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Abstract. In the present work two component dense semiclassical plasma of protons
and electrons is considered. Microscopic and electrodynamic properties of the plasma
by molecular dynamic simulation are investigated. For these purposes semiclassical
interparticle potential which takes into account quantum mechanical diffraction and
symmetry effects is used. The considered range of density of plasma is n= 1022cm−3

to n=1024cm−3. Fluctuations and dynamic dielectric functions were calculated using
velocity autocorrelation functions.
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1 Introduction

At present dense plasma consisting of protons and electrons is a topic of intense inves-
tigation. First of all, the reason for this is the prevalence of hydrogen in the universe
at present and in the past. For instance, inner matter of giant planets and stars (white
dwarfs, brown dwarfs, the sun core) is a dense plasma. Furthermore, according to the
Big Bang theory, up to 379 000 years after Big Bang protons and electrons dominated in
the Universe. Consequently, understanding the properties of the dense plasma is very
important for the investigation of the universe evolution. Secondly, in the ion beam and
in the laser fusion experiments dense plasma is created and it is important to understand
the processes in these experiments.
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The protons and electrons interact with each other via Coulomb potential

φCoulomb=
ea eb

rab
, (1.1)

where ea,eb are the charges of the particles and a,b are the types of the particles (proton,
electron).

At short distance between particles the Coulomb potential tends to infinity. This prob-
lem can be solved by taking into account the quantum mechanical effects at short inter-
particle distance [1–7]. This has been achieved by approximating the Slater sum by a
classical Boltzmann factor [8]:

S(r1,··· ,rN)= c∑
n

Ψ∗
ne−βEnΨn, (1.2)

where

c=ΠNν!λ3Nν
ν , (1.3)

λ2
ν =4πανβ, αν = h̄2/2mν, β=1/kT. (1.4)

In these equations, Nν is the number of particles of the ν-th species, which has mass mν

and thermal wavelength λv. The wave function is a properly symmetrized eigenfunction
for the entire macroscopic system with eigenvalue En, where n represents a complete set
of quantum numbers.

These are two types of quantum mechanical effects, the first one is the diffraction
effect due to Heisenberg uncertainty and the second one is the symmetry effect due to
Pauli exclusion principle. The second effect takes place for fermions.

Plasma properties can be studied by computer simulation, taking into account quan-
tum effects in the interaction potential. For MD simulations, the following semiclassical
interaction potential which takes into account quantum effects of diffraction and symme-
try was used [8]:

φab(r)=
eaeb

r

{

1−th

(

λ2
ab

a2+br2

)

exp

[

−th

(

λ2
ab

a2+br2

)]}

(

1−e−r/λab

)

−δaeδbekBT ln

(

1−
1

2
exp

(

−
r2

λ2
ee

))

, (1.5)

where a=(4/3πn)−1/3 is the average interparticle distance, b=0.033, λab =
h̄√

4πkBmabT
is

the thermal wave length and mab = mamb/(ma+mb). The semiclassical interaction po-
tential (1.5) was obtained using interpolation numerical data which were taken by nu-
merical solving of the system of differential equations for the Fourier transform of the
interaction potential in two component plasma [9]. In [9] Thomas-Fermi approximation
was used for the determination of the wave function of the free particles. The ground-
state wave function approximated by ψG ≈ exp(−r/a)/π. The method of calculating
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Figure 1: Proton-electron pair interaction potentials; 1 is the Deutsch potential, 2 is the semiclassical potential
(1.5), 3 is the Coulomb potential. Here R= r/a, Γ=2, rS =1.

the semiclassical potential presented in work [9] allows taking into account the influ-
ence of density effects on the diffraction term of the interaction potential. The diffraction
term of the potential (1.5) at high temperature coincides with the potential of Deutsch
φD(r) = eaeb(1−exp(−r/λ))/r [10, 11]. The comparison of the semiclassical potential
(1.5) with Coulomb and Deutsch potentials is shown in Fig. 1. It is seen that at short
distances in a dense nonideal plasma the semiclassical potential (1.5) has lower absolute
value than the Deutsch potential.

In the following, length is given in the terms of the average interparticle distance
a, time is given in multiplies of the inverse of the plasma frequency ωp =

√
4πne2/me.

Dimensionless parameters of plasma are coupling parameter Γ = e2/kBTa and density
parameter rS = a/aB , where aB is the first Bohr radius.

The standard molecular dynamics method [12–16] with periodic boundary conditions
was used. In order to summarize the long range Coulomb interactions Evald procedure
was utilized [17, 18].

2 Microscopic properties

Microscopic properties of plasma can be investigated from analysis of the velocity au-
tocorrelation functions, mean-square displacements of the velocity and coordinate. The
velocity autocorrelation function is as follows:

K(t)=
〈

~ϑ(0)~ϑ(t)
〉

=
1

3N

N

∑
i=1

~ϑi(tn)~ϑi(tn+t). (2.1)

Mean-square displacement of any quantity χ can be obtained by the following formula

〈

∆χ(t)2
〉

=
1

N

N

∑
i=1

∆χ2
i . (2.2)
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Figure 2: The mean-square displacements of the
electron coordinates for several values of the cou-
pling parameter at rS =1.

Figure 3: The mean-square displacements of the
electron coordinates for several values of the cou-
pling parameter at rS =3.

Figure 4: The mean-square displacements of the
electrons velocity for several values of the coupling
parameter at rS =1.

Figure 5: The mean-square displacements of the
electrons velocity for several values of the coupling
parameter at rS =3.

In Figs. 2 and 3 the mean-square displacements of the electron coordinates are shown.
At initial time the electrons expand in the cell and the value of the mean-square dis-
placement of the coordinates linearly increases. The mean-square displacement of the
coordinates decreases with the increase of the coupling parameter (at fixed value of the
density parameter) and of the temperature. Then, due to the limited size of the basic cell
mean-square displacement of the coordinates tends to constant value. The same mecha-
nism takes place for mean-square displacement of the electron velocity which is shown
in Figs. 4 and 5.

The velocity autocorrelation functions calculated by the formula (2.1) are shown in
Figs. 6-8. At a small coupling parameter the velocity autocorrelation function decreases
monotonically with the increase in time. For a large coupling parameter the velocity
autocorrelation function has an oscillating character. In the Fig. 9 the comparison of the
velocity autocorrelation function obtained in present work using semiclassical potential
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Figure 6: The velocity autocorrelation function of
the electrons for several values of the coupling pa-
rameter at rS =1.

Figure 7: The velocity autocorrelation function of
the electrons for several values of the coupling pa-
rameter at rS =1.
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Figure 8: The velocity autocorrelation function of
the electrons for several values of the coupling pa-
rameter at rS =3.
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Figure 9: The velocity autocorrelation function of
the electrons for several values of the density pa-
rameter at Γ=0.5.

(1.5) with the results of MD simulations of Hansen et al. [19, 20] based on the Deutsch
potential is shown. It is seen that with increasing of density the difference between them
increases due to increasing of the difference in magnitude between (1.5) and the Deutsch
potential. The nature of the oscillations of the velocity autocorrelation function can be
understood by spectral analysis of autocorrelation function. General susceptibility of
plasma by the Fourier transform of velocity autocorrelation function has been obtained
by the following formula [21]

α(ω)=
e2ne

3kBT

∫ ∞

0
K(t)exp(iω t)dt. (2.3)

In the Figs. 10 and 11 real and imaginary parts of the general susceptibility for several
plasma parameters are shown. Real part of the general susceptibility describes fluctu-
ations in plasma while imaginary part is responsible for energy dissipation in plasma.
At large coupling parameter real part has maximum when dimensionless frequency is
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Figure 10: The real part of the general suscepti-
bility for several values of the coupling parameter
at rS =1.
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Figure 11: The imaginary part of the general suscep-
tibility for several values of the coupling parameter
at rS =1.

approximately equal to one. Physically, this means that in dense plasmas, Langmuir-like
oscillations can appear at frequency ωLe=

√
4πne2/me.

From Fig. 11 of the imaginary part of the general susceptibility one can see that the
waves with frequency less than Langmuir frequency should be strongly damping due to
energy dissipation.

Dynamic dielectric function was calculated from

ε(ω)=

[

1−i
4πα(ω)

ω

]−1

. (2.4)

From Eq. (2.4) for the real part of the dynamic dielectric function we have:

ε(ω)=
1+ 4π Imα(ω)

ω
(

1+ 4π Imα(ω)
ω

)2
+
(

4πReα(ω)
ω

)2
. (2.5)

Perturbation theory yields the well-known asymptotic ω→∞ limit:

ε(ω)=1−
ω2

Le

ω2
. (2.6)

The real part of the dynamic dielectric function is shown in Fig. 12. The real part of
dynamic dielectric function is characterized by a correct asymptotical behavior.

3 Conclusion

MD simulation of two component dense plasma with interparticle interaction potential
which takes into account quantum mechanical effects has been fulfilled. It has been
shown that in strongly coupled semiclassical plasma the waves with frequency less that
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Figure 12: The real part of the dynamic dielectric function for several values of the coupling parameter at rS=1.
Red dot line is curve obtained from asymptotical formula (2.6).

Langmuir frequency are strongly damped similarly to those in weakly coupled plasma.
It was found that at large values of coupling parameters in dense plasma, the Langmuir
oscillations can be produced. It has been shown that semiclassical potential (1.5) correctly
describes the properties of dense semiclassical plasmas.
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