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Abstract. The solution of systems of hyperbolic conservation laws remains an inter-
esting and challenging task due to the diversity of physical origins and complexity of
the physical situations. The present work introduces the use of the partial differential
equation (PDE) transform, paired with the Fourier pseudospectral method (FPM), as
a new approach for hyperbolic conservation law problems. The PDE transform, based
on the scheme of adaptive high order evolution PDEs, has recently been applied to de-
compose signals, images, surfaces and data to various target functional mode functions
such as trend, edge, texture, feature, trait, noise, etc. Like wavelet transform, the PDE
transform has controllable time-frequency localization and perfect reconstruction. A
fast PDE transform implemented by the fast Fourier Transform (FFT) is introduced to
avoid stability constraint of integrating high order PDEs. The parameters of the PDE
transform are adaptively computed to optimize the weighted total variation during
the time integration of conservation law equations. A variety of standard benchmark
problems of hyperbolic conservation laws is employed to systematically validate the
performance of the present PDE transform based FPM. The impact of two PDE trans-
form parameters, i.e., the highest order and the propagation time, is carefully studied
to deliver the best effect of suppressing Gibbs’ oscillations. The PDE orders of 2-6
are used for hyperbolic conservation laws of low oscillatory solutions, while the PDE
orders of 8-12 are often required for problems involving highly oscillatory solutions,
such as shock-entropy wave interactions. The present results are compared with those
in the literature. It is found that the present approach not only works well for prob-
lems that favor low order shock capturing schemes, but also exhibits superb behavior
for problems that require the use of high order shock capturing methods.

AMS subject classifications: 35K41, 65N99, 76L05, 76N15

∗Corresponding author. Email addresses: hulanghu.at.msu.edu@gmail.com (L. Hu), yangsiyang@gmail.com
(S. Yang), wei@math.msu.edu (G.-W. Wei)

http://www.global-sci.com/ 1201 c©2014 Global-Science Press



1202 L. Hu, S. Yang and G.-W. Wei / Commun. Comput. Phys., 16 (2014), pp. 1201-1238

Key words: Partial differential equation transform, hyperbolic conservation laws, Fourier pseu-
dospectral method, adaptive lowpass filters, Gibbs’ oscillations.

1 Introduction

Hyperbolic systems of nonlinear conservation laws

ut+f(u)x =0 (1.1)

with an initial condition

u(x,0)=u0(x) (1.2)

have attracted great attention in the past few decades in mathematical, scientific and
engineering communities due to their practical applications in fluid mechanics, aerody-
namics, and nano-bio systems, to mention only a few. The solution to this class of prob-
lems may not exist in the classical sense because of possible discontinuities in the initial
condition, material interface, singularity formation, turbulence, blow-up, etc.

Both global and local methods have been developed for hyperbolic conservation laws.
Many up-to-date local methods have been proposed for shock-capturing, turbulence
and shock interaction, including weighted essentially non-oscillatory (WENO) scheme
[21, 23, 37, 38], central schemes [3, 27, 31, 34], arbitrary-order non-oscillatory advection
scheme [43], gas kinetic [30, 35, 58], anisotropic diffusion [36], conjugate filters [19] and
image processing based algorithms [17, 52]. An important factor that contributes to the
success of the above mentioned local schemes in the shock-capturing is their appropriate
amount of intrinsic numerical dissipation, which is introduced either by explicit artificial
viscosity, upwinding, relaxation, or by local average strategy in non-oscillatory central
schemes [24]. Indeed, the characteristic decomposition based on Roe’s mean matrix can
also be considered as a local average of the Jacobian matrix. The relation between some
approximate Riemann solvers and relaxation schemes was analyzed by LeVeque [29]. Lo-
cal characteristic decomposition is not necessary in low-order methods because of intrin-
sic numerical dissipation, while it seems to be indispensable in high-order methods [38].
In general, local and low order methods perform well for problems whose Fourier re-
sponses of the solution focus predominantly in the low frequency region. For this class
of problems, first order or second order Godunov type of schemes can be very efficient
in balancing accuracy and efficiency. When local and low order methods are used for
resolving shocks in flows with fine structural details or highly oscillatory patterns, their
numerical dissipation is usually too large to offer informative results.

Spectral methods, or global methods, on the contrary, produce little numerical dissi-
pation and dispersion in principle when applied to approximate spatial derivatives. It is
well known that spectral methods are some of the most accurate and efficient approaches
for solving partial differential equations (PDEs) arising from scientific and engineering
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applications [5, 12, 44]. Therefore, it is highly desirable to use spectral methods for the
solution of hyperbolic conservation laws, because the multiscale features, including Kol-
mogorov microscales, in the hyperbolic conservation law systems require high resolution
methods. Nevertheless, when spectral methods are applied to the approximation of spa-
tial derivatives of a discontinuous function, which often occurs in hyperbolic conserva-
tion law problems, one encounters Gibbs’ oscillations [15]. Most previous investigations
are aimed at improving the rate of convergence away from the discontinuity while recov-
ering smooth solutions from the contamination of Gibbs’ oscillations. The suppression
of Gibbs’ oscillations is necessary in order to avoid unphysical blow-ups in the time in-
tegration. Therefore, it has been of tremendous interest in modifying spectral methods
for hyperbolic conservation law systems in the past two decades [28, 40]. There are two
general types of approaches in spectral based methods for hyperbolic conservation law
systems: (1) explicit artificial viscosity, e.g. spectral viscosity method proposed by Tad-
mor [42], and (2) filtering. It is expected that the appropriate use of spectral methods
enables us not merely to capture the shock, but also to resolve the delicate features, im-
mersed interface, and underlying fine structures of the flow.

Filters are designed to apply either in the spectral domain, called spectral filters, or
in the physical domain. Typical spectral filters include Lanzos filter, raised cosine filter,
sharpened raised cosine filter, Krasny filter [26] and exponential cutoff filter, as listed by
Hussaini et al. [22]. More sophisticated and effective filters in spectral domain are Vande-
ven’s pth order filter [45], and Gottlieb and Tadmor’s regularized Dirichlet function [16].
A filter-based Reynolds-averaged Navier-Stokes approach was developed to improve the
predictive capability considerably in comparison to the standard k−ǫ model [25].

Filters in the physical domain are also commonly used alternatives to spectral filters.
In the framework of spectral methods, it is generally more difficult to design appropriate
filters in the physical domain than in the Fourier domain. A simple procedure is to make
use of numerical dissipation contained in some high-order shock-capturing schemes [4],
such as the ENO scheme, where, actually, numerical dissipation was introduced both in
the Fourier domain (via an exponential filter) and in the physical domain (via ENO poly-
nomial filter). Such a strategy was employed by Yee et al. [59] to construct characteristic
filters in the framework of finite difference methods. Gegenbauer polynomials are used
to resolve the oscillatory partial Fourier summation [15]. Promising numerical results
were generated by using filter approaches [10, 11, 13].

About a decade ago, we proposed a conjugate filter oscillation reduction (CFOR)
scheme [18, 40, 54, 61, 62] for hyperbolic conservation laws. This scheme was constructed
within the framework of a local spectral wavelet method, namely, the discrete singular
convolution (DSC) algorithm [46,50,56]. Here, ‘conjugate filters’ means that the effective
wavenumber range of the low-pass filter is largely overlapped with that of the high-
pass filter used for the approximation of spatial derivatives. In fact, the DSC algorithm
is used to behave as both low-pass filters and high-pass filters. Extensive validation
of the CFOR scheme over a wide range of shock-capturing problems has been carried
out [18, 54, 61, 62]. We demonstrated that CFOR scheme provides some of the highest
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grid resolution, i.e., 5 points per wavelength (PPW), for the interaction of shock and en-
tropy waves, and for many other challenging problems involving natural high frequency
oscillations [40, 61, 62].

Despite great effort in the past few decades, the efficient application of filters for hy-
perbolic conservation law systems remains a challenging problem. To design efficient
filter methods, one must control a number of filter properties, such as flatness, ripple,
filter length, effective frequency range and length of transition band, to name only a few.
Normally, it is desirable to utilize filters that are free of dispersion errors, flat while hav-
ing very small transition band, short in length while having high resolution. Obviously,
some of these properties are conflicting with each other. Adjustable parameters have to
be employed to tune filter properties in the application. In addition to the difficulties
in controlling filter properties, there are intrinsic mathematical challenges in developing
filtered spectral methods. First, the solutions to different hyperbolic conservation law
equations may have different Fourier spectral distributions. Additionally, even for a sin-
gle conservation law equation, the characteristic of the Fourier spectral distribution may
change during the time integration. Finally, the same conservation law equation can ex-
hibit dramatically different Fourier spectral distributions when it is applied to different
physical problems, i.e., problems with different initial, interface and boundary condi-
tions. Therefore, an optimal filter has to be fully adaptive to hyperbolic equations, to
initial, interface and boundary conditions, and to the variation of spectral characteristic
during the time integration. Unfortunately, such a filter approach still does not exit yet.
Given the complexity in the hyperbolic conservation law and in filter properties, it is
unlikely that there will be a perfect solution to these challenges in the near future. Conse-
quently, these challenging and important problems call for the further study of spectral
filter approaches.

Most recently, we have introduced PDE transform as a new approach for the analy-
sis of signals, images, surfaces and data [47, 49, 60]. The PDE transform is a PDE based
systematical approach for decomposing signals, images, and data into functional modes,
which exhibit appropriate time-frequency localizations. Like wavelet transform, the PDE
transform is able to provide a perfect reconstruction. Unlike wavelet transform or Fourier
transform, the PDE transform offers results in the physical domain. The PDE transform
was constructed based on a family of arbitrarily high order nonlinear PDEs first intro-
duced by Wei for edge-preserving image restoration in 1999 [51] and PDE based high-
pass filters proposed by Wei and Jia in 2002 [55]. Variational models of PDE transform
have also been proposed [47]. With a recursive procedure [48,49] to incorporate appropri-
ate residues, i.e., initial conditions, the PDE transform is able to extract functional mode
functions (FMFs). By FMFs, we mean the mode components which share same band of
frequency distribution as well as same category of physical functions, i.e., trend, edge,
texture, feature, trait, noise etc. Using the FMFs obtained from the PDE transform, sec-
ondary processing, or post-processing, can be performed to achieve desirable tasks, such
as edge detection, trend estimation, image enhancement, denoising, texture quantifica-
tion, segmentation, feature extraction, pattern recognition, etc. The PDE transform can
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perform as tunable filters. By adjusting the order of the PDE transform, i.e., the high-
est order of the PDE, one controls time-frequency localization, while by adjusting the
diffusion coefficients or propagation time, one obtains desirable frequency precision or
multiresolution analysis [60]. The PDE transform can be tuned according to the input
data to provide desirable mode information. The full process of the PDE transform is
nonlinear even if linear PDEs are employed. Unlike the Fourier transform or the wavelet
transform, the PDE transform conserves the data representation. The resulting functional
modes are still in the original data form. The PDE transform has been applied to image
analysis [47, 49], signal processing [48] and biomolecular surface construction [60]. High
order PDE transforms with their order being much higher than 4 are found to play a vital
role in signal analysis, image processing and surface generation.

The objective of present work is to explore the utility of the PDE transform for the so-
lution of hyperbolic conservation laws. To avoid the strict stability constraints in solving
high order PDEs and gain the desirable acceleration in the time integration, we make use
of a fast PDE transform, i.e., the PDE transform realized by the fast Fourier transform
in a single time stepping. Such a fast algorithm is paired with the Fourier pseudospec-
tral method (FPM) for solving hyperbolic conservation law equations and suppressing
Gibbs’ oscillations. Since the PDE transform is implemented via the fast Fourier trans-
form, it matches very well with the FPM. In fact, the PDE transform has an adjustable
effective wavenumber range that makes it viable to capture fine flow structures, which
is a desirable objective of spectral methods for hyperbolic conservation law systems. It
is this adjustable effective wavenumber range that controls the resolution of the overall
scheme. In our design, this adjustable effective wavenumber range can be varied by the
highest order of the PDE transform and the duration of time propagation according to the
resolution requirement of a hyperbolic conservation equation and the physical problem
of interest. Different orders of the PDE transform have different magnitude responses
and adjustability in the Fourier domain, which in turn influences the accuracy and reso-
lution of the PDE transform based FPM. It is this flexibility that makes the present method
applicable to a wide variety of hyperbolic conservation law systems. The performance
of the proposed method is extensively validated and compared with those of other ap-
proaches in the literature.

The rest of this paper is organized as follows. Section 2 is devoted to a brief intro-
duction of the theory and formulation of the PDE transform, which is useful for the
understanding of the working principle of the present approach for shock capturing.
The implementation of the PDE transform in the FPM will be presented. The proposed
PDE transform based FPM is extensively validated in Section 3. We consider a variety
of numerical experiments, including the linear advection equation, Burgers’ equation,
shock-tube problems, shock-entropy wave interaction, and shock-vortex interaction. The
shock-capturing ability and the high resolution character of the present method are illus-
trated via these applications. The performance of the present method is compared with
those of earlier schemes in the literature. A brief discussion of the proposed method is
given in Section 4.
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2 Theory and algorithm

To establish notation and enhance the basic understanding of the proposed PDE trans-
form strategy for systems of hyperbolic conservation laws, we present a brief introduc-
tion of arbitrarily high order nonlinear PDEs and PDE transforms. The detailed numeri-
cal algorithm for time integration of evolution equations of hyperbolic conservation laws
is described.

2.1 Arbitrarily high order PDEs

The PDE transform of arbitrarily high integer order PDEs has been introduced in our
earlier work [47, 49]. Since variational approaches have found their success in a variety
of scientific and engineering fields [2, 6–9, 39, 53, 57], a variational derivation of the PDE
transform has also been presented [47,60]. Here we briefly review the variational deriva-
tion of the PDE transform. Let r=(x,y,z)∈R

3 and denote by ∇=∂/∂r a gradient operator
in R

3. For any integer q>0, we consider the energy functional

E(u,∇qu)=
∫ [

Λ
(
|∇qu|2

)
+ǫ(X−u)2

]
dr, (2.1)

where ǫ is a constant, ǫ(X−u)2 is the fidelity term, X is the original data, and Λ(·) is
an appropriate penalty function. Some of the most commonly used penalty functions in-
clude the Tikhonov form, the mean curvature form, and the Gaussian form [9, 32]. Mini-
mizing the energy functional (2.1) by using the Euler-Lagrange equation, we have

∇q⊙q Λuq

(
|∇qu|2

)
∇qu+ǫ(X−u)=0, (2.2)

where ⊙q represents an appropriate inner product and

Λuq =(−1)q+1∂Λ/∂|∇qu|2. (2.3)

To efficiently solve Eq. (2.2), we introduce an artificial time t and convert it into a time-
dependent PDE

∂u

∂t
=∇q⊙q Λuq

(
|∇qu|2

)
∇qu+ǫ(X−u). (2.4)

Eq. (2.4) is essentially equivalent to our earlier variational derivation of the PDE trans-
form [47], however, in our Ref. [47], there is a typo; specifically, in page 2003, Λuj(·) and

Λvj(·) should be defined as Λuj(·) = (−1)j+1 ∂Λu

∂|D ju|2 and Λvj(·) = (−1)j+1 ∂Λv

∂|D jv|2 , respec-

tively.
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2.2 PDE transform

One of the important properties of the PDE transform is its ability to iteratively extract
mode functions from a given data X(r). To illustrate this point, we denote the solution of
Eq. (2.4) as X̌(r,τ) such that

X̌k(r,τ)=LXk(r,0), (2.5)

where L is a low-pass PDE transform satisfying Lu(r,0)=u(r,τ), X̌k(r,τ) are mode func-
tions.

Here Xk(r,0) is the kth residue function defined by

X1(r,0)=X(r) (2.6)

and

Xk(r,0)=X1(r,0)−
k−1

∑
j=1

X̌ j(r,τ), ∀k=2,3,··· . (2.7)

Note that Eq. (2.7) defines the initial value for Eq. (2.5). Therefore, PDE transform is a set
of iterations using arbitrarily high order PDEs discussed in the last section.

Obviously, like the wavelet transform, there is a perfect reconstruction of the original
data X(r) in terms of all the mode functions and the last residue

X(r)=
k−1

∑
j=1

X̌ j(r,τ)+Xk(r,0). (2.8)

Note that the PDE transform given in Eq. (2.5) recursively extracts mode functions based
on the input residue function. This procedure is nonlinear even if a linear PDE operator
is used because the initial value changes during the repeated operations.

The first mode produced by the PDE transform described above is the trend of the
data. The residue of the trend is an edge function, including possible noisy components.
By systematically repeating the low-pass PDE transform (2.5), one can extract all the de-
sirable higher order mode functions. In our earlier work, high-pass PDE transforms were
also constructed in which the first mode is edge type of information or possible noise;
while the final residue is the trend [48].

The appropriate number of iterations needed for a given problem depends on the
nature of the problem. To extract higher order mode functions, multiple iterations are re-
quired. However, for low-pass filtering, we just need one iteration of the PDE transform.

Solving arbitrarily high order PDEs, such as Eq. (2.4) in the PDE transform can be
a very difficult issue for some practical application. A main difficulty is the stability
constraint as the time stepping is normally proportional to the 2mth power of spatial
grid spacing, where 2m is the highest order of the PDE transform. An exception is digital
image processing, in which the spatial grid spacing is usually unit and thus bypasses the



1208 L. Hu, S. Yang and G.-W. Wei / Commun. Comput. Phys., 16 (2014), pp. 1201-1238

stability constraint. However, spatial grid spacing is normally smaller than one in most
other applications.

There is another way that one can bypass the stability constraint entirely and obtain
the solution in a single time step. This approach relies on the use of the fast Fourier
transform (FFT) for the solution of evolution PDEs [40]. To this end, we linearize (2.4).
Let us assume that a linear PDE has the form

∂τv=
m

∑
j=1

(−1)j+1dj∇2jv+ǫ(Xk−v), τ≥0, (2.9)

where dj >0, ǫ∼0 and Xk ∈R
n is the kth residue of the data. When Eq. (2.9) is subject to

initial value v(r,0)=Xk and periodic boundary conditions, it is exactly solvable in the n
dimensional Fourier representation

ˆ̌Xk = L̂X̂k, (2.10)

where ˆ̌X and X̂k are the Fourier transforms of X̌k and Xk, respectively. Here L̂ is a fre-
quency response function

L̂(ǫ,τ,d1,d2,··· ,dm)= e
−
(

∑
m
j=1dj(w2)

j
+ǫ

)
τ
+

ǫ

∑
m
j=1dj (w2)j+ǫ

(
1−e

−
(

∑
m
j=1dj(w2)

j
+ǫ

)
τ
)

, (2.11)

where w2=∑
n
i=1w2

i .
The solution algorithm developed in the above Fourier domain is called a fast PDE

transform. In the present work, we explore the use of the fast PDE transform in the form
of Eq. (2.10) for integrating hyperbolic conservation law systems.

To obtain a straightforward interpretation of the PDE transform (2.11), let us investi-
gate the simple case in one dimension when dm =1 and di =0, (i=1,··· ,m−1) as well as
ǫ=0 so that we can focus on the effect of leading order 2m. Let l=2m, then l denotes the
order of PDE transform. We vary the order l and propagation time τ to study different
PDE transforms.

Fig. 1(a) shows the frequency responses of the PDE transform for three different or-
ders l = 2,10 and 40, with the fixed propagation time of τ = 1. In the figure, the y-axis
gives the magnitude of the frequency response while the x-axis is the wavenumber in
[0,π]. Here, the discrete points are sampled evenly from 128 wavenumbers over [0,π].

From Fig. 1(a), one can observe that the 2nd-order PDE transform suffers from a long
transition band and a short effective wavenumber region, i.e., the range of wavenumbers
in which the frequency response is unit. As the order increases from 2 to 40, the fre-
quency response decays from magnitude 1 to 0 more and more rapidly, leading to sharp
transitions.

One can obtain a better understanding of the difference between the three PDE trans-
forms in Fig. 1. We plot 5 frequency responses of the 2nd-order PDE transform with
propagation time τ=102, 101, 100, 10−1 and 10−2 from left to right in Fig. 1(b). It is seen
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Figure 1: Frequency response of PDE transforms of different orders and propagation time. (a) Order l=2, 10

and 40 from left to right with τ= 1. (b) The 2nd-order: τ= 101, 2∗100, 100, 2∗10−1 and 10−1 from left to

right. (c) The 10th-order: τ=104, 102, 100, 10−2 and 10−4 from left to right. (d) The 40th-order: τ=1012,

106, 100, 10−6 and 10−12 from left to right.

that the frequency responses with long propagation time τ = 101,2∗100 and 100 have a
short low-pass region while frequency responses with small propagation time τ=2∗10−1

and 10−1 preserve part of the high-frequency information. Fig. 1(c) illustrates 5 frequency
responses of the 10th-order transform with propagation time τ= 104, 102, 100, 10−2 and
10−4 from left to right. It appears that the frequency response of 10th-order PDE trans-
form gently damps from magnitude 1 to 0, which results in the property of compromis-
ing low-frequency and some high-frequency information. However, the 40th-order PDE
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transform in Fig. 1(d) has a very sharp transition band, which is close to an ideal filter.

It can also be observed in Fig. 1 that the effective wavenumber region is adjustable by
the propagation time τ. For a fixed order of the PDE transform, the shorter the propaga-
tion time τ, the longer the effective wavenumber region. Although the transition band
of the PDE transform with shorter propagation time is relatively wider than that of long
propagation time, the sharpness of transition is primitively dominant by the order of PDE
transform as seen from Figs. 1(b), (c) and (d).

The comparison of the above 2nd-, 10th-, and 40th- order PDE transforms provides
us a highlight of the different characteristics for the low, high and very high order PDE
transforms. For the practical application of PDE transform design, since the order l of
the PDE transform vary from small to large positive even number, it is subtle to choose
an appropriate order of the PDE transform to resolve various problems. In general, high
order PDE transforms, such as order 40, 50, and higher, are very valuable in mode de-
composition of signals [47, 49]; while PDE transforms of intermediate orders, i.e., 6, 8
and 10, are suitable for the surface construction of biomolecules [60]; yet low order PDE
transforms, such as orders 2 and 4, are quite robust for many common tasks in image
analysis [47,49]. Due to the complexity of hyperbolic conservation laws, it takes the PDE
transforms of a variety of orders for shock capturing. This aspect is thoroughly investi-
gated in the present work.

2.3 Numerical algorithm

In the present algorithm for integrating hyperbolic conservation laws, the time integra-
tion is implemented via the 4th order Runge-Kutta scheme, which utilizes 4 spatial in-
tegrations to update each time. At a given physical time step, spatial integrations are
carried out in the frequency domain via the Fourier pseudospectral method. For each
spatial integration, we just perform at most one iteration of the PDE transform, depend-
ing on the need. In fact, when this iteration is implemented in the Fourier pseudospectral
method (frequency-domain), it is actually incorporated into the Fourier transform or the
weighted Fourier transform. As such, we just need to modified the Fourier transform
coefficient without performing the one-iteration PDE transform separately.

Specifically, we apply the PDE transform to systems of hyperbolic conservation laws
via the following two-step procedure:

Ūk+1=BUk, (2.12)

Uk+1=LŪk+1, (2.13)

where the operator B in Eq. (2.12) is the basic time integration from time k to time k+1
and the operator L in Eq. (2.13) is a possible application of the PDE transform. Here, Uk

and Uk+1 is the numerical solution of u in Eq. (1.1) at time step k and k+1, respectively,
while Ūk+1 is the intermediate numerical solution of u after implementing operator B on
Uk.
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The operator B in Eq. (2.12) can be defined by a general numerical method for the
time evolution. Here, we use the fourth-order Runge-Kutta scheme. The FPM is utilized
for the spatial discretization of f (u)x in the frequency domain.

In specific, after carrying out the fast Fourier transform on f , we obtain the frequency

response f̂ , i.e. f̂ =FFT( f ). Then iω f̂ (ω) is the frequency response of fx, where i=
√
−1

is the imaginary root. By doing the inverse fast Fourier transform on iω f̂ (ω), we obtain

the spatial discretization of f (u)x as IFFT(iω f̂ (ω)).
For simple and continuous problems, scheme (2.12) works well. However, for hyper-

bolic conservation systems involving discontinuity, the accumulation of Gibbs’ oscilla-
tions as time evolves may result in spurious solutions or even numerical blow ups. Thus,
we make use of PDE transform [40] to eliminate the possible Gibbs’ oscillations from ba-
sic time integration (2.12). The application of the PDE transform is controlled (i.e., turned
on or turned off) by an adaptive sensor. The sensor is characterized by a measure of high
frequency denoted by ‖µ‖ and regulated by a threshold value η. Once the increment in
high frequency measure, ∆µ, exceeds the threshold η, the PDE transform in Eq. (2.13) is
implemented. In our test, we apply a straightforward high frequency measure ‖ M ‖ as
the TVD sensor, which is defined by

∥∥∥µ(Ūk+1)
∥∥∥=∑

i

∣∣∣Ūk+1
i+1 −Ūk+1

i

∣∣∣, (2.14)

where Ūk+1
i and Ūk+1

i+1 denote the intermediate numerical solution of u at time k+1 on spa-

tial point i and i+1, respectively, while ‖µ(Ūk+1)‖ is the total variation measure of Ūk+1.
As a result, by checking whether the increment of high frequency ∆µ(Ūk)=‖µ(Ūk+1) ‖
−‖µ(Ūk)‖ exceeds η or not, we can decide whether to apply the PDE transform.

Eq. (2.13) in the second step is given by the PDE transform to suppress Gibbs’ oscilla-
tions. We implement the PDE transform in frequency domain, which results in

Ûk+1= L̂ ˆ̄Uk+1, (2.15)

where Ûk+1 and ˆ̄Uk+1 are the frequency responses of Uk+1 and Ūk+1 respectively, while
L̂ is defined in Eq. (2.11). In this work, we adopt the simple implementation of PDE
transforms of dm = 1 and di = 0, (i = 1,··· ,m−1) as well as ǫ = 0, as mentioned before.
As a result, the design of the PDE transform depends on the highest order of l=2m and
propagation time τ, whose properties have been analyzed in the last section.

It should be noted that the implementation of the Fourier pseudospectral method
demands periodic boundary condition. However, there are often non-periodic boundary
condition in practical applications. We handle the non-periodic computation domain by
symmetrically extending it to the auxiliary domain. This approach works well as shown
in our previous work [40]. In specific, the symmetrical extension of the computation
domain in 1D is in the following scheme. Suppose the original domain is discretized by
N+1 grid points indicated by i = 1,··· ,N+1, then the computation domain is doubled
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with 2N grid points and f (u) and u are extended by

{ f (u)}i ={ f (u)}2N+2−i, i=N+2,··· ,2N, (2.16)

{u}i ={u}2N+2−i, i=N+2,··· ,2N, (2.17)

where {·}i corresponds to the value at the ith pixel. This extending procedure is straight-
forward to apply to 2D and 3D dimension.

After the entire time integration has been completed, we adopt a cosmetic post-
processing filter as introduced by Gottlieb et al. [14] to make the solution more pre-
sentable. In our numerical experiments, we employ the Lagrange-4 as the post processing
filter. The reader is referred to our earlier work [41] for its implementation detail.

3 Numerical tests and validation

The performance of the proposed PDE transform on the solution of hyperbolic conserva-
tion law systems is validated through test examples in this section. A number of standard
linear and nonlinear benchmark problems are studied in the present work, from scalar
conservation law systems including the linear advection equation, Burgers’ equation and
problem with non-convex flux, to one dimensional (1D) and two dimensional (2D) Euler
equations, including shock tube (Sod’s and Lax’s) problems, 1D and 2D shock-entropy
interaction, as well as 2D shock-vortex interaction.

The proposed PDE transform can be applied directly on those problem with periodic
boundary conditions. However, for non-periodic boundary conditions, the computation
domain is symmetrically doubled to convert to a periodic one.

The problems which involves in the non-periodic boundary conditions are Example
3 (Inviscid Burgers’ equation), Example 4 (Non-convex flux), Example 5 (Sod’s and Lax’s
problems), Example 6 (1D Shock-entropy interaction), Example 7 (Shu-Osher’s problem),
Example 8 (2D Shock-entropy interaction) and Example 9 (2D Shock-vortex interaction).

It is noted that the selection of order l=2m and propagation time τ of the PDE trans-
form is quite sophisticated. On the one hand, the order should not be too high, while the
propagation time should not be too small. Otherwise, the PDE transform has little effect
in suppressing the Gibbs’ oscillation of the solution. On the other hand, the order should
not be too low, while the propagation time should not be too large. Otherwise, they result
in too much dissipation. Owing to diversity of hyperbolic conservation law systems, the
best choices of order and propagation time are problem dependent, which are listed in
the table in Appendix.

It is noted that both the PDE transform and hyperbolic conservation law systems are
time dependent. To avoid possible confusion, we denote “τ” as the propagation time of
the PDE transform and designate “t” as evolution time of the conservation law system in
the rest of the paper.
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3.1 Scalar conservation law systems

We first consider 1D scalar conservation law systems, whose governing equation is ex-
pressed in the form of

ut+ f (u)x =0, (3.1)

with f (u) as a function of u. Three types of f (u), including f (u)=u and convex flux 1
2 u2

as well as non-convex flux 1
4(u

2−1)(u2−4), are studied in the present work.

3.1.1 Example 1 (Linear advection equation with Sine-Gaussian wavepacket)

The first test example is the linear advection equation given by

ut+cux =0, −1< x<1,

u(x,0)=u0(x), periodic, (3.2)

where u0(x) is the initial value. We set u0(x) as [62]

u0(x)=sin[2πκ(x−x0)]e
− (x−x0)

2

2σ2 , (3.3)

where the parameter of wavenumber κ can be tuned to produce highly oscillatory wave-
packet, x0 is the initial location of wavepacket center and σ is a constant regularizing the
width of the wave packet. We set x0=0 and σ=

√
2/10 such that the tail of wavepacket is

constrained over the computation domain [−1,1]. It is straightforward to show that the
exact solution is given by u(x,t)= u0(x−t), which is a translation of the initial solution
at a unit speed, resulting in the fact that the initial wavepacket repeats itself every two
time units over the computation domain [−1,1]. The mesh size is chosen as N = 128 to
implement the PDE transform while the time increment is selected as small as 10−4 to
ensure that the time discretization error is negligible.

We vary wavenumber κ to explore the accuracy and stability of the PDE transform
strategy for the wavepacket propagation. For low frequency waves, a low-order method
can work well to obtain accurate solutions. However, as the wavenumber κ increases,
the wavepacket becomes more and more oscillatory. It is challenging for low resolution
schemes to resolve the highly oscillatory advective wavepacket. Therefore, one needs to
resort to a high order method. In our test, we apply the 6th-order PDE transform for
low frequency wavepackets, i.e., κ = 5 and 10, and 12th-order PDE transform for high
frequency wavepackets, i.e., κ=20 and 25.

Figs. 2(a), (b) and (c) show the computational results and exact solutions at time t=100
for three different frequencies κ=5,10 and 20. It is obvious that there is no visual differ-
ence between the numerical and exact solutions in Figs. 2(a) and (b). However, for the
case of κ=20, the solution does not show the peaks and valleys of the exact wavepacket.
One may regard the solution as being imperfect. In fact, this is not true. The L∞ error
listed in Table 1, is as small as 2.67E-6. Therefore the numerical solution is extremely
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Figure 2: Results from the PDE transform for the advection equation with the Sine-Gaussian wave packet
(t=100, ∆t=10−4).
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accurate. The truth is that, because so few grid points are used in our computation, there
are not enough grid points to fully represent the wavepacket. Nevertheless, the origin
information of the wavepacket is perfectly built in the solution. To illustrate this point,
we interpolate the present solution to a denser grid (N = 256) as shown in Fig. 2(d) by
using our DSC algorithm [46, 50, 56]. Indeed, we are able to fully restore all extrema in
the wavepacket based on the information presented in Fig. 2(c). This confirms that our
scheme is still able to perform well for high frequency waves under a very small ratio of
grid points over wavelength.

It is also meaningful to check the long time integration of the numerical method. Ta-
ble 1 lists the numerical L∞-error from t= 10 to t= 100. One can tell that the numerical
errors are under good control during the time integration. As a comparison, we also list
in Table 1 the results of a CFOR-Hermite method proposed in our earlier work [62]. The
CFOR-Hermite method is based on the local spectral wavelet approach for the spatial
discretization and the conjugate filter method for oscillation reduction. It has been inten-
sively validated for solving the Navier-Stokes equation and integrating conservation law
systems [62].

In the work of [62], the CFOR-Hermite method employs 100 points but takes the same
time step ∆t=10−4. From Table 1, one can notice that the errors from the PDE transform
is slightly smaller than those from the CFOR-Hermite method. We are quite confident
that the results listed in Table 1 are some of the best when κ=25. It can be concluded that
the numerical accuracy and long time stability are well resolved by the proposed PDE
transform.

The time step size of ∆t= 10−4 is quite small. In fact, we can increase the time step
size to enhance the efficiency. However, larger time step size will sacrifice the accuracy.
Table 2 shows that the 4th order converges in the L∞ error. This result is consistent with
the fact that we use the 4th order Runge-Kutta algorithm.

Table 1: L∞ error for long-time integration of the Sine-Gaussian wavepacket.

Time 10 20 50 80 100

PDE transform κ=20 2.69E-7 5.38E-7 1.34E-6 2.15E-6 2.67E-6

κ=25 8.10E-7 1.62E-6 4.06E-6 6.50E-6 8.47E-6

CFOR-Hermite κ=20 2.78E-7 5.56E-7 1.39E-6 2.22E-6 2.78E-6

κ=25 1.51E-6 3.02E-6 7.55E-6 1.21E-5 1.51E-5

Table 2: L∞ errors w.r.t. different time step sizes for the integration of the Sine-Gaussian wavepacket. (t=2,
κ=20).

∆t L∞ error order

10.0E-4 1.3E-4

5.0E-4 8.1E-6 4.0

1.0E-4 1.3E-8 4.0
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3.1.2 Example 2 (Linear advection equation with wave combination)

Another example is also a linear advection equation given by [23]

ut+ux =0, −1< x<1,

u(x,0)=u0(x), periodic, (3.4)

where u0(x) is the initial value given by

u0(x)=





1
6

(
G(x,β,z−δ)+G(x,β,z+δ)+4G(x,β,z)

)
, −0.8≤ x≤−0.6,

1, −0.4≤ x≤−0.2,
1−|10(x−0.1)|, 0≤ x≤0.2,
1
6

(
H(x,α,a−δ)+H(x,α,a+δ)+4H(x,α,a)

)
, 0.4≤ x≤0.6,

0, otherwise.

(3.5)

The functions G and H are set as

G(x,β,z)= e−β(x−z)2
,

H(x,α,a)=
√

max(1−α2(x−a)2,0), (3.6)

where z=−0.7, δ=0.005, β= log2/(36δ2), a=0.5, and α=10.
The initial value of this problem is a smooth but narrow combination of a Gaussian,

a square wave, a sharp triangle wave and a half ellipse. It is easy to show that the exact
solution is given by u(x,t) = u0(x−t), which is a translation of the initial solution at a
unit speed. It is well known that due to the contact discontinuity, the propagation by the
linear advection equation leads to unphysical Gibbs’ oscillations which may be induced
by exponentially small numerical errors and their subsequent amplification. In Fig. 3,
the numerical results obtained by using the PDE transform of second and eighth orders
are demonstrated at t=8 with 256 grid points. In fact, results for fourth and sixth orders,
which are omitted to save the space, are very similar to those of second and eighth orders.
The L∞ errors for the second, fourth, sixth eighth order approaches are all below 0.01. It
is interesting to observe that for this simple problem, not only the second order PDE
transform works well, but also many higher order PDE transforms are able to produce
satisfactory results.

In the above scheme, the time step size is set as ∆t= 0.001. We can also use a larger
time step size to enhance the efficiency. One attributes to measure the efficiency of the
scheme is the CFL number. A larger time step size gives a higher CFL number. Fig. 4
shows the results for larger time step sizes ∆t=0.002 and ∆t=0.004, where it is seen that
Gibbs oscillations are well suppressed. Our results indicate that PDE transform can also
achieve high efficiency in suppressing Gibbs oscillations.

3.1.3 Example 3 (Inviscid Burgers’ equation)

In this example, we test the performance of the present PDE transform for the most clas-
sical model, inviscid Burgers’ equation with convex flux f (u)=u2/2 and Riemann type
of initial conditions with constant ul on the left and ur on the right.
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Figure 3: Results from the PDE transform of various orders for the advection equation (t= 8,∆t= 0.001, 256
grid points).
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Figure 4: Results from the PDE transform with larger time step sizes for the advection equation (t=8, 256 grid
points).

(3a) First we consider the Riemann initial value with ul >ur as

u(x,0)=

{
ul =1, x≤0,
ur =0, x>0.

(3.7)

This problem has been studied by numerous researchers because it is a standard bench-
mark problem in hyperbolic conservation laws. The exact solution is given by a shock
wave with a constant velocity σ, i.e.

u(x,t)=

{
ul,

x
t <σ,

ur,
x
t >σ,

(3.8)

where

σ=
f (ul)− f (ur)

ul−ur
=

1

2
.
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Figure 5: Results from the 6th-order PDE transform for the inviscid Burgers’ equation at time t=2. (a) ul=1,
ur =0, 257 grid points; (b) ul =0, ur =1, 129 grid points.

It is observed that this problem has a non-periodic boundary condition. Con-
sequently, the computational domain needs to be symmetrically doubled in the x-
direction to obtain periodic boundary condition when applying the Fourier pseudospec-
tral method [40] pairing with the PDE transform. Since the initial condition is piecewise
constant and exact solution does not involve large oscillation, a low-order scheme is suit-
able to render a satisfactory numerical solution. In this case, we apply second, fourth
and sixth order PDE transforms to resolve the problem. The numerical results from the
sixth order PDE transform are plotted in Fig. 5(a) at time t= 2. It is demonstrated that
the Gibbs’ oscillation is well resolved and the shock front, which moves to x=1, is well
captured. Although this problem prefers low order shock-capturing methods [23], it is
concluded that the PDE transform based FPM method works well for this problem too.

(3b) As another example, we check the present method by using the Riemann type
initial value with ul <ur as

u(x,0)=

{
ul =0, x<0,
ur =1, x≥0.

(3.9)

The exact solution is given by a rarefaction wave

u(x,t)=





0, x
t < f ′(ul),

G( x
t ), f ′(ul)<

x
t < f ′(ur),

1, f ′(ur)<
x
t ,

(3.10)

with f ′(ul)=ul, f ′(ur)=ur and G(x/t)=( f ′)−1(x/t)= x/t.
Similar to Case (3a), the computational domain is symmetrically doubled in the x-

direction to obtain periodic boundary condition before applying the PDE transform and
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FPM. Furthermore, the piecewise constant initial condition and exact solution imply that
this problem can be well resolved by a low-order shock-capturing scheme. In our ap-
proach, we apply the sixth order PDE transform, paired with the FPM, to solve the equa-
tion. The numerical results from the sixth order PDE transform are plotted in Fig. 5(b) at
time t=2. From the figure, it is seen that the rarefaction fan over [0,2] is free of oscillation.
The feature of the solution is well resolved.

3.1.4 Example 4 (Non-convex flux)

. We next consider a problem with a non-convex flux to test the convergence to the phys-
ically correct solution. The non-convex flux is given by

f (u)=
1

4
(u2−1)(u2−4) (3.11)

with a Riemann initial condition

u(x,0)=

{
ul =−3, x<0,
ur =3, x≥0.

(3.12)

The exact solution is given by

u(x,t)=





ul ,
x
t ≤ f ′(ul),

G( x
t ), f ′(ul)<

x
t <0,

−G(− x
t ), 0< x

t < f ′(ur),
ur, f ′(ur)≤ x

t ,

(3.13)

with f ′(ul)=−19.5, f ′(ur)= 19.5 and G(u) is the solution of f ′(G(u))= u in the convex
part of f , which is | u |>

√
5/6. It should be noted that the solution is discontinuous at

x=0 and G(0)=
√

2.5.

The exact solution and more detailed information about this problem are given in [20].
This problem is relatively more complicated than the convex flux case. In the literature,
commonly reported numerical result is at t=0.04 [23]. The numerical results of the PDE
transform are showed in Figs. 6(a) and (c). It is seen that the shock front at x = 0 is
almost exactly captured. Particularly, there is no numerical solution point located on the
discontinuity.

As a comparison, we consider the Fourier pseudospectral method (FPM) with the
regularized Shannon kernel (RSK) approach, which was extensively validated in our ear-
lier work [40]. In Figs. 6(b) and (d), this approach is labeled as FPM-RSK. It is obvious
that compared with the FPM-RSK, the present PDE transform yields a more satisfactory
resolution. We believe that our results from the PDE transform based FPM approach are
some of the best ever reported for this classic problem.
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(a) The 4th order PDE transform (129 grid points) (b) FPM-RSK (129 grid points)
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(c) The 6th order PDE transform (65 grid points) (d) FPM-RSK (65 grid points)

Figure 6: Comparison between numerical results from the PDE transform and FPM-RSK method for the problem
with a non-convex flux (t=0.04, ∆t=0.0005).

3.2 1D Euler systems

In this subsection, we carry out numerical experiments by using the proposed PDE trans-
form scheme for the 1D Euler equation of gas dynamics. In one dimension, the Euler
equation takes the form [23, 40]

Ut+F(U)x=0 (3.14)

with

U=




ρ
ρu
E


, F(U)=




ρ
ρu
E


u+




0
p

pu


, (3.15)

where ρ,u,p and E denote the density, velocity, pressure and total energy per unit mass

E=ρ

[
e+

1

2
u2

]
, (3.16)
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respectively. Here, e is the specific internal energy. For an ideal gas with the constant
specific heat ratio (γ=1.4) considered here, one has

e =
p

(γ−1)ρ
. (3.17)

In the following, we consider two well-known Riemann problems.

3.2.1 Example 5 (Sod’s and Lax’s problems)

Here we apply the PDE transform based FPM on two shock tube problems, i.e., Sod’s
problem and Lax’s problem, which are both standard benchmark tests. In fact, due to
their simple profiles, these problems favor low order schemes.

Sod’s problem is a special case of shock tube problem with velocities on both sides
of the discontinuity being set to zero. It is often used as a test case for validation of
numerical shock capturing schemes, because analytical solutions are available. The initial
condition for Sod’s problem is given by

(ρ,u,p)t=0=

{
(1,0,1), x<0,
(0.125,0,0.1), x≥0;

(3.18)

while the initial condition for Lax’s problem is given by

(ρ,u,p)t=0=

{
(0.445,0.698,3.528), x<0,
(0.5,0,0.571), x≥0.

(3.19)

Although there are coupled equations in the system, which make it more complicated
than scalar equations, the Sod and Lax problems involve multiple piecewise constant
solution without much oscillation. Therefore, these problems favor low-order numerical
methods. In our study, we utilize the 6th-order PDE transform method with the FPM
to integrate these shock tube equations. Our results of density and pressure for Sod’s
problem are depicted in Fig. 7. It is perceived that three characteristics of Sod’s problem,
including the rarefaction wave, the contact discontinuity and the shock discontinuity are
well resolved and captured.

Figs. 8(a) and (b) illustrate the present numerical results for Lax’s problem. Similar to
the Sod’s case, three characteristics of Lax’s problem, including the rarefaction wave, the
contact discontinuity and the shock discontinuity are also well captured. It can be seen
that the present method gives a good resolution in both cases.

As a comparison, we plot the results obtained by the FPM-RSK approach [40] in
Figs. 8(c) and (d). As discussed earlier, the FPM-RSK scheme is a robust approach for
hyperbolic conservation laws. It is seen from Fig. 8 that the present PDE transform per-
forms at least as good as, if it is not better than, the FPM-RSK approach for shock tube
problems.

All of the preceding test examples, except for the high-frequency case in Example 1,
favor low order shock capturing schemes. In such a case, although the present method,
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Figure 7: Numerical results from the 6th-order PDE transform for Sod’s problem (t= 1.5, ∆t= 0.02, 129 grid
points). (a) Density; (b) Pressure.
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Figure 8: Comparison of numerical results from the 6th-order PDE transform and the FPM-RSK for Lax’s
problem (t=1.5, ∆t=0.02, 129 grid points). (a) Density from the PDE transform; (b) Pressure from the PDE
transform; (c) Density from the FPM-RSK; (d) Pressure from the FPM-RSK.
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as well as other high-order shock capturing schemes, work extremely well, it does not
have a cutting edge advantage over low order methods. In the next three examples, we
consider a class of problems that require high-order shock capturing methods for efficient
spatial discretizations. Whereas, it will be extremely difficult, if it is not impossible, for
low order methods to resolve this class of problems.

3.2.2 Example 6 (1D Shock-entropy interaction)

The interaction between a Mach 3 right-moving shock and an entropy wave of small
amplitude in a one-dimensional flow, which is a standard test problem [18, 23, 40], is
investigated in this example. This problem is important because of its relevance to the
interaction of shock and turbulence. We take the computation domain over [0,9] and
initialize the flow field with

(ρ,u,p)t=0=

{
(3.85714,2.629369,10.33333), x<0.5,

(e−ǫsin(κx),0,1.0), x≥0.5.
(3.20)

The parameters ǫ and κ are the amplitude and the wave number of the entropy wave
before the shock. In this numerical experiment, the small amplitude of the pre-shock
entropy is kept the same, i.e. ǫ=0.01 while the wave number κ is varied. The amplitude
of the amplified wave after the shock can be given by linear analysis [33], which is a
constant of 0.08690716.

This problem of shock and entropy interaction becomes more and more challeng-
ing as the frequency κ increases. The difficulty lies in the fact that it is hard to distin-
guish the amplified high frequency entropy wave from the spurious oscillations. Low
order numerical schemes may dramatically damp the amplitude of the transmitted high
frequency wave. Even some high order schemes encounter the same numerical diffi-
culty. A satisfactory numerical scheme should possess the quality of suppressing Gibbs’
oscillation while preserving amplitude of the entropy wave as well as capturing the
shock [18, 23, 40].

In our numerical test, the shock is set to move from x = 0.5 to x = 8.5. For the con-
venience of a comparison with previous results, we only display the results at interval
[3.0,9.0]. Furthermore, for the purpose of discharge transient waves due to the non-
numerical initial shock profile, we plot the length of the amplified entropy waves in the
same manner as that in Ref. [23]. Additionally, we would like to point out two nontriv-
ial details in the illustration. The first one is that the plotted results are obtained by an
interpolation of our final numerical results from a coarse grid to a denser grid, which
has already been adopted for plotting the high-frequency Sine-Gaussian wavepacket in
Example 1. This is necessary because our computational grid is too coarse to show all the
peaks and valleys of our numerical results. The second one is that a post processing fil-
ter, which was discussed in Section 2.3, is employed to eliminate the oscillations near the
shock when we present the final result after the completion of the entire time integration.

First, we test the shock capture for a case with relatively low frequency κ=18. We set
513 grid points over the computation domain [0,9] to implement the PDE transform cou-
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pled with the Fourier pseudospectral method. It is difficult for a low-resolution method,
such as a first order or a second order shock capturing method to preserve the amplitude
of high-frequency entropy wave and suppress oscillation [23].

In our numerical test study, we found that the low-order PDE transform does not
work well for this problems, although the FPM is employed. Low order PDE trans-
forms either damp the amplitude of the high-frequency entropy wave or cannot suppress
Gibbs’ oscillations. In contrast, we found that a moderately high order PDE transforms
with suitable propagation time perform much better. Fig. 9(a) shows the amplitude of
the shock entropy of κ = 18 obtained by using the 12th-order PDE transform. It can be
seen that the entropy waves almost fully span two strips bounded by two analytical solid
lines y= 0.08690716 and y=−0.08690716, which indicates that the amplitude of ampli-
fied wave is well preserved. As the amplified entropy wave is monochromic post the
shock, it is appropriate to characterize the resolution of the present method by points per
wavelength (PPW). A further simple calculation on the amplified entropy wave tells that
the resolution is about 5.3 PPW, which is among the best results for this shock entropy
problem, to our best knowledge.

Next we increase the frequency to κ=32. As there are many more amplified entropy
wave post the shock, it is difficult to use 513 grid points to maintain the amplitude of
high-frequency wave post shock. Instead, we deploy a mesh of 1025 grid points so as
to render a better result. In this case, we still employ a 12th-order PDE transform but
with a different propagation time from κ = 18. One still needs to be careful to design
an appropriate PDE transform for this more complicated problem. Fig. 9(b) shows the
amplitude of the shock entropy wave of κ = 32 by a 12th-order PDE transform. It is
perceived that the entropy wave is still able to almost fully span two strips bounded by
two solid lines y = 0.08690716 and y =−0.08690716. Furthermore, the waves at shock
front are free of oscillation.

Finally, we consider a more challenging situation by setting a larger κ. We use
2049 grid points in our spatial discretization of the computation domain [0,9]. Fig. 9(c)
presents the result of the case for κ=60. It is clear that the waves post shock are well pre-
served while the waves at shock front are free of oscillation and well maintained. It also
worthwhile to mention that the resolution for this case is about 5.9 PPW, which is still the
best record at such a high κ value to our knowledge. Our results indicate that the present
PDE transform is able to distinguish the high-frequency entropy waves from spurious
oscillation. The above test cases of different frequencies imply that the PDE transform
can be a powerful tool for solving hyperbolic conservation law systems involving the
interaction of shock and high frequency entropy waves.

As stated earlier, low order shock capturing schemes will encounter difficulties for the
above test cases. In fact, not all PDE transforms are suitable for these problems. The in-
appropriate selections of the PDE transform will either pollute the amplitude of entropy
waves or cannot suppress the oscillation. We illustrate this point by using the setting
of κ = 32 and 1025 grid points. Fig. 10(a) demonstrates the result from a 6th-order PDE
transform, which illustrates the effect of a low order PDE transform. Although the waves
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Figure 9: The amplitude of entropy waves in the 1D shock-entropy interaction problem for different frequencies
resulting from the 12th-order PDE transform.

in the shock front is perfectly kept, the amplitude of the entropy waves post shock is
severely damped. We found that second order and fourth order PDE transforms perform
even worse for this problem. As another check, we would like to investigate the perfor-
mance of a very high order PDE transform for this problem. Although a high order PDE
transform works well in preserving the high-frequency entropy waves post the shock, it
may also pollute the relatively low frequency waves in the shock front. Fig. 10(b) shows
the result from a 40th-order PDE transform. It is clear that the entropy waves in the shock
front are polluted by Gibbs’ oscillations.
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Figure 10: The amplitude of entropy waves in the 1D shock-entropy interaction problem for κ = 32 resulting
from PDE transforms of low and extremely high-order. (a) The 6th-order PDE transform; (b) The 40th-order
PDE transform.

3.2.3 Example 7 (Shu-Osher’s problem)

We now examine the performance of the PDE transform on the problem of Shu and Osher,
which is another typical case to test the capability of a numerical method in predicting
shock/entropy interactions. This problem is also initialized by a Mach 3 right-moving
shock and an entropy wave, which is in the sine form. Compared with the last problem,
Shu and Osher problem involves many different frequencies. It is relatively difficult for
low order numerical methods.

We consider the computational domain of [−1,1] with flow field initialized by

(ρ,u,p)t=0=

{
(3.85714,2.629369,10.33333), x<−0.8,
(1.0+ǫsin(κπx),0,1.0), x≥−0.8,

(3.21)

where ǫ = 0.2 is the amplitude and κ = 5 the angular wave number. Although there is
no exact solution to this problem, we took the accurate solution as the result given by
the highly accurate FPM-RSK method [40], which was calibrated by the 5th order WENO
scheme [23] for this problem.

Because of the complicated fluctuation post the shock, it is difficult for low order
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Figure 11: Solution to the Shu-Osher problem (t= 0.47, ∆t= 0.001, 129 grid points). (a) Obtained with the
2nd-order PDE transform; (b) Obtained with the 10th-order PDE transform.

schemes to capture various frequencies of wave post shock as well as the sharp shock
front [23]. High order methods, such as the 5th order WENO scheme [23] and the FPM-
RSK method perform extremely well [40].

In the present work, we are interested in the understanding of the performance of
the PDE transform of different orders. In fact, through our numerical tests, we found
that when one uses the second order PDE transform, one cannot obtain a satisfactory
numerical result, no matter what propagation time is chosen. With various choices of
the propagation time, the second order PDE transform either damps the amplitude of
high frequency waves too much or cannot prevent the solution from blowing up as time
evolves. Fig. 11(a) shows the result of a 2nd-order PDE transform. The L∞ error is 0.82.
It is seen that it not only smooths the low frequency waves but also damps the high
frequency components.

By contrast, high order PDE transforms work much better. As an illustration,
Fig. 11(b) presents the result from a 10th order PDE transform. The L∞ error is 0.11
occurred at the low frequency wave part. Obviously, the 10th-order PDE transform is
able to well capture the complicated high-frequency waves post the shock. Furthermore,
the shock front remains sharp in high-order PDE transforms. Although there is some
abnormal oscillation at the on-set of low frequency waves, the 10th order PDE transform
preserves the majority of the low frequency waves. This difficult case further validates
the power of the present PDE transform.

3.3 2D Euler systems

In two spatial dimensions, we consider the Euler equation in the conservative form of

Ut+F(U)x+G(U)y=0 (3.22)
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with

U=




ρ
ρu
ρv
E


, F(U)=




ρ
ρu
ρv
E


u+




0
p
0

pu


, G(U)=




ρ
ρu
ρv
E


v+




0
0
p

pv


, (3.23)

where (u,v) is the fluid velocity and p is given by

p=(γ−1)

[
E− 1

2
ρ(u2+v2)

]
. (3.24)

We discretize the conservative quantities (ρ,ρu,ρv,p) on the mesh and applied the PDE
transform during the time integration.

Like the one dimensional problems, the non-periodic domain in 2D can also be han-
dled by symmetrical extension to the auxiliary domain. In more details, suppose the
original domain is discretized by N1 ·N2 grid points indicated by (i, j) with i=1,··· ,N1+1
and j= 1,··· ,N2+1. If the 2D domain is non-periodic in only one of the two directions,
suppose in x-direction, then the computation domain is doubled with 2N1 ·(N2+1) grid
points and F(U),G(U) and u are extended by

{F(U)}i,j,k ={F(U)}2N1+2−i,j,k, i=N1+2,··· ,2N1, (3.25)

{G(U)}i,j,k={G(U)}2N1+2−i,j,k, i=N1+2,··· ,2N1, (3.26)

{U}i,j,k ={U}2N1+2−i,j,k, i=N1+2,··· ,2N1. (3.27)

If the 2D domain is non-periodic in both two directions, then the computation domain is
doubled with 2N1 ·2N2 grid points and F(U), G(U) and U are extended by

{F(U)}i,j,k =

{ {F(U)}2N1+2−i,j,k, i=N1+2,··· ,2N1,
{F(U)}i,2N2+2−j,k, j=N2+2,··· ,2N2,

(3.28)

{G(U)}i,j,k =

{ {G(U)}2N1+2−i,j,k, i=N1+2,··· ,2N1,
{G(U)}i,2N2+2−j,k, j=N2+2,··· ,2N2,

(3.29)

{U}i,j,k =

{ {U}2N1+2−i,j,k, i=N1+2,··· ,2N1,
{U}i,2N2+2−j,k, j=N2+2,··· ,2N2.

(3.30)

3.3.1 Example 8 (2D Shock-entropy interaction)

Having tested the performance of the PDE transform for 1D shock-entropy interactions,
we now consider the case in a 2D setting. The weak entropy wave makes an angle θ ∈
(0,π/2) against the x-axis. If θ = 0, then this 2D problem essentially degenerates into
the 1D shock-entropy problem studied earlier. Since now the entropy waves are oblique
to the shock, this 2D problem is more challenging to resolve. Our objective is to further
examine the capability of the PDE transform for higher dimensional problems.
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Figure 12: The amplitude of entropy waves in the 2D shock-entropy interaction problem obtained from PDE
transforms of different orders.

Given the right state of the shock as (ρr,ur,vr ,pr)=(1,0,0,1), a weak entropy is added
by changing the density on the right. Here ρr is modified by

ρ=ρre−ǫsin(κz(θ))/pr , (3.31)

where z(θ) is related to the angle θ by z(θ)=xcosθ+ysinθ and ǫ and κ are the amplitude
and wave number of the entropy wave, respectively. In this test, we choose parameters
θ=π/6, ǫ=0.1 and κ=15.

For the computation domain, on the one hand, in order to implement the periodic
boundary condition along the y-direction, the computation domain in y is set to be
[0, 2π

κsinθ ] provided θ 6=0. On the other hand, the computation domain in x is set as [0,9].
Since the boundary condition in x is non-periodic, we extend the computation domain

in x symmetrically from [0,9] to [0,18]. We deploy 32 points in [0, 2π
κsinθ ] and 1024 points

over [0,18], which implies 513 points over [0,9]. In our test, the shock starts at x=0.5 and
moves up to x=8.5. As we mentioned in the 1D case, a good numerical scheme should
be able to preserve the amplitude of the high-frequency entropy waves. It needs to be
mentioned that low-order methods do not work well for this problem [23]. Low-order
methods would severely damp the amplitude as pointed out in Ref. [23].

For the PDE transform approach, methods of different PDE orders exhibit sharply
different behaviors. Fig. 12 shows the performance of the 6th-order PDE transform by
checking the maximum amplitude of the amplified waves along the y-direction for grid
points x∈[7.4,8.4], and furthermore comparing with the amplitude predicted by the linear
analysis, i.e., 0.08744786. It is seen that the 6th-order method has an obvious amplitude
loss. In fact, to preserve the amplitude of the entropy waves, a high order PDE trans-
form is preferred. We improve the performance by resorting to the 10th-order PDE trans-
form. The result from the 10th-order PDE transform is also illustrated in Fig. 12. From
this result, it is obvious that the amplitude of entropy waves is well maintained in the
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post-shock region. Although there are small peaks and valleys, such a trivial deficiency
appears in other methods as well [23, 40] and is acceptable. This test further validates
the capability of the present PDE transform for resolving the shock entropy problem in a
higher dimension.

3.3.2 Example 9 (2D Shock-vortex interaction)

Finally, we consider the problem of the interaction between a stationary shock and vor-
tex. This problem has attracted much attention from numerous researchers because of its
potential applications. This is another problem that poses challenges to low order numer-
ical schemes. High order methods, such as WENO methods [23], spectral methods [40]
and CFOR-Hermite scheme [62] work well for this problem. Here we further examine
the capability of proposed PDE transforms for shock-vortex interactions.

The set up of the problem is as follows. The original computational domain is set
to [0,1]×[0,1] with a stationary normal shock at x = 0.5 normal to x-axis. A flow with
Mach number Ms = 1.1 enters at the inlet from the left and the shock is initialized as
(ρl ,ul,vl,pl)= (1,1.1

√
γ,0,1) on the left state. A vortex centered at (xc,yc)= (0.25,0.5) is

generated by introducing a perturbation to the original velocity field (u,v), temperature
T and entropy S. We denote the perturbation by (u′,v′,T′,S′), which is given as

(u′,v′)=ǫτeα(1−τ2)(sinθ,−cosθ),

T′=− (γ−1)

4γα
ǫ2e2α(1−τ2),

S′=0, (3.32)

where, τ= r/rc, r=
√
(x−xc)2+(y−yc)2 and θ= tan−1[(y−yc)/(x−xc)]. By the relation

of T = p/ρ and S= lnp/ργ , the perturbation ρ′ and p′ to initial ρ and p can be derived
from T′ and S′. Here ǫ and α are the strength and decay rate of the vortex and rc is a
parameter to regulate the strength of the vortex. In our test, we take ǫ=0.3, α=0.204 and
rc=0.05.

The computational domain [0,1]×[0,1] is extended to [0,2]×[0,2] and discretized with
an even-spacing Cartesian mesh. We use 129 even-spacing grid points in y domain of
[0,1] and 257 grid points in x domain of [0,1]. The mesh in the x direction is shifted by
the Robert transformation [1] to deploy more mesh points towards the stationary shock.
The upper and lower boundaries are imposed with the reflective boundary conditions.
The time step in our integration is regulated by the CFL condition (CFL=0.5).

This problem prefers moderately high order PDE transforms because of its compli-
cated feature. In fact, we cannot find satisfactory results from low-order PDE transforms
yet. As an illustration, Fig. 13 depicts our results obtained with a 10th-order PDE trans-
form. We plot the pressure profile with 20 contours at t=0.05, 0.2, 0.35, 0.6.

From Fig. 13, it is seen that the solution is essentially free of oscillations. It can also
be observed that the deformation of the vortex at the shock and the bifurcation after the
shock are quite well captured.
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Figure 13: The pressure profile of 2D shock-vortex interaction problem from the 10th-order PDE transform (20
contours).

4 Concluding remarks

Systems of hyperbolic conservation laws are of fundamental importance in science and
engineering. The construction of accurate, efficient and reliable numerical schemes has
been an active research topic in applied mathematics over the past half a century. Due
to a vast variety of complex problems with extremely diversified physical origins, many
hyperbolic conservation law systems remain a challenge to mathematical methods. Typi-
cal examples include shock-turbulence interactions which involve a wide range of spatial
scales and possible blow ups due to the successive amplification of exponentially small
numerical errors during the time integration.
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The present work introduces the use of evolution partial differential equations (PDEs)
as a means to efficiently suppress Gibbs’ oscillations in the numerical solution of hyper-
bolic conservation laws. Specifically, during the time integration of a hyperbolic conser-
vation law system, an intermediate numerical solution at a given time step may be used
as an initial data for a special evolution PDE. Then the solution of such an evolution PDE
is accepted as an updated numerical solution at the given time step. Our approach in-
volves the use of the PDE transform, a technique developed in our recent work [47, 49]
for the mode decomposition of signals, image, and data. The PDE transform is based on a
family of arbitrarily high order nonlinear PDEs originally introduced by Wei in 1999 [51]
and a recursive scheme for reinitializing the input data [47, 48]. Like the wavelet trans-
form, the PDE transform is able to decompose signals, images and data into functional
modes, such as edges, trend, texture and feature with controllable frequency ranges and
time-frequency localizations, which correspond to appropriate multiresolution analysis
in the physical domain. Similarly, the PDE transform also has a prefect reconstruction
of original signals, images and data. The PDE transform has found its success in signal
processing [47, 49], image analysis [47, 49] and biomolecular surface construction [60].

It may appear computationally inefficient to suppress Gibbs’ oscillations at a time
step of integrating a hyperbolic conservation law equation by solving another evolution
PDE. However, this is not true. Two techniques are proposed to improve the efficiency of
the present approach. First, we use an adaptive measure of total variations to automat-
ically determine whether the PDE transform is needed at each time step. Additionally,
we utilize a fast PDE transform, which offers the analytical solution of an arbitrarily high
order evolution PDE in the Fourier representation. This technique bypasses the stability
constraint of solving high order evolution PDEs. Consequently, the present PDE trans-
form algorithm is at least as efficient as our previous windowed Fourier pseudospectral
method (FPM) [40] and is slightly more efficient than our earlier conjugate filter oscilla-
tion reduction (CFOR) scheme [18, 54, 61, 62].

To be more specific about the efficiency, since the FPM with the fast Fourier transform
(FFT) is utilized as the spatial discretization, the complexity of the present PDE transform
coupled with the FFT is of O(N lnN). This feature endows the proposed method with
high efficiency, which is desirable for large scale problems in scientific and engineering
applications.

A variety of benchmark tests are employed in the present work to validate the pro-
posed approach, ranging from scalar conservation law systems to Euler equations in
one and two spatial dimensions. Among these problems, Examples 2-5 typically pre-
fer low-order shock capturing schemes; whereas Examples 1, and 6-9 are well known to
require high order numerical methods. For example, low order schemes will severely
damp the amplitude of the entropy waves in the shock-entropy interaction described
by the Euler equation. The proposed PDE transform based FPM works extremely well
for these two types of problems. For instance, it provides some of the best results for
solving the Burgers’ equation with non-convex flux. Furthermore, only about 5 points
per wavelength (PPW) is needed for the present approach to handle the interaction of
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shock-entropy waves and shock-vortex interactions. To our knowledge, the only other
shock-capturing schemes that have demonstrated their ability of operating at 5 PPW are
the CFOR scheme [18, 54, 61, 62] and the windowed FPM [40] proposed in our previous
work. The performance of the proposed method is compared with those of the CFOR
scheme [62] and the windowed FPM [40].

In order to make the present PDE transform based FPM working well for all of the
above mentioned problems, we adjust two controlling parameters: the highest order of
the PDE transform and the propagation time. In fact, the former is the primary parameter
and the latter is less important although indispensable. It is found that the FPM behaves
as a low order shock capturing scheme when it is coupled with a relatively low order PDE
transform; while it behaves as a high order shock capturing scheme when it is coupled
with a moderately high order PDE transform. The preferred orders of the PDE transform
for these test examples are in a similar range of orders used in our PDE transform based
molecular surface construction [60]. Unlike the signal decomposition, which requires the
use of extremely high order PDE transforms [47, 49], the present systems of hyperbolic
conservation laws do not need extremely high order PDE transforms. In fact, it is found
that the use of extremely high order PDE transforms leads to unphysical oscillations.
The selection of PDE transform parameters for all test examples is summarized in the
Appendix, where the propagation time is optimized for each given order of the PDE
transform.

As an introduction of the present PDE transform approach for systems of hyperbolic
conservation laws, we only consider one and two dimensional problems in the present
work. The extension of the present method to higher dimensions is feasible. However,
this aspect is beyond the scope of the present paper.

It is possible to implement the PDE transform in the physical domain. However, this
algorithm can be subject to stringent stability constraints of integrating high order PDEs.
For example, if we solve the 10th-order PDE transform in the physical domain, then the
constraint on the time step ∆t is as small as the magnitude (∆x)10, which causes the real-
ization of the 10th-order PDE transform too costly. As a result, implicit time discretization
methods such as alternating-direction-implicit (ADI) technique may be required to speed
up the solution of the PDE transform.

It is also possible to automatically select the order of PDE transform during the time
integration. Such an approach is useful and efficient for nonlinear conservation law
systems with time-varying spectral distributions, such as the shock-vortex interaction
discussed in the last example. If implemented, this adaptive PDE transform method
could significantly expand the applicability of the proposed method for simulating the
shock/turbulence interaction or more general flows with growing multi-scale vortices or
other fine local structures. However, it is a major job to make this adaptive PDE trans-
form method robust for a wide range of problems. Therefore, we recommend it as a
future work.

It should be noted that the concrete expression of PDE transform is flexible, which
enables the PDE transform to open to various applications. Beside the linear form in the
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present work, there are different nonlinear forms to study. One potential form is the equa-
tions of geometry flow, such as the Minkowski curvature flow, Gauss curvature flow and
Ricci flow. It has been demonstrated in the work by Z. Chen etc [7, 8], that the geometry
flow equation refines the geometric feature with application to solute-solvent interface in
the implicit solvation model. The advantage of geometry flow equation based nonlinear
PDE transform is that it enables the geometric feature embedding for the physical do-
main. It is still an open questions how the geometry flow equation based nonlinear PDE
transform affects the solution of hyperbolic conservation law. However, this interesting
topic is beyond the reach of the present paper and open for future study.

Finally, we would like to point out that the idea of using PDE transforms for hy-
perbolic conservation laws not only can be implemented with the FPM, but also can be
paired with essentially any other relatively high order discretization schemes.
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Appendix

In this Appendix, we list all the PDE transform parameters, i.e., the highest order l=2m
and the propagation time τ, used in the present work for 9 test examples.

In our implementation, the wavenumber w is set by wq=(2πq/N)/∆, q=−N/2,··· ,
1,··· ,N/2−1 where L is the length of computation domain, N is the number of discretized
grid points and ∆ = L/N is the grid spacing. This series of wavenumbers ranges over
[−π/∆,π/∆). The design of PDE transform depends on the order n and propagation
time τ. Table 3 lists the order l and propagation time τ used in each test problem. To bet-
ter interpret the frequency response, we rescaled the wavenumber w from [−π/∆,π/∆)
to [−π,π). Consequently, the propagation time τ is rescaled to τ∗= τ/(∆)l correspond-
ingly.
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Table 3: The order and propagation time of the PDE transform used in test examples.

Example No Case Order Propagation time Rescaled propagation time

when w∈ [−π/∆,π/∆) when w∈ [−π,π)

1
κ=5, 10 6 1.0E-13 6.8E-03

κ=20, 25 12 1.0E-20 4.7E-03

2

2 1.0E-05 1.6E-01

4 1.0E-12 2.6E-04

6 1.0E-16 4.4E-04

8 1.0E-20 7.2E-04

3
ul =1, ur =0 6 3.0E-15 1.2E-03

ul =0, ur =1 6 7.5E-10 5.3E-02
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