] Phillip Colella, Milo R Dorr, Daniel D Wake. A conservative finite difference method for the
numerical solution of plasma fluid equations. J. Comput. Phys., 149(1):168-193, 1999.

[8] L. Chen, M. J. Holst, J. Xu. The finite element approximation of the nonlinear Poisson-
Boltzmann equation. SIAM J. Numer. Anal., 45(6):2298-2320, 2007.

[9] B. Lu, X. Cheng, J. Huang. AFMPB: An adaptive fast multipole Poisson-Boltzmann solver
for calculating electrostatics in biomolecular systems. C. Phys. Commun., 181(6):1150-1160,
2010.

[10] P. Degond, H. Liu, D. Savelief, M. H. Vignal. Numerical approximation of the Euler-Poisson-
Boltzmann model in the quasineutral limit. J. Sci. Comput., 51:59-86, 2012.

[11] H. Liu, J. Yan. The Direct Discontinuous Galerkin (DDG) method for diffusion problems.
SIAM Journal on Numerical Analysis., 47(1): 675–698, 2009.

[12] H. Liu, J. Yan. The Direct Discontinuous Galerkin (DDG) method for diffusion with interface
corrections. Commun. Comput. Phys., 8(3): 541–564, 2010.

[13] Y. Huang, H. Liu, N. Yi. Recovery of normal derivatives from the piecewise L2 projection. J.
Comput. Phys., 231(4):1230-1243, 2012.

[14] H. Oberoi, N. M. Allewell. Multigrid solution of the nonlinear Poisson-Boltzmann equation
and calculation of titration curves. Biophys J., 65(1):48-55, 1993.

[15] A. Nicholls, B. Honig. A rapid finite difference algorithm, utilizing successive over-
relaxation to solve the Poisson-Boltzmann equation. Journal of Computational Chemistry,
12(4):435-445, 1991.

[16] M. E. Davis, J. A. McCammon. Solving the finite difference linearized Poisson-Boltzmann
equation: A comparison of relaxation and conjugate gradient methods. Journal of Compu-
tational Chemistry, 10(3):386-391, 1989.

[17] Y. Deng, G. Chen, W. Ni, J. Zhou. Boundary element monotone iteration scheme for semi-
linear elliptic partial differential equations. Mathematics of Computation, 65(215):943-982,



P. Yin, Y. Huang and H. Liu / Commun. Comput. Phys., 16 (2014), pp. 491-515 515

1996.
[18] L. F. Shampine. Monotone iterations and two-sided convergence. SIAM Journal on Nu-

merical Analysis, 3(4):607-615, 1996.
[19] I. Chern, J. Liu, W. Wang. Accurate evaluation of electrostatics for macromolecules in solu-

tion. Methods and Applications of Analysis, 10(2):309-328, 2003.
[20] A. Quarteroni, A. Valli. Numerical approximation of partial differential equations. Springer

Series in Computational Mathematics, 2008.
[21] L. C. Evans. Partial differential equations. American Mathematics Society, 19, 2010.
[22] J. L. Lions, E. Magenes. Non-Homogeneous Boundary Value Problems and Applications.

New-York: Springer-Verlag, 1972.
[23] H. Liu, H. Yu. The entropy satisfying discontinuous Galerkin method for Fokker-Planck

equations. Journal on Scientific Computing, accepted (2014).
[24] H. Liu. Optimal error estimates of the Direct Discontinuous Galerkin method for convection-

diffusion equations. Math. Comp., to appear (2014).


