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Abstract. In an interdisciplinary field on mathematics and physics, we examine a
physical problem, fluid flow in porous media, which is represented by a stochastic
partial differential equation (SPDE). We first give a priori error estimates for the so-
lutions to an optimization problem constrained by the physical model under lower
regularity assumptions than the literature. We then use the concept of Galerkin fi-
nite element methods to establish a new numerical algorithm to give approximations
for our stochastic optimal physical problem. Finally, we develop original computer
programs based on the algorithm and use several numerical examples of various sit-
uations to see how well our solver works by comparing its outputs to the priori error
estimates.
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1 Introduction

In the last decade, people in the scientific computing community have taken great interest
in the stochastic partial differential equations (SPDEs) and its solver called the Stochastic
Galerkin Method [4, 5, 21, 29, 33]. In this paper, we use the idea from the Galerkin finite
element method to analyze optimal control problems constrained by SPDE and develop
its numerical solver.

The stochastic Galerkin method has been created and developed to analyze a stochas-
tic problem in the following sense. Suppose that we have a deterministic partial differen-
tial equation (PDE) that models some natural phenomenon; for instance, pollutant trans-
portation in groundwater. To improve this deterministic mathematical model, we assume
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that we replace some deterministic quantities in the PDE with stochastic input data. For
example, there may be lack of knowledge about some materials such as rocks and soils
for groundwater. For these unknown properties of rocks and/or soils, we would like to
use the concept of randomness in the model so that a new mathematical model with ad-
ditional random terms can represent better the natural phenomenon. If there are inputs
that are random, then the solution to the new model problem should also be including
randomness. We then need a stochastic domain, and may need to use probability theo-
ries to analyze the solution to the new model problem. Now the remaining question is
how we apply or modify a typical method such as the Galerkin Method to analyze the
new stochastic problem derived from a deterministic problem. The stochastic Galerkin
method actually answers this question, and it turns out to be a good method that requires
less computational efforts than Monte Carlo method in computing E[u] for sufficiently
strict accuracy requirements (see [4]). However, in case that one use many terms in the
K-L expansion of our coefficient a, the Monte Carlo method is known to be most effective
(see [5]).

In this paper, we analyze the stochastic optimal control problems subject to SPDE by
using a similar approach in the literature that is used to solve SPDEs. For example, we use
the truncated Karhunen-Loéve (K-L) expansion as a main tool to convert the stochastic
optimal control problem to a coupled optimality system of deterministic PDEs. In fact,
in the last decade, based on the K-L expansion, there has been much progress in both the
analysis and the finite element approximations of SPDEs; see, e.g., [2–5, 14, 21, 29, 33, 40].

Notwithstanding the many papers devoted to discrete approximations of solutions of
SPDEs and optimal control problems for SPDEs, the literature seems to lack L2(Γ;H1

0(D))
convergence results for optimal distributed control problems based on the K-L expansion
with both feasibility and efficiency of rigorous error analysis demonstrated via numerical
examples. The goals of this work are to establish the convergence of the solution of a
distributed optimal control problem with the K-L expansions, derive its error estimates in
the norm of the solution space under minimal regularity assumptions in the y-direction,
and show the practicability and effectiveness of our theories using numerical examples.

The problem we consider is the optimization problem

J (u, f )=E

(

1

2

∫

D
|u−U|2 dx+

β

2

∫

D
| f |2 dx

)

(1.1)

constrained by the stochastic elliptic PDE under the Dirichlet boundary condition:

−∇·[a(x,ω)∇u(x,ω)]= f (x), in D, (1.2a)

u(x,ω)=0, on ∂D, (1.2b)

where E denotes expected value, D the spatial domain, ∂D its boundary, U a target solu-
tion to the constraint, β a positive constant that says the importance between two terms
in (1.1), and f a deterministic control acting in the domain. Here, our stochastic elliptic
PDE generally models fluid flow in porous media. Under the homogeneous Dirichlet



H.-C. Lee and J. Lee / Commun. Comput. Phys., 14 (2013), pp. 77-106 79

boundary condition, for almost every ω∈Ω, we look for a solution u, stochastic function
from D×Ω to R: where D⊂R

d is a convex bounded polygonal domain, a : D×Ω→R is
a stochastic function with a bounded, continuous covariance function (this is for the KL
expansion) and a uniformly bounded, continuous first derivative (this is for the regular-
ity of the solution u), and f ∈L2(D) is a distributed deterministic control. Note that in the
paper, ∇ means differentiation with respect to x∈D only.

To analyze this stochastic optimal control problem, we first estimate the error of the
solution to SPDE, and then use the Brezzi-Rappaz-Raviart (BRR) theory (this idea was
first applied to analyze constrained nonlinear optimal control problems in [28], and then
used many times in optimal control problems subject to PDEs; see. e.g., [11, 26, 27, 31]) in
uncoupling the optimality system of equations that eventually gives us the error estimate
of the solution to the stochastic optimal control problem. Then at the end, we construct a
computational algorithm for our stochastic control problem and present some numerical
examples with a given target solution to the stochastic optimal control problem with a
distributed control in the domain.

Some remarks about the literature are in order. Originally, Ghanem and Spanos pro-
posed the stochastic Galerkin method as a spectral discretization technique in the ran-
dom dimension ( [23]). Recently, Stefanou [41] provided a review paper that summarized
past and recent developments as well as future directions in the stochastic finite element
method. In [5, 7], as recent trends in developing the stochastic Galerkin method, the au-
thors of both papers converted the stochastic problem to a sequence of N-dimensional
(here, N is the number of terms in the truncated K-L expansion), parametric determin-
istic problems. The paper [17] applied an approximate K-L expansion to the solution to
reduce the set of deterministic PDEs, addressing computational efficiency of the spectral
stochastic Galerkin method to SPDEs.

The work [29] shows that the authors analyzed the stochastic optimal control prob-
lem subject to the elliptic SPDE under the Neumann boundary condition; the control
used was of the deterministic, boundary-value type. In [33], finite element methods for
a standard stochastic elliptic PDE-constrained optimal control problem was considered;
the Wiener-Ito (W-I) chaos expansion was used for the diffusion coefficient as a main an-
alytical tool; this shows some results in continuously differentiable solution spaces which
require more regularity assumptions. Unlike the references [2–5, 14, 21, 40] related to this
paper, in [30], a different notion of SPDEs was provided using the W-I chaos expansion
and the Wick product based on a different physical modeling situation, e.g., the expec-
tation of the Wick product of a and u is the Wick product of the expectations of a and
u, which is not true in general for the standard product. In [37], using the Wick product
properties, a finite element approximation of the linear SPDEs driven by a multiplica-
tive white noise was presented. A key idea used there is to reformulate the SPDEs as an
infinite set of deterministic PDEs with the Wick product. Also, in [38], optimal control
problems for linear SPDEs with quadratic cost functionals and distributed stochastic con-
trols were considered using the Galerkin finite element method; the W-I chaos expansions
for both the solution and control were used. Recently, the work [39] proposed a stochas-
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tic finite element method to the optimal control problem. It also provided a number of
numerical examples to demonstrate the proposed formulation.

In [10], Loeb-space methods were used to prove the existence of an optimal control for
the two-dimensional stochastic Navier-Stokes equations in a variety of settings including
that of control based on digital observations of the evolution of the solution. In [16], the
authors consider a control problem for a stochastic Burgers equation. They studied a
sequence of approximated Hamilton-Jacobi equations by using dynamic programming.
In [15], the purpose was not only to prove existence of optimal controls but mainly to
characterize them by an optimal feedback law, i.e., they wished to perform the standard
program of synthesis of the optimal control that consists in the following steps: first
they solved (in a suitable sense) the Hamilton-Jacobi-Bellman equation; then they proved
that such a solution was the value function of the control problem and allowed them to
construct the optimal feedback law.

The plan of the paper is as follows. In Section 2, we represent a random field, in-
troducing the K-L expansion and its truncated expansion. In Section 3, we analyze our
constraint equation, stochastic elliptic PDE, transforming a stochastic problem to a high
dimensional deterministic problem and presenting a priori error estimates for the equa-
tion. In Section 4, we derived the optimality system of equations, showing the existence
of a Lagrange multiplier. Then in Section 5, we establish error estimate for the discrete
approximations of solutions to the optimality system. Finally in Section 6, we construct a
mathematical algorithm and give several numerical examples of stochastic optimal con-
trol problems constrained by the stochastic elliptic PDE under the Dirichlet boundary
condition.

2 Preliminaries and function spaces

2.1 Karhunen-Loève expansions

In this section, we introduce the K-L expansions, which is well known as a theoretical tool
for approximating stochastic functions; see [5,21,23,36]. If a(x,ω) is a stochastic function
that has a continuous and bounded covariance function, it can be represented by

a(x,ω)=Ea(x,ω)+ ∑
n≥1

√

λnφn(x)Xn(ω), (2.1)

where EXn(ω)=0, E(Xn(ω)Xm(ω))=δnm, and (λn,φn(x)) are solutions to the eigenvalue
problem:

∫

D
C(x1,x2)φn(x1) dx1=λnφn(x2), (2.2)

where C(x1,x2)=E(a(x1,ω)a(x2,ω))−Ea(x1,ω)Ea(x2,ω). We call this expansion the K-L
expansion of a(x,ω).

Whenever we use numerical methods to approximate the solutions of mathematical
models, we use only finitely terms in expansions. Also, in realistic mathematical models,
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it is known that the random source can be expressed by finitely many random variables.
For those reasons, for the use of KL expansions in numerical methods, we define trun-
cated KL expansions from (2.1):

aN(x,ω)=Ea(x,ω)+
N

∑
n=1

√

λnφn(x)Xn(ω). (2.3)

Remark 2.1. Later, for the existence of the solution to our stochastic PDE, we shall require
a to be between two positive constants; i.e., m ≤ a(x,ω)≤ M. For this condition, as a
practical example, a could have a log normal distribution (see [22]).

Not to have modeling errors in computation, it is natural to ask the convergence of the
truncated KL expansions. As such, we state the convergence theorem based on Mercer’s
theorem for the KL expansions.

Proposition 2.1. The truncated KL expansion aN(x,ω)of a stochastic function a(x,ω) con-
verges uniformly to a(x,ω)

sup
x∈D

E[(a(x,ω)−aN (x,ω))2]=sup
x∈D

∞

∑
n=N+1

λnφ2
n(x)→0 as N→∞. (2.4)

The detailed convergence results can be found in the literature (e.g., see [4]).

2.2 Function spaces and notation

For our stochastic elliptic problems, we use a complete probability space (Ω,F ,P), where
Ω is a set of outcomes, F is a σ-algebra of events, and P:F→[0,1] is a probability measure.

We use standard Sobolev space notation (see [1]). For instance, H1(D) is a Hilbert
space with a norm ‖·‖H1(D); H1

0(D) is the subspace of H1(D) whose function value is

zero on the boundary of D, and its norm is ‖u‖2
H1

0 (D)
=
∫

D |∇u|2 dx.

With these standard Sobolev spaces, we define stochastic Sobolev spaces as follows:

L2(Ω;H1(D))={v : D×Ω→R | ‖v‖L2(Ω;H1(D))<∞},

where

‖v‖2
L2(Ω;H1

0(D))
=
∫

Ω
‖v‖2

H1
0 (D)

dP=E‖v‖2
H1

0 (D)
.

Similarly, we can define L2(Ω;L2(D)). For simplicity, we let L2(D)= L2(Ω;L2(D)) and
H1

0(D)= L2(Ω;H1
0(D)). Note that these stochastic Sobolev spaces are Hilbert spaces.

For the weak formulation of our stochastic elliptic PDE, we introduce the following
notations:

b[u,v]=E

∫

D
a∇u·∇v dx (2.5)

and

[u,v]=E

∫

D
uv dx, (2.6)

where E is the expected value.
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2.3 Existence and uniqueness of the solution

Using notations (2.5) and (2.6) introduced in the previous section, we can derive the weak
formulation of the strong formulation (1.2): seek u∈H1

0(D) such that

b[u,v]= [ f ,v] ∀v∈H1
0(D).

In this paper, to have the existence and uniqueness of the solution to our stochastic
elliptic problems (1.2), we assume that there are positive m and M such that

m≤ a(x,ω)≤M a.e. (x,ω)∈D×Ω. (2.7)

Remark 2.2. For the condition (2.7) for a(x,ω), as a practical example, a could have a log
normal distribution (see [22]).

Then from the Lax-Milgram lemma (see [8]), we have the following theorem about
the existence and uniqueness of the solution:

Theorem 2.1. Let f ∈L2(D). Then there is a unique solution to the following weak formulation:
find u∈H1

0(D) such that

b[u,v]= [ f ,v] ∀v∈H1
0(D). (2.8)

Proof. Note that from ellipticity condition (2.7), there exists M,m>0 such that

|b[u,v]|≤M‖u‖H1
0 (D)‖v‖H1

0 (D) ∀u,v∈H1
0(D)

and

m‖v‖2
H1

0 (D)
≤b[v,v] ∀v∈H1

0(D).

On the other hand, we can easily see that there is a constant C>0 such that

|[ f ,v]|≤C‖v‖H1
0 (D)

for any v∈H1
0(D). Hence, by the Lax-Milgram lemma (cf. [8]), (2.8) has a unique solution.

Then from standard arguments in measure theory, we can show that the solution to
the weak formulation (2.8) solves our stochastic PDE (1.2) under the Dirichlet condition
(e.g., see [25]).

3 Models with finite dimensional information

As we discussed before, both because the random sources in realistic models can be ex-
pressed by finitely many mutually independent random variables and because infinite
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expansions should be handled by finite expansions in numerical methods, we assume
that we have finite dimensional information on a(x,ω):

a(x,ω)=Ea(x,ω)+
N

∑
n=1

√

λnφn(x)Xn(ω); (3.1)

i.e., from now on, our coefficient a(x,ω) is the same as the truncated one aN(x,ω) (see
(2.3)).

Remark 3.1. For the truncated assumption (3.1), as was discussed in [4], assumption (3.1)
may be valid in its own right in practical applications; also, similar to the convergence
analysis of [4] for the truncated problem, we may prove the convergence of the truncated
control problem based on Mercer’s theorem.

Because our assumption (2.7) on a(x,ω) does not automatically imply the bound-
edness of the truncated KL expansion (3.1), to have the existence and uniqueness of
the solution for our models with finite dimensional information, it is necessary that
Ea(x,ω)+∑

N
n=1

√
λnφn(x)Xn(ω) satisfy a similar condition (2.7); i.e., we assume that

there exist m,M>0 such that

m≤Ea(x,ω)+
N

∑
n=1

√

λnφn(x)Xn(ω)≤M a.e. (x,ω)∈D×Ω. (3.2)

Remark 3.2. For the ellipticity assumption (3.2), we refer the readers to [22] for a discus-
sion of the ellipticity condition for a(x,ω), where loga(x,ω) is a Gaussian field.

We also assume that each Xn(Ω)≡ Γn ⊂ R is a bounded interval for n = 1,2,··· ,N
and that each Xn has a density function ρn : Γn → R

+. We use the joint density ρ(y)
for any y ∈ Γ ≡ ∏

N
n=1Γn ⊂ R

N of (X1,X2,··· ,XN). Under these assumptions, the solu-
tion of (2.8) can be expressed by the finite number of random variables; i.e., u(x,ω) =
u(x,X1(ω),X2(ω),··· ,XN(ω)); see e.g., [2, 4, 14].

Under the above assumptions, we have the following high-dimensional deterministic
equivalent weak formulation of (2.8) with the finite dimensional information:

∫

Γ
ρ(y)

∫

D
a(x,y)∇u(x,y)·∇v(x,y) dxdy=

∫

Γ
ρ(y)

∫

D
f (x)v(x,y) dxdy. (3.3)

The strong formulation of (3.3) is

−∇·[a(x,y)∇u(x,y)]= f (x), ∀(x,y)∈D×Γ, (3.4a)

u(x,y)=0, ∀(x,y)∈∂D×Γ. (3.4b)

Then we have well-posedness of (3.4) because a is bounded. Also, by using the finite
element method, we can provide the solution to a SPDE from solving (3.4).
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For the high-dimensional elliptic PDE, we recall Sobolev spaces as follows:

L2(Γ;H1
0(D))={v : D×Γ→R | ‖v‖L2(Γ;H1

0(D))<∞},

where

‖v‖2
L2(Γ;H1

0(D))
=
∫

Γ
ρ ‖v‖2

H1
0 (D)

dy=E‖v‖2
H1

0 (D)
.

Similarly, we can define L2(Γ;L2(D)). For simplicity, we set L2(D) = L2(Γ;L2(D)) and
H1

0(D)= L2(Γ;H1
0(D)) likewise before.

Corresponding notations are

b[u,v]=
∫

Γ
ρ
∫

D
a∇u·∇v dxdy and [u,v]=

∫

Γ
ρ
∫

D
uv dxdy.

3.1 Finite element spaces

Let us first consider finite element spaces on D⊂R
d. Let Xh and Gh be families of finite el-

ement approximation subspaces of H1
0(D) and L2(D) that consist of piecewise linear con-

tinuous functions defined over a family of regular triangulations of D with a maximum
grid size parameter h>0. We assume that Xh and Gh satisfy the following approximation
properties:

(i) for all φ∈H2(D)∩H1
0(D), there exists C>0 such that

inf
φh∈Xh

‖φ−φh‖H1
0 (D)≤Ch‖φ‖H2(D); (3.5)

(ii) for all φ∈H1
0(D), there exists C>0 such that

inf
φh∈Gh

‖φ−φh‖L2(D)≤Ch‖φ‖H1
0 (D). (3.6)

Next, we consider finite element spaces on Γ⊂R
N. We partition Γ into a finite number

of disjoint R
N boxes BN

i , that is, for a finite index set I, we have

Γ=
⋃

i∈I

BN
i =

⋃

i∈I

N

∏
j=1

(a
j
i , b

j
i),

where BN
k ∩BN

l =∅ for k 6= l∈ I and (a
j
i , b

j
i)⊂Γj.

A maximum grid size parameter δ>0 is denoted by

δ=max{|bj
i−a

j
i |/2:1≤ j≤N and i∈ I}.

Let Yδ ⊂ L2(Γ) be the finite element approximation space of piecewise polynomials

with degree at most pj on each direction yj. Thus if ψδ ∈Yδ, then ψδ|BN
i
∈ span(∏N

j=1y
nj

j :
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nj∈N and nj≤pj). Letting p=(p1,p2,··· ,pN), we have (cf. see [8]) the following property:

for all ψ∈Hp+1(Γ),

inf
ψδ∈Yδ

‖ψ−ψδ‖L2(Γ)≤δγ
N

∑
j=1

‖∂
pj+1
yj

ψ‖L2(Γ)

(pj+1)!
, (3.7)

where γ=min1≤j≤N{pj+1} if δ<1 and γ=max1≤j≤N{pj+1} otherwise.

We now think of finite element spaces on D×Γ, say Vhδ. Here, if vhδ ∈ Vhδ, vhδ ∈
span(φhψδ : φh(x)∈Xh and ψδ(y)∈Yδ).

We denote by Rh the H1(D)-projection from H1
0(D) onto Xh and Pδ the L2(Γ)-projection

from L2(Γ) onto Yδ. Namely for each φ∈H1
0(D),

(Rhφ,φh)H1
0(D)=(φ,φh)H1

0(D) ∀φh∈Xh;

for each ψ∈L2(Γ),
(Pδψ,ψδ)L2(Γ)=(ψ,ψδ)L2(Γ) ∀ψδ ∈Yδ.

It follows from (3.5) that for all φ∈H1
0(D)∩H2 and for some C>0, we have

‖φ−Rhφ‖H1
0 (D)≤Ch‖φ‖H2(D) (3.8)

and from (3.7), for all ψ∈Hp+1(Γ), we obtain

‖ψ−Pδψ‖L2(Γ)≤δγ
N

∑
j=1

‖∂
pj+1
yj

ψ‖L2(Γ)

(pj+1)!
. (3.9)

By using the last two inequalities, we have the following property; see [4]: for all u ∈
Cp+1(Γ;H2(D)∩H1

0(D)), there exists C> 0, which is independent of h,δ,N, and p, such
that

inf
uhδ∈Vhδ

‖u−uhδ‖H1
0(D)≤C



h‖u‖H2(D)+δγ
N

∑
j=1

‖∂
pj+1
yj

u‖H1
0(D)

(pj+1)!



. (3.10)

Remark 3.3. Because a(x,y)=Ea(x,y)+∑
N
n=1

√
λnφn(x)yn∈Cp+1(D×Γ), it is well known

that the solution u of (3.4) satisfies u∈Cp+1(Γ;H2(D)∩H1
0(D)); see e.g., Lemma 4.1 in [34]

and Remark 5.1 in [5]. Also if we assume that f (x,y)∈Cp+1(Γ;L2(D)) (i.e., if f has a finite
K-L expansion) to carry out the analysis of the finite element method, then the solution u
of the following problem also satisfies u∈Cp+1(Γ;H2(D)∩H1

0(D)):

−div[a(x,y)∇u(x,y)]= f (x,y), ∀(x,y)∈D×Γ, (3.11a)

u(x,y)=0, ∀(x,y)∈∂D×Γ. (3.11b)

Hence, under our assumptions, (3.10) makes sense.
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3.2 Error estimates for high dimensional elliptic PDEs

Recall that our goal is to solve (3.4). The stochastic weak formulation of (3.4) is as follows:
seek u∈H1

0(D) such that for all v∈H1
0(D),

b[u,v]= [ f ,v]. (3.12)

Then we have the finite element weak formulation: find uhδ ∈Vhδ such that for all vhδ ∈
Vhδ,

b[uhδ,vhδ]= [ f ,vhδ ]. (3.13)

We want error estimate of solutions for (3.12) and (3.13) in H1
0(D). Also we do the same

thing with a finite data g(x,y) instead of f (x). For these, we consider the following
lemmas.

Lemma 3.1. Let f (x)∈L2(D). Then for any y∈Γ, u(·,y)∈H2(D) and there exists C>0 such
that

‖u(·,y)‖H2(D)≤C‖ f‖L2(D).

Proof. The proof of this lemma can be found in [18], for instance.

Remark 3.4. For problems with g(·,y)∈L2(D), we have

‖u(·,y)‖H2(D)≤C‖g(·,y)‖L2 (D).

Lemma 3.2. Let f (x)∈L2(D) and φj(x)∈L∞(D). Then for all j=1,2,··· ,N and for any y∈Γ,
there exists C>0 such that

‖∂
pj+1
yj

u(·,y)‖H1
0 (D)

(pj+1)!
≤C‖φj‖

pj+1

L∞(D)
‖ f‖L2(D).

Proof. Without loss of generality, we show this for only j=1. Recall that a(x,y)=Ea(x,y)+

∑
N
j=1

√

λjφj(x)yj=∑
N
j=0

√

λjφj(x)yj with λ0=1=y0 and φ0(x)=Ea(x,y). For convenience,
we set

a(x,y)=
N

∑
j=0

φj(x)yj

with redefined φj(x)=
√

λjφj(x).
If we take derivatives with respect to y1 in (3.4), we find

−∇·[φ1(x)∇u(x,y)+a(x,y)∇∂y1
u(x,y)]=0.

Note that because u(x,y)= 0 for any (x,y)∈ ∂D×Γ, ∂y1
u(x,y)= 0 for any (x,y)∈ ∂D×Γ.

Thus, by integrating over D after multiplying by ∂y1
u, we see that

∫

D
φ1(x)∇u(x,y)·∇∂y1

u(x,y) dx+
∫

D
a(x,y)|∇∂y1

u(x,y)|2 dx=0.
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This by the coercivity, implies

‖∂y1
u(·,y)‖2

H1
0 (D)

≤C‖φ1‖L∞(D)‖u(·,y)‖H1(D)‖∂y1
u(·,y)‖H1(D).

From Lemma 3.1, we have

‖∂y1
u(·,y)‖H1

0 (D)≤C‖φ1‖L∞(D)‖ f‖L2(D).

We now assume that the following is true:

‖∂
p1
y1

u(·,y)‖H1
0 (D)≤Cp1!‖φ1‖p1

L∞(D)
‖ f‖L2(D). (3.14)

Taking derivatives p1+1 times with respect to y1 in (3.4), we obtain

−∇·[(p1+1)φ1(x)∇∂
p1
y1

u(x,y)+a(x,y)∇∂
p1+1
y1

u(x,y)]=0.

After multiplying by ∂
p1+1
y1

u integrating over D yields

(p1+1)
∫

D
φ1(x)∇∂

p1
y1

u(·,y)·∇∂
p1+1
y1

u(·,y) dx+
∫

D
a(x,y)|∇∂

p1+1
y1

u(·,y)|2 dx=0.

By the coercivity, Lemma 3.1, and our induction hypothesis (3.14), we find

‖∂
p1+1
y1

u(·,y)‖H1
0 (D)≤C(p1+1)‖φ1‖L∞(D)(p1!‖φ1‖p1

L∞(D)
‖ f‖L2(D)).

Thus, the assertion for j=1 follows from the last inequality by induction.

Remark 3.5. For problems with g(x,y)∈Cp+1(Γ;L2(D)), we have

‖∂
pj+1
yj

u(·,y)‖H1
0 (D)

(pj+1)!
≤C

pj+1

∑
k=0

‖φj‖
pj+1−k

L∞(D)
‖∂k

yj
g(·,y)‖L2(D).

We now have the following theorem.

Theorem 3.1. Let f (x)∈L2(D), u be the solution of (3.12), and uhδ be the finite element solution
of (3.13). Then there exists C>0 such that

‖u−uhδ‖H1
0(D)≤C(h+δγ)K‖ f‖L2(D),

where K=∑
N
j=1max{1,‖φj‖

pj+1

L∞(D)
}.



88 H.-C. Lee and J. Lee / Commun. Comput. Phys., 14 (2013), pp. 77-106

Proof. As a consequence of (3.10), Lemma 3.1, and Lemma 3.2, we have

‖u−uhδ‖H1
0(D)≤C



h‖u‖H2(D)+δγ
N

∑
j=1

‖∂
pj+1
yj

u‖H1
0(D)

(pj+1)!





≤C

(

h‖ f‖L2 (D)+δγ
N

∑
j=1

‖φj‖
pj+1

L∞(D)
‖ f‖L2(D)

)

≤C(h+δγ)K‖ f‖L2(D),

where K=∑
N
j=1max{1,‖φj‖

pj+1

L∞(D)
}.

Similarly, (3.10), Remark 3.4, and Remark 3.5 give the following remark.

Remark 3.6. For problems with g(x,y)∈Cp+1(Γ;L2(D)), we have

‖u−uhδ‖H1
0(D)≤C(h+δγ)K‖g‖L2(D), (3.15)

where

K=
N

∑
j=1

max

{

1,‖φj‖
pj+1

L∞(D)
,

pj+1

∑
k=1

‖φj‖
pj+1−k

L∞(D)
‖∂k

yj
g‖L2(D)

}

.

4 Stochastic distributed control problems

4.1 Existence of an optimal solution

In this section, we examine the existence of an optimal solution that minimizes our func-
tional (1.1). We first define

Uad ={(u, f )∈H1
0×L2 such that (2.8) satisfied and J (u, f )<∞} (4.1)

be the admissibility set. Then (û, f̂ )∈Uad is said to be an optimal solution of J (u, f ) if for
all (u, f )∈Uad satisfying that ‖u−û‖H1

0(D)+‖ f − f̂ ‖L2(D)≤ǫ for some ǫ>0,

J (û, f̂ )≤J (u, f ). (4.2)

We now prove the existence of an optimal solution.

Theorem 4.1. There is an optimal solution (û, f̂ )∈Uad of J (u, f ).

Proof. We know that Uad is not empty. We consider a minimizing sequence {(u(n), f (n))}
in Uad such that

lim
n→∞

J (u(n), f (n))= inf
(u, f )∈Uad

J (u, f ). (4.3)
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Then the sequence { f (n)} is uniformly bounded in L2(D). This implies that the se-
quence {u(n)} is also uniformly bounded in H1

0(D). As a result, there is a subsequence

{(u(ni), f (ni))} of {(u(n), f (n))} that weekly converge. That is, there exists (û, f̂ )∈H1
0(D)×

L2(D) such that

u(ni)⇀ û weakly inH1
0(D) and f (ni)⇀ f̂ weakly in L2(D). (4.4)

Note that { f (n)} is uniformly bounded in L2(D). Thus, we have

f (ni)⇀ f̂ weakly inL2(D). (4.5)

This implies that

[ f (ni),v]→ [ f̂ ,v] ∀v∈L2(D). (4.6)

Also note that {∇u(n)} is also uniformly bounded in L2(D). Thus, we have

∇u(ni)⇀∇û weakly inL2(D).

This yields

[∇u(ni),w]→ [∇û,w] ∀w∈L2(D).

The fact that ∇v∈L2(D) for v∈H1
0(D) lead us to

[∇u(ni),∇v]→ [∇û,∇v] ∀v∈H1
0(D).

Because a∇v∈L2(D) for v∈H1
0(D), we obtain

b[u(ni),v]→b[û,v] ∀v∈H1
0(D). (4.7)

With the help of (4.6) and (4.7), we can show that

b[û,v]= lim
ni→∞

b[u(ni),v]= lim
ni→∞

[ f (ni),v]= [ f̂ ,v] ∀v∈H1
0(D). (4.8)

That is, (û, f̂ ) satisfies (2.8) and hence (û, f̂ )∈Uad. Using the weak convergence (4.4) and
the weak lower continuity of the functional J (·,·) we arrive at

J (û, f̂ )≤ lim
ni→∞

infJ (u(ni), f (ni))= inf
(u, f )∈Uad

J (u, f ). (4.9)

Therefore, (û, f̂ ) is an optimal solution.
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4.2 The optimality system of stochastic equations

We will derive an optimality system of stochastic equations by using the Lagrange mul-
tiplier rule for the constrained minimization problem:

min
(u, f )∈Uad

J (u, f ) subject to (2.8). (4.10)

For the deterministic case, we know that there exists a Lagrange multiplier; see e.g.,
[18]. Thus, without proving the existence of a Lagrange multiplier, we could derive an
optimality system of the minimization problem in the deterministic problem; e.g., [32].
In the stochastic case, however, we first need to show that there is a Lagrange multiplier
before using the Lagrange multiplier rule to derive an optimality system of stochastic
equations. To show the existence of a Lagrange multiplier, we follow the method given
in [28].

We begin with the definition of the abstract class of minimization problems. Let G,X,
and Y be reflexive Banach spaces whose norms are denoted by ‖·‖G ,‖·‖X , and ‖·‖Y and
whose dual spaces are denoted by G∗,X∗, and Y∗, respectively. Let Θ be the control set
that is a closed convex subset of G.

We assume that the functional to be minimized takes the form

J (v,z)=λF(v)+λE(z) ∀(v,z)∈X×Θ, (4.11)

where F is a functional on X, E is a functional on Θ, and λ is a given parameter that is
assumed to belong to a compact interval Λ⊂R+.

We define the function M :X×Θ→X for the constraint equation M(v,z)=0 as follows:

M(v,z)=v+λTN(v)+λTK(z) ∀(v,z)∈X×Θ, (4.12)

where N : X→Y is a differentiable map, K : Θ→Y is a bounded linear operator, T :Y→X
is a bounded linear operator, and λ∈Λ.

With these definitions, we now consider the following constrained minimization prob-
lem:

min
(v,z)∈X×Θ

J (v,z) subject to M(v,z)=0. (4.13)

The set of hypotheses needed to justify the use of the Lagrange multiplier rule and to
derive an optimality system can be determined is given by

(HE1) for each z∈Θ, v 7→J (v,z) and v 7→M(v,z) are Fréchet differentiable;

(HE2) z 7→E(z) is convex;

(HE3) for v∈X, N′(v) maps from X into Z →֒→֒Y, where N′ denotes the Fréchet deriva-
tive of N.

Theorem 4.2. Let λ∈Λ be given. Assume that there exists an optimal solution (u, f ) of (4.13)
in X×Θ and that (HE1)-(HE3) hold. Then there exists a k∈R and a µ∈X∗ that are not both
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equal to zero such that

k〈Ju(u, f ),w〉−〈µ,Mu(u, f )·w〉=0 ∀w∈X,

min
z∈Θ

L(u,z,µ,k)=L(u, f ,µ,k).

Theorem 4.3. Let λ∈Λ be given. Assume that there exists an optimal solution (u, f ) of (4.13)
in X×G, that (HE1)-(HE3) hold, and that the mapping z 7→E(z) is Fréchet differentiable on G.
Then there exists a k∈R and a µ∈X∗, not both equal to zero, such that

k〈Ju(u, f ),w〉−〈µ,(I+λTN′(u))·w〉=0 ∀w∈X,

k〈E ′( f ),z〉−〈µ,TKz〉=0 ∀z∈G.

Remark 4.1. For two Theorems 4.2 and 4.3, if 1/λ is not in σ(−TN′(u)), we may choose
k=1; see [28].

4.3 The existence of Lagrange multipliers and the optimality system of
stochastic equations

We are now ready to prove the existence of a Lagrange multiplier for our minimization
problem (4.10). The Lagrange multiplier rule may be used to convert the constrained
minimization problem into an unconstrained one. Then we find the optimality system of
stochastic equations.

Note that since our stochastic elliptic PDE has a unique solution regardless of the
choice of λ, a parameter in the abstract setting, we take λ=1.

Recall the stochastic optimal control problem:

minJ (u, f ) subject to M(u, f )=0 ∀v∈H1
0(D), (4.14)

where M(u, f )=b[u,v]−[ f ,v].
We define X =H1

0(D), Y =H−1(D), G = L2(D), and Z = {0}. Then clearly we have
Z →֒→֒Y. For the time being, we assume that the admissible set Θ for the control f is
a closed, convex subset of G. We define the continuous linear operator T ∈L(Y;X) as
follows. For g∈Y, Tg=u∈X is the unique solution of

b[u,v]= [g,v] ∀v∈X. (4.15)

We define the (differentiable) mapping N : X→Y by

〈N(u),v〉=0 ∀v∈X (4.16)

and define K : G→Y by

〈K f ,η〉=−〈 f ,η〉 ∀η∈X. (4.17)
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Then the constraint equation (2.8) can be expressed by u+TK f =0. We note that

F(u)=E

(

1

2

∫

D
|u−U|2 dx

)

and E( f )=E

(

β

2

∫

D
| f |2 dx

)

. (4.18)

Next, we verify the hypotheses for the existence of Lagrange multipliers. First, notice

that (HE1) is obvious. Second, (HE2) holds because f 7→ E( f ) = β
2‖ f‖2

L2(D)
is convex.

Third, because for ∀u∈X, N′(u)·v=0∈Z →֒→֒Y for ∀v∈X, (HE3) holds.
The Lagrangian is given by

L(u, f ,ξ,k)= kJ (u, f )−b[u,ξ]+[ f ,ξ]

∀(u, f ,ξ,k)∈X×G×X×R.
By Theorem 4.2, there exists ξ=T∗µ∈X such that

ξ−kT∗F ′(u)=0, (4.19)

L(u, f ,ξ,k)≤L(u,z,ξ,k) ∀z∈Θ. (4.20)

With k=1, (4.19) becomes

b[ξ,ζ]= [u−U,ζ] ∀ζ∈X (4.21)

and (4.20) implies that

β

2
[z,z]+[z,ξ]− β

2
[ f , f ]+[ f ,ξ]≥0 ∀z∈Θ⊆G. (4.22)

For each ǫ∈ (0,1) and each t∈Θ, set z=ǫt+(1−ǫ) f ∈Θ. Then from (4.22), we have

βǫ

2
[t− f ,t− f ]+β[t− f , f ]+[t− f ,ξ]≥0 ∀t∈Θ. (4.23)

By letting ǫ→0+ in the above inequality, we have

[t− f ,β f +ξ]≥0 ∀t∈Θ. (4.24)

We now consider the case Θ=G. Note that the mapping z 7→E(z) is Fréchet differen-
tiable on G. Hence, by Theorem 4.3, (4.24) becomes an equality and by letting z= t− f we
obtain

[β f +ξ,z]=0 ∀z∈G. (4.25)

The system formed by Eqs. (2.8), (4.21), and (4.25), which are necessary conditions
for an optimum, is called an optimality system. We now conclude this section with the
following theorem.

Theorem 4.4. Let (u, f )∈H1
0(D)×L2(D) be an optimal solution of (4.10). Then there exists

ξ∈H1
0(D) such that (4.21) and (4.25) hold.
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5 Discrete approximation of the optimality system

In this section, we solve stochastic optimal control problems using results from previous
chapter and the Brezzi-Rappaz-Raviart theory. For this, we first introduce the theory.
Throughout this section, we assume that f ∈L2(D) for regularity of the solution.

5.1 Description of the Brezzi-Rappaz-Raviart theory

The B-R-R theory implies that the error of approximation of solutions of certain nonlinear
problems under certain hypotheses is basically the same as the error of approximation of
solutions of related linear problems; see [9, 13, 24]. Here for the sake of completeness, we
will state the relevant results, specialized to our needs.

Consider the following type of nonlinear problems: seek ψ∈X such that

ψ+T G(ψ)=0, (5.1)

where T ∈L(Y ;X ), G is a C2 mapping from X into Y , and X and Y are Banach spaces.
We say that ψ is a regular solution of (5.1) if (5.1) holds and ψ+T Gψ(ψ) is an isomorphism
from X into X . Here Gψ denotes the Fréchet derivative of G with respect to ψ. We assume
that there exists another Banach space Z , contained in Y , with continuous imbedding,
such that

Gψ(ψ)∈L(X ;Z) ∀ψ∈X . (5.2)

Approximations are defined by introducing a subspace X h ⊂X and an approximating
operator T h∈L(Y ;X h). We seek ψh ∈X h such that

ψh+T hG(ψh)=0. (5.3)

Concerning the operator T h, we assume the approximation properties

lim
h→0

‖(T h−T )ω‖X =0 ∀ω∈Y (5.4)

and
lim
h→0

‖T h−T ‖L(Z ;X )=0. (5.5)

Note that whenever the imbedding Z⊂Y is compact, (5.5) follows from (5.4) and, more-
over, (5.2) implies that the operator T Gψ(ψ)∈L(X ;X ) is compact.

We now state the result of [9] that will be used in the sequel. In the statement of the
theorem, D2G represents any and all second Fréchet derivatives of G.

Theorem 5.1. Let X and Y be Banach spaces. Assume that G is a C2 mapping from X to Y and
that D2G is bounded on all bounded sets of X . Assume that (5.2), (5.4), and (5.5) hold and that
ψ is a regular solution of (5.1). Then there exists a neighborhood O of the origin in X and, for
h≤h0 small enough, a unique ψh∈X h such that ψh is a regular solution of (5.3). Moreover, there
exists a constant C>0, independent of h, such that

‖ψh−ψ‖X ≤C‖(T h−T )G(ψ)‖X . (5.6)
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5.2 Recasting the optimality system and its discrete approximation into the
B-R-R framework

We first fit our optimality system and its discrete approximation into the B-R-R frame-
work to derive error estimates for the discrete approximation of the optimality system.
Then we obtain the desired error estimates by verifying assumptions in the B-R-R theory.

We set X =H1
0(D)×L2(D)×H1

0(D) and Y = H−1(D)×H1
0(D). We define the linear

operator T ∈L(Y ;X ) as follows:

(ũ, f̃ , ξ̃)=T (r̃,τ̃)

if and only if

b[ũ,v]= [r̃,v] ∀v∈H1
0(D), (5.7)

b[ξ̃,ζ]= [τ̃,ζ] ∀ζ∈H1
0(D), (5.8)

[β f̃ + ξ̃,z]=0 ∀z∈L2(D). (5.9)

We define G :X →Y by
G(ũ, f̃ , ξ̃)=(− f̃ ,−ũ+U).

Then it is clear that the optimality system (2.8), (4.21), and (4.25) can be written as

(u, f ,ξ)+T (G(u, f ,ξ))=0. (5.10)

Hence, the optimality system is recast into the form of (5.1).
We now set X hδ=Vhδ×Gh×Vhδ, where Vhδ and Gh are from Section 3.1.
We define the discrete operator T hδ ∈L(Y ;X hδ) as follows:

(ũhδ, f̃ h, ξ̃hδ)=T hδ(r̃,τ̃)

if and only if

b[ũhδ,vhδ]= [r̃,vhδ] ∀vhδ ∈Vhδ, (5.11)

b[ξ̃hδ,ζhδ]= [τ̃,ζhδ] ∀ζhδ ∈Vhδ, (5.12)

[β f̃ h+ ξ̃hδ,zh]=0 ∀zh ∈Gh. (5.13)

Then it is clear that the discrete optimality system,

b[uhδ,vhδ]= [ f h,vhδ] ∀vhδ ∈Vhδ, (5.14)

b[ξhδ,ζhδ]= [uhδ−U,ζhδ] ∀ζhδ ∈Vhδ, (5.15)

[β f h+ξhδ,zh]=0 ∀zh ∈Gh, (5.16)

can be written as
(uhδ, f h,ξhδ)+T hδ(G(uhδ, f ,ξhδ))=0.

Hence, the discrete optimality system is recast into the form of (5.3).
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5.3 Error estimates for the approximation of solutions of the optimality
system

In this section, we proceed to verify all assumptions in Theorem 5.1. We define first a
space Z = L2(D)×L2(D). Then clearly this space is continuously embedded into Y =
H−1(D)×H−1(D).

Denote the Fréchet derivative of G(u, f ,ξ) with respect to (u, f ,ξ) by DG(u, f ,ξ) or
G(u, f ,ξ)(u, f ,ξ). Then from G(u, f ,ξ), we obtain for (u, f ,ξ)∈X ,

DG(u, f ,ξ)·(ũ, f̃ , ξ̃)=(− f̃ ,−ũ) ∀(ũ, f̃ , ξ̃)∈X .

We now state the following propositions to have the error analysis for the stochastic
optimal control problems.

Proposition 5.1. 1. DG(u, f ,ξ)∈L(X ;Z) f or all (u, f ,ξ)∈X .

2. G is twice continuously differentiable and D2G is bounded on all bounded sets of
X .

3. For any (r̃,τ̃)∈Y , ‖(T −T hδ)(r̃,τ̃)‖X →0 as h,δ→0.

4. ‖T −T hδ‖L(Z ,X )→0 as h,δ→0.

5. A solution of (5.10) is regular.

Proof. Similar proofs can be found in [29].

Note that the facts in Proposition 5.1 are all the assumptions of Theorem 5.1. Thus, by
that theorem, we obtain the following results.

Theorem 5.2. Assume that U∈H1
0(D). Let (u, f ,ξ)∈H1

0(D)×L2(D)×H1
0(D) be the solution

of the optimality system (2.8), (4.21), and (4.25). Let (uhδ, f h,ξhδ)∈Vhδ×Gh×Vhδ be the solution
of the discrete optimality system (5.14), (5.15), and (5.16). Then we have

‖u−uhδ‖H1
0(D)+‖ f − f h‖L2(D)+‖ξ−ξhδ‖H1

0(D)→0 as h,δ→0.

Moreover, there exists C>0 such that

‖u−uhδ‖2
H1

0(D)
+‖ f − f h‖2

L2(D)+‖ξ−ξhδ‖2
H1

0(D)

≤C(h2+δ2γ)K(‖ f‖2
L2(D)+‖u−U‖2

L2(D)), (5.17)

where

K=max

{

1,
1

(k!)2
‖φj‖

2(pj+1−k)

L∞(D)
: 1≤ j≤N, 0≤ k≤ pj+1

}

.

Remark 5.1. In the above theorem, we used H1
0(D) = L2(Γ;H1

0(D)) instead of
Cp+1(Γ;H1

0(D)) since the assumption that our coefficient a has a finite K-L expansion
guarantees that our solution u is in Cp+1(Γ;H1

0(D)) (see Lemma 4.1 in [34] or Remark
5.1 in [5]). As a result, with the truncated K-L expansion of a, our numerical solution is
supposed to be p+1 times differentiable in the y-direction.
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6 Numerical computation of stochastic control problems

In this section, we consider the space Zp ⊂ L2(D), where Zp = Z
p1

1 ×Z
p2

2 ×···×Z
pN

N and
Z

pn
n ={v :Γn→R :v∈ span(1,yn ,··· ,ypn

n )}. This space is a particular case of the space Yδ in
Section 3.1 with no partition of Γ (instead, we increase only the polynomial degree). We
then think of finite element spaces on D×Γ, say Vhp. Here, if v∈Vhp, v∈ span(φψ : φ∈Xh

and ψ(y)∈Zp).

6.1 The discrete system of equations

Let {ϕi(x)} be a basis of the space Xh ⊂ H1
0(D) and let {ψj(y)} be a basis of the space

Zp⊂ L2(D). Then the solution of the discrete optimality system of equations is given by

uhp(x,y)=∑
i,j

uij ϕi(x)ψj(y), (6.1a)

ξhp(x,y)=∑
i,j

ξij ϕi(x)ψj(y), (6.1b)

f h(x)=∑
i

fi ϕi(x). (6.1c)

Recall the discrete optimality system of equations:

−
∫

Γ
ρ
∫

D
a∇uhp ·∇vhpdxdy+

∫

Γ
ρ
∫

D
f hvhpdxdy=0 ∀vhp∈Vhp, (6.2a)

∫

Γ
ρ
∫

D
ξhpηhdxdy+β

∫

Γ
ρ
∫

D
f hηhdxdy=0 ∀ηh ∈Gh, (6.2b)

∫

Γ
ρ
∫

D
uhpλhpdxdy−

∫

Γ
ρ
∫

D
a∇ξhp∇λhpdxdy=

∫

Γ
ρ
∫

D
Uλhpdxdy ∀λhp ∈Vhp. (6.2c)

By substituting (6.1) into this system of equations (6.2), we have

∫

Γ
ρ(y)

∫

D
a(x,y)∇uhp(x,y)∇vhp(x,y) dxdy

=∑
i,j

(

∫

Γ
ρ(y)ψj(y)ψl(y)

∫

D
a(x,y)∇ϕi(x)∇ϕk(x) dxdy

)

uij,

∫

Γ
ρ(y)

∫

D
f h(x)vhp(x,y) dxdy=∑

i

(

∫

Γ
ρ(y)ψl(y)

∫

D
ϕi(x)ϕk(x) dxdy

)

fi,

∫

Γ
ρ(y)

∫

D
ξhp(x,y)ηh(x) dxdy=∑

i,j

(

∫

Γ
ρ(y)ψj(y)

∫

D
ϕi(x)ϕk(x) dxdy

)

ξij,

β
∫

Γ
ρ(y)

∫

D
f h(x)ηh(x) dxdy=∑

i

(

β
∫

Γ
ρ(y)

∫

D
ϕi(x)ϕk(x) dxdy

)

fi,
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∫

Γ
ρ(y)

∫

D
uhp(x,y)λhp(x,y)dxdy=∑

i,j

(

∫

Γ
ρ(y)ψj(y)ψl(y)

∫

D
ϕi(x)ϕk(x)dxdy

)

uij,

∫

Γ
ρ(y)

∫

D
a(x,y)∇ξhp(x,y)∇λhp(x,y) dxdy

=∑
i,j

(

∫

Γ
ρ(y)ψj(y)ψl(y)

∫

D
a(x,y)∇ϕi(x)∇ϕk(x) dxdy

)

ξij,

∫

Γ
ρ(y)

∫

D
U(x,y)λhp(x,y) dxdy=

∫

Γ
ρ(y)

∫

D
U(x,y)ϕk(x)ψl(y) dxdy

for any test function ϕk(x)ψl(y).
We now look at only the right hand side of the first equation. Note that for ψj(y)∈Zp,

we have ψj(y)=∏
N
m=1ψjm(ym), where ψjm : Γm →R is a basis function of Zpm . With the

truncated K-L expansion of a(x,y), we obtain

∫

Γ
ρ(y)ψj(y)ψl(y)

∫

D
a(x,y)∇ϕi(x)∇ϕk(x) dxdy

=
∫

Γ
ρ(y)ψj(y)ψl(y)

∫

D

(

Ea(x,y)+
N

∑
n=1

√

λnφn(x)yn

)

∇ϕi(x)∇ϕk(x) dxdy

=K0
i,k

∫

Γ
ρ(y)ψj(y)ψl(y) dy+

N

∑
n=1

Kn
i,k

∫

Γ
ynρ(y)ψj(y)ψl(y) dy

=K0
i,k

∫

Γ

N

∏
m=1

ρm(ym)ψjm(ym)ψlm(ym) dy

+
N

∑
n=1

Kn
i,k

∫

Γ
yn

N

∏
m=1

ρm(ym)ψjm(ym)ψlm(ym) dy,

where

K0
i,k=

∫

D
Ea(x,y)∇ϕi(x)∇ϕk(x) dx,

Kn
i,k=

∫

D

√

λnφn(x)∇ϕi(x)∇ϕk(x) dx.

Likewise, we could get the other equations. Next, we solve the linear system to deter-
mine uij,ξij, and fi that are coefficients of solutions of the discrete optimality system of
equations.

6.2 Numerical setting

In our numerical experiments, we assume for simplicity in calculation that our determin-
istic domain D is [−1,1] and each stochastic domain Γn is [−

√
3,
√

3]. Also we suppose
that we have a constant density function. Then the assumptions EXn =0 and VarXn =1
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in the K-L expansion give that each uniform density function ρ(Xn) is 1
2
√

3
. We thus

assume that the joint probability density function ρ of (X1,X2,··· ,XN) in our numerical
experiments is 1

(2
√

3)N
.

We consider now C(x1,x2)=e−|x1−x2| as a covariance function and solve the following
eigenvalue problem:

∫

D
e−|x1−x2|φn(x1) dx1=λnφn(x2).

Then we have

φn(x)=
1

√

1+ sin(2vn)
2vn

cos(vnx), if n is odd,

φn(x)=
1

√

1− sin(2wn)
2wn

sin(wnx), if n is even,

λn =
2

v2
n+1

, if n is odd,

λn =
2

w2
n+1

, if n is even,

where vn is a solution of 1−vtan(v)= 0 and wn is a solution of w+tan(w)= 0; see [23].
Note that λn gets smaller as vn or wn gets larger; see Fig. 1. This actually means that
we would be okay with the truncated K-L expansion of the coefficient a for getting the
solution to our model problem.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Eigenvalues

Figure 1: Eigenvalue decay.
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6.3 Examples

We consider in this section a model problem under the homogeneous Dirichlet boundary
condition with the target solution U=sin(πx)+sin(2πx): Find the solution of

−(a(x,y)u′(x,y))′= f (x) ∀(x,y)∈ (−1,1)×
N

∏
n=1

(−
√

3,
√

3), (6.3a)

u(x,y)=0 ∀(x,y)∈{−1,1}×
N

∏
n=1

(−
√

3,
√

3) (6.3b)

with flexible input data f (x) to minimize

J (u, f )=
1

2

∫

√
3

−
√

3

1

(2
√

3)N

∫ 1

−1
|u−U|2 dxdy+

β

2

∫ 1

−1
| f |2 dx. (6.4)

Note that here ′ means differentiation with respect to x only and that the finite K-L ex-
pansion of a(x,y) is given by

a(x,y)=Ea(x,y)+
N

∑
n=1

√

λnφn(x)yn,

where (λn,φn)1≤n≤N are eigenpairs of
∫

D
e−|x1−x2|φn(x1) dx1 =λnφn(x2)

from previous section.
We first try to determine the value of an appropriate β. As we can see from both

Fig. 2 and Table 1, for the fixed degrees of polynomials in each direction (in our first
experiment, the maximum degree of polynomials in y1-direction is 2 and y2-direction is
1), we see that the expectation of the solution u to the optimality system of equations
gets closer to the target solution U=sin(πx)+sin(2πx) and E(‖u−U‖2) and J (u, f ) get
smaller, respectively, as the value of β becomes smaller. From these outputs, we choose
β=10−8 for future use.

Table 1: N=2, p=(2,1), h=1/16, Ea(x)=29, U=sin(πx)+sin(2πx).

N p E(||u−U||2) || f ||2 J (u, f ) β

2 (2,1) 1.997425447584431 0.128653631686556 0.999355991950648 10−2

2 (2,1) 1.780363586837130 1.039174048299372e+003 0.942140495833533 10−4

2 (2,1) 0.335872718769967 3.144808537099188e+005 0.325176786239943 10−6

2 (2,1) 0.002595035402397 1.385961737387668e+006 0.008227326388137 10−8

In the second experiment (see Fig. 3 and Table 2), we see that for the fixed value of
β=10−8, the values of E(‖u−U‖2) and J (u, f ) are getting smaller as the value of a step
size h gets smaller (these are expected results from our theory).
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Figure 2: N=2, p=(2,1), h=1/16, Ea(x)=29, U= sin(πx)+sin(2πx), β=10−2 (top left), β=10−4 (top

right), β=10−6 (bottom left), β=10−8 (bottom right).

Table 2: N=2, p=(2,1), β=10−8, Ea(x)=29, U=sin(πx)+sin(2πx).

N p E(||u−U||2) || f ||2 J (u, f ) h
2 (2,1) 1.015620708248161 1.185634739035894e+005 0.508403171493598 1/2
2 (2,1) 0.017820040661929 1.920243067674646e+006 0.018511235669338 1/4
2 (2,1) 0.003235859956492 1.487385001888898e+006 0.009054854987691 1/8
2 (2,1) 0.002595035402397 1.385961737387668e+006 0.008227326388137 1/16
2 (2,1) 0.002553103337046 1.361403189137369e+006 0.008083567614210 1/32

We then use different polynomial degrees such as p=(3,2,1) and p=(4,2,2,1), which
give us similar results as before (see Figs. 4 and 5, Tables 3 and 4).

Remark 6.1. In our paper, we have focused on the error analysis for a control tracking
problem for SPDEs. As such, we have presented test examples to demonstrate both fea-
sibility and efficiency of our theoretical convergence results and error estimates using
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sin(πx)+sin(2πx), h= 1/2 (top left), h=
1/4 (top right), h = 1/8 (middle left), h =
1/16 (middle right), h=1/32 (bottom).

the solutions to Eq. (2.2) with the covariance function e−|x1−x2|. As an ongoing project,
we have been studying the case of a weakly correlated random field with a covariance
function for which the analytical solution to Eq. (2.2) is not available. This and other nu-
merical convergence and implementation issues including a white noise uncertainty will
be addressed in a follow-up paper.
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fh Figure 4: N = 3, p = (3,2,1), Ea(x) =

29, U=sin(πx)+sin(2πx), h=1/2 (top
left), h=1/4 (top right), h=1/8 (middle
left), h= 1/16 (middle right), h= 1/32
(bottom).

Table 3: N=3, p=(3,2,1), β=10−8, Ea(x)=29, U=sin(πx)+sin(2πx).

N p E(||u−U||2) || f ||2 J (u, f ) h
3 (3,2,1) 1.015622289855443 1.185628036060636e+005 0.508403958945752 1/2
3 (3,2,1) 0.018016364044239 1.919216112496113e+006 0.018604262584600 1/4
3 (3,2,1) 0.003424910561098 1.486621685617537e+006 0.009145563708637 1/8
3 (3,2,1) 0.002782345885932 1.385255864189840e+006 0.008317452263915 1/16
3 (3,2,1) 0.002739990423212 1.360711073244207e+006 0.008173550577827 1/32
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fh Figure 5: N = 4, p=(4,2,2,1), Ea(x)=

29, U=sin(πx)+sin(2πx), h=1/2 (top
left), h=1/4 (top right), h=1/8 (middle
left), h= 1/16 (middle right), h= 1/32
(bottom).

Table 4: N=4, p=(4,2,2,1), β=10−8, Ea(x)=29, U=sin(πx)+sin(2πx).

N p E(||u−U||2) || f ||2 J (u, f ) h
4 (4,2,2,1) 1.015712744147771 1.185337096442278e+005 0.508449040622107 1/2
4 (4,2,2,1) 0.0181024011616080 1.918500726290845e+006 0.018643704212258 1/4
4 (4,2,2,1) 0.003500198538971 1.486120739084433e+006 0.009180702964907 1/8
4 (4,2,2,1) 0.002855149312878 1.384800188416728e+006 0.008351575598522 1/16
4 (4,2,2,1) 0.002812192486543 1.360266159504460e+006 0.008207427040794 1/32
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