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Abstract. In this paper, we present an efficient computational methodology for dif-
fusion and convection-diffusion problems in highly heterogeneous media as well as
convection-dominated diffusion problem. It is well known that the numerical compu-
tation for these problems requires a significant amount of computer memory and time.
Nevertheless, the solutions to these problems typically contain a coarse component,
which is usually the quantity of interest and can be represented with a small num-
ber of degrees of freedom. There are many methods that aim at the computation of
the coarse component without resolving the full details of the solution. Our proposed
method falls into the framework of interior penalty discontinuous Galerkin method,
which is proved to be an effective and accurate class of methods for numerical solu-
tions of partial differential equations. A distinctive feature of our method is that the
solution space contains two components, namely a coarse space that gives a polyno-
mial approximation to the coarse component in the traditional way and a multiscale
space which contains sub-grid structures of the solution and is essential to the com-
putation of the coarse component. In addition, stability of the method is proved. The
numerical results indicate that the method can accurately capture the coarse behavior
of the solution for problems in highly heterogeneous media as well as boundary and
internal layers for convection-dominated problems.

AMS subject classifications: 65M12, 65M60

Key words: Multiscale problem, sub-grid capturing, multiscale basis function, boundary layer,
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1 Introduction

Let Ω⊂R
2 be a domain in the two-dimensional space. We consider the following static

convection-diffusion problem
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L(u)≡∇·(~bu−a∇u)= f , in Ω, (1.1a)

u= g, on ∂Ω, (1.1b)

where~b is a given divergence-free vector field, f and g are given source and boundary
functions. We also consider the corresponding time-dependent problem

∂u

∂t
+L(u)= f , in (0,T)×Ω, (1.2a)

u= g, on (0,T)×∂Ω, (1.2b)

u(0,x)=u0, in Ω. (1.2c)

In (1.1) and (1.2), we assume the ellipticity condition that c1 ≥ a(x)≥ c0 > 0 for all x∈Ω

and for some constants c0 and c1. Our aim in this work is the numerical approximation

of (1.1) and (1.2) in the case when a and ~b are highly oscillatory or in the case when a
is very small in some region that gives a convection-dominated diffusion problem. It
is well-known that the solutions to these problems contain multiple scales, and the nu-
merical computations require a very fine grid. Thus, a significant amount of computer
memory and time are needed, and with the superior computing power nowadays, the
computation of the solutions to these problems is still very challenging and sometimes
even impossible. Nevertheless, the solutions to these problems typically contain a coarse
component, which is usually the quantity of interest and can be represented by a small
number of degrees of freedom. There are in literature many methods that aim at solving
these problems on a coarse grid with great success. For example, see [5, 6, 12–15, 17, 21]
for multiscale diffusion and wave problems, [16, 22] for multiscale convection-diffusion
problems and [20] for two-phase flow problems.

The discontinuous Galerkin (DG) method is proved to be an effective and accurate
class of tools for the numerical solutions of partial differential equations [1, 2, 4, 7–11].
The main idea is to use polynomial approximation on each cell without enforcing any
continuity along cell interfaces. The success of these methods is achieved by using some
sophisticated techniques to control the jumps. Due to the high efficiency and flexibility
of DG methods, there are some advancement in using DG methods for the numerical
approximation of problems with multiple scales. To the best of our knowledge, there are
two existing classes of methods in literature. First of all, the discontinuous enrichment
method has been proposed in [19] by Kalashnikova, Farhat and Tezaur. In this work,
the solution space is discontinuous and contains two components, which is a polyno-
mial space and a space spanned by the solution of local cell problem. One significant
assumption is that the solutions of the local cell problems can be solved analytically. For
problems with inhomogeneous media, the technique of frozen coefficient is applied. The
formulation of the discrete problem is based on a DG framework, but the continuity is
enforced by the method of Lagrange multiplier. The second class of method is the multi-
scale discontinuous Galerkin method proposed in [24] by Wang, Guzman and Shu. In this
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work, the interior penalty discontinuous Galerkin (IPDG) framework is used. Instead of
using polynomials, the solution space is spanned by basis functions that are solutions
of the given partial differential equation on each cell. To find these basis functions, the
given partial differential equation imposed with suitable source functions is solved ana-
lytically on each coarse grid. Moreover, convergence of the method is proved for a class
of material coefficients that allow the local cell problem to be solved analytically.

In this paper, we propose and study a novel methodology based on the framework
of IPDG. The key element of our new method is the choice of local approximation space.
Our local space is the direct sum of two components. The first component is the classical
polynomial space without inter-element continuity. The second component is spanned
by a set of basis functions that are the solutions of local cell problems arising from the
given partial differential equation. In a sense, our method can be seen as the classical
IPDG method with the finite element space enhanced by these basis functions. Even
though our method shares some properties of the methods in [19, 24], there is a signifi-
cant difference and improvement. For the local problem defined on a coarse grid block,
we do not assume that there is any structure in the medium which implies that analytical
solution cannot be found. It is then necessary to impose an artificial boundary condi-
tion on the cell boundary in order to obtain the solution. Ideally, we should impose the
exact solution of the given problem as the boundary condition. However, since we do
not know the exact solution, we can only impose an approximate boundary condition
which provide an approximation to the correct behavior of the exact solution along cell
boundaries. Among many choices of artificial boundary conditions, the uniform flux
condition is a good choice, which is also successfully used for finding local basis func-
tions for a multiscale flow problem in [20]. Therefore, we will numerically solve our local
cell problem by imposing a Neumann boundary condition. In particular, we assume that
the basis functions have unit flux on part of the cell boundary and zero flux on the rest of
the boundary. These basis functions allow us to obtain an accurate approximation of the
correct coarse scale behavior of the true solution, which is represented by the polynomial
component of our solution space. Thus, our method has the advantage and potential to
handle problems with very complex media.

The paper is organized as follows. In Section 2, we will present a detail description
of our new sub-grid structure enhanced IPDG method and its stability analysis. The
method is then discussed numerically in Section 3. Plenty of numerical simulation results
are given to validate the effectiveness of our method. Finally a conclusion will be given.

2 The sub-grid structure enhanced IPDG method

2.1 Method description

We will first highlight the philosophy of our proposed approach. Our new sub-grid struc-
ture enhanced IPDG method is based on the classical framework of interior penalty dis-
continuous Galerkin method [23]. The main ingredient of the method is the choice of
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local approximation space. Our solution space is a direct sum of two parts. The first
part is the classical piecewise polynomial space. The second part is spanned by a set of
piecewise smooth basis functions, which are the solutions of local cell problems, similar
to the multiscale finite element idea, see for example [13,17]. We emphasize that since we
do not assume any structure on the media, the local problem in general cannot be solved
analytically. Thus, an artificial boundary condition imposed on the coarse grid boundary
is needed to obtain a unique solution to the local cell problem. Among many choices of
artificial boundary conditions, the uniform flux condition is a good choice, which is also
successfully used for finding local basis functions for a multiscale flow problem in [20].
Therefore, we will numerically solve our local cell problem by imposing a Neumann
boundary condition. In particular, we assume that the basis functions have unit flux on
part of the cell boundary and zero flux on the rest of the boundary.

Now we will give a detail description of our new method. Assume Ω be the unit
square [0,1]2 which is uniformly triangulated by a set of squares T H with side length
H > 0. The set T H is our coarse mesh. A generic coarse grid block K in T H with four
boundary edges σE,σS,σW and σN is shown in Fig. 1.

σ
E

σ
W K

σ
N

σ
S

Figure 1: A generic coarse grid block.

For each K∈T H, we define the local basis functions wK
1 and wK

2 by

L(wK
i )=0, in K, (2.1a)

(~bwK
i −a∇wK

i )·~n= gi, on ∂K, (2.1b)

with the zero average condition
∫

K
wK

i dx= 0 where ~n denotes the outward unit normal
vector on ∂K. In the above problem, the boundary functions gi are defined by

g1=1, on σE,σW and g1=0, on σN ,σS,

g2=0, on σE,σW and g2=1, on σN ,σS.

We remark that the above boundary conditions are the uniform flux conditions and are
proved to be able to successfully capture the sub-grid behavior of a multiscale flow prob-
lem in [20]. Moreover, the functions wK

1 and wK
2 are solutions to the given differential

operator L on a local cell K. It is well-known [13, 17] that these functions provide impor-
tant sub-grid features.
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We will present the lowest order version of our method. Our finite element space
V(g) is defined by

V(g)=
{

u |u|K = ūK+cK
1 wK

1 +cK
2 wK

2

}

.

We emphasize that the space V(g) depends on the boundary function g specified in the
boundary conditions in (1.1) and (1.2). The way that we impose this boundary condition
in the space V(g) will be discussed in the following paragraphs. Since the functions wK

1

and wK
2 have zero average, our solution space contains functions such that their restric-

tion on each K∈T H can be represented by cell average plus a linear combination of the
functions wK

1 and wK
2 . We remark that similar function space has been used in [19] but

the local basis functions wK
1 and wK

2 are obtained by solving the partial differential equa-
tion on a coarse grid analytically. With a complex media, this is relatively hard to do.
Thus, we can see that our method is a kind of generalization of the successful method
developed in [19] to problems with more complex media.

To define our new sub-grid enhanced IPDG method, we need the notion of jump and
average of a function u in H1(K). Let EH be the set of all edges in the triangulation EH.
For each edge σ ∈EH, we define a unit normal vector ~nσ on σ which is pointing to the
positive axis direction. Let σ be an edge and let K1,K2 be the corresponding cells which
have this common edge. If the normal vector~nσ is pointing from K1 to K2, then we define
the jump and the average of u on σ by

[u]σ =u|K1
−u|K2

and {u}σ =
1

2
(u|K1

+u|K2
).

If σ is a boundary edge, then one of the two values u|K1
and u|K2

have to be defined by
using the boundary condition. This is discussed in the following paragraph.

Using the above definitions of jump and average of a function, we define the follow-
ing bilinear form

BH(u,v)= ∑
K∈T H

(

−
∫

K
(~bu−a∇u)·∇v

)

+ ∑
σ∈EH

(

∫

σ
(~b ·~nσ{u}σ−a{∇u·~nσ}σ)[v]σ+

∫

σ
a{∇v·~nσ}σ[u]σ+

1

2δ

∫

σ
a[u]σ[v]σ

)

,

where δ>0 is a penalty parameter to be specified. Then our new method for the approx-
imation of (1.1) is formulated as follows: find uH ∈V(g) such that

BH(uH,v)=
∫

Ω
f v, ∀v∈V(0). (2.2)

Note that this is the non-symmetric IPDG method [23]. The bilinear form Bh involves the
jumps [u]σ and [v]σ that require the values of the functions u,v that are outside the domain
Ω. For these values, we use the boundary condition specified in the spaces V(g) and
V(0). In particular, for an boundary edge σ∈EH with σ∈∂K, we have [u]σ=g−u|K where
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we assume that the unit normal vector on σ is pointing from outside of K to the inside of
K. In the same way, we have [v]σ=0−v|K . The definition of {u}σ for a boundary edge σ is
defined similarly by {u}e=

1
2(g+u|K). Moreover, Bh involves the averages {∇u·~nσ}σ and

{∇v·~nσ}σ that require values of the fluxes outside the domain Ω. For these values, there
is no boundary condition that we can use. Nevertheless, if the given partial differential
equation is solved on a larger domain that contains the given domain Ω, it is well-known
that the flux of the solution on the set ∂Ω is continuous. This motivates us to assume that,
for a boundary edge σ, the limiting value of the flux from outside the domain is equal
to the limiting value of the flux from inside the domain. Thus, we define the quantities
{∇u·~nσ}σ and {∇v·~nσ}σ by ∇u·~nσ and ∇v·~nσ respectively for a boundary edge σ.

For the time-dependent problem (1.2), we will use the transversal method of line
approach. In particular, we apply the Crank-Nicolson method for the time discretization
and obtain

un+1−un

∆t
+L

(1

2
(un+1+un)

)

= f n+ 1
2 ,

where ∆t> 0 is the time step size, un = u(tn,·) and tn = n∆t, n= 0,1,2,···. Thus, for each
time step, we need to solve

2

∆t
u+L(u)=2 f n+ 1

2 +
2

∆t
un−L(un).

Our new DG space V(g) provides an efficient way to solve this problem. In particular,
given un, we need to find uH :=un+1∈V(g) by solving

2

∆t

∫

Ω
uHv+BH(uH,v)=2

∫

Ω
f n+ 1

2 v+
2

∆t

∫

Ω
unv−BH(u

n,v), ∀v∈V(0).

Another advantage of our method is that since a coarse mesh with mesh size H > 0 is
used, the time step size can also be chosen in the order of H, that is, ∆t=O(H). Hence,
the time-marching is very efficient.

2.2 Stability

In this section, we will show that the discrete problem (2.2) is stable, and hence it is
uniquely solvable. For any function v∈V(0), we define the DG norm by

||v||2DG = ∑
K∈T H

∫

K
a|∇v|2+

1

2δ ∑
σ∈EH

∫

σ
a[v]2σ .

Moreover, the problem (2.2) can be reformulated as: find uH ∈V(0) such that

BH(uH,v)=
∫

Ω
f v−

∫

∂Ω

(~b·~n∂Ω

2
g[v]−ag(∇v·~n∂Ω )−

1

2δ
ag[v]

)

, ∀v∈V(0), (2.3)

where the jump [v] on the boundary of the domain ∂Ω is defined with respect to the unit
outward normal vector~n∂Ω on ∂Ω. First, we will prove the following coercivity condition
for the bilinear form BH.
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Lemma 2.1. For any v∈V(0), we have BH(v,v)= ||v||2DG .

Proof. Let v∈V(0). Taking u=v in the definition of BH, we have

BH(v,v)= ∑
K∈T H

(

−
∫

K
(~bv−a∇v)·∇v

)

+ ∑
σ∈EH

(

∫

σ
(~b ·~nσ{v}σ)[v]σ+

1

2δ

∫

σ
a[v]2σ

)

.

By using the definition of the DG norm, we obtain

BH(v,v)=‖v‖2
DG+ ∑

K∈T H

(

−
∫

K
(~bv)·∇v

)

+ ∑
σ∈EH

(

∫

σ
(~b·~nσ{v}σ)[v]σ

)

.

Therefore, it is sufficient to prove that

∑
K∈T H

(

−
∫

K
(~bv)·∇v

)

+ ∑
σ∈EH

(

∫

σ
(~b ·~nσ{v}σ)[v]σ

)

=0. (2.4)

Since~b is divergence free, for each K∈T H, we have

∫

K
(~bv)·∇v=

1

2

∫

K
(~bv)·∇v+

1

2

∫

K
(~bv)·∇v

=
1

2

∫

K
(~bv)·∇v+

1

2

(

−
∫

K
∇·(~bv)v+

∫

∂K
(~b·~n∂K)v

2

)

=
1

2

∫

K
(~bv)·∇v−

1

2

(

∫

K
(∇·~b)v2+

∫

K
(~bv)·∇v

)

+
1

2

∫

∂K
(~b·~n∂K)v

2

=
1

2

∫

∂K
(~b·~n∂K)v

2,

where ~n∂K is the unit outward normal vector on ∂K. Moreover, we notice that, for each
interior edge σ∈EH , we have

∫

σ
(~b ·~nσ{v}σ)[v]σ =

∫

σ

~b·~nσ

2
(v2|K1

−v2|K2
),

where~nσ is pointing from K1 to K2, and K1,K2 are two coarse grid blocks sharing the edge
σ. Thus, we have

∫

σ
(~b ·~nσ{v}σ)[v]σ =

∫

σ∩∂K1

~b·~n∂K1

2
v2|K1

+
∫

σ∩∂K2

~b·~n∂K2

2
v2|K2

,

where~n∂Kj
denotes the outward unit normal vector defined on ∂Kj with respect to Kj, for

j=1,2. For a boundary edge σ∈EH , since v∈V(0), we have

∫

σ
(~b·~nσ{v}σ)[v]σ =

∫

σ∩∂K

~b ·~n∂K

2
v2,
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where K is the coarse grid block with σ⊂∂K. Consequently, we have

∑
σ∈EH

∫

σ
(~b·~nσ{v}σ)[v]σ = ∑

K∈T H

∫

∂K

~b·~n∂K

2
v2= ∑

K∈T H

(

∫

K
(~bv)·∇v

)

.

Therefore (2.4) holds.

Next, we will estimate the right hand side of (2.3). Let v∈V(0). First, we recall, from
for example [3, 23], that the following discrete Poincare inequality

‖v‖2
L2(Ω)≤Cp

(

∑
K∈T H

||∇v||2L2 (K)+ ∑
σ∈EH

1

|σ|
||[v]σ ||

2
L2(σ)

)

(2.5)

holds. Furthermore, the following Poincare inequality

‖v‖2
L2(K)≤CH2||∇v||2L2(K) (2.6)

holds when v has zero average in K, and the trace inequality

‖v‖2
L2(∂K)≤C

(

H||∇v||2L2(K)+
1

H
||v||2L2 (K)

)

(2.7)

holds. These inequalities will help us to estimate the right hand side of (2.3). The next
lemma shows that the right hand side of (2.3) defines a continuous linear functional.

Lemma 2.2. Assume that δ≤ H
2 . For all v∈V(0), we have

∣

∣

∣

∣

∣

∫

Ω
f v−

∫

∂Ω

(~b ·~n∂Ω

2
g[v]−ag(∇v·~n∂Ω )−

1

2δ
ag[v]

)

∣

∣

∣

∣

∣

≤C||v||DG

(

‖ f‖L2(Ω)+δ−
1
2 ‖g‖L2(∂Ω)

)

,

where the constant C is independent of the coarse mesh size H.

Proof. Let v∈V(0). Then we decompose v into two parts and write v= v̄+ ṽ where v̄ is
the piecewise constant part of v and ṽ is the sub-grid enhanced part of v. More precisely,
for each coarse grid block K, we can write

v|K = v̄|K+ ṽ|K ,

where v̄|K is the average value of v|K on K and ṽ|K=cK
1 wK

1 +cK
2 wK

2 for some coefficients cK
1

and cK
2 . It is easy to see that v̄ and ṽ are L2(Ω)-orthogonal, that is,

∫

Ω
v̄ ṽ= ∑

K∈T H

∫

K
v̄|K ṽ|K =0,
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since the basis functions wK
1 and wK

2 have zero average in the coarse grid block K∈T H.
Then, using this decomposition of v, we can decompose the right hand side of (2.3) into
five parts, namely,

∫

Ω
f v−

∫

∂Ω

(~b·~n∂Ω

2
g[v]−ag(∇v·~n∂Ω)−

1

2δ
ag[v]

)

=
∫

Ω
f v−

∫

∂Ω

(~b·~n∂Ω

2
g[v̄+ ṽ]−ag(∇ṽ ·~n∂Ω)−

1

2δ
ag[v]

)

=
∫

Ω
f v−

∫

∂Ω

(~b·~n∂Ω

2
g[v̄]−

~b ·~n∂Ω

2
g[ṽ]+~b ·~n∂Ωg[ṽ]−ag(∇ṽ ·~n∂Ω)−

1

2δ
ag[v]

)

= I1− I2+ I3− I4+ I5 ,

where

I1=
∫

Ω
f v, I2=

∫

∂Ω

~b ·~n∂Ω

2
g[v̄], I3=

∫

∂Ω

~b ·~n∂Ω

2
g[ṽ],

I4=
∫

∂Ω

(

~b·~n∂Ωg[ṽ]−ag(∇ṽ ·~n∂Ω)
)

, I5=
1

2δ

∫

∂Ω
ag[v].

The terms I1 and I5 can be easily estimated by the Cauchy-Schwarz inequality, the defi-
nition of DG norm and (2.5). More precisely,

|I1|≤ || f ||L2 (Ω)||v||L2 (Ω)≤C|| f ||L2(Ω)||v||DG .

Moreover, since a is bounded, we have

|I5|=
1

2δ

∫

∂Ω
ag[v]

≤ (2δ)−
1
2 ||a

1
2 g||L2(∂Ω)

( 1

2δ

∫

∂Ω
a[v]2

)
1
2

≤Cδ−
1
2 ||g||L2 (∂Ω)||v||DG .

Next, we will estimate I2 and I3. We define T H
1 as the subset of T H that contains all coarse

grid blocks K with the property that at least one edge of K belongs to the boundary ∂Ω.

To estimate I2, we use the fact that~b is bounded and the Cauchy-Schwarz inequality to
obtain

|I2|≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

1

∥

∥

∥
H

1
2 v̄
∥

∥

∥

2

L2(∂K∩∂Ω)

)

1
2

≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

1

∥

∥

∥
H

1
2 v̄
∥

∥

∥

2

L2(∂K)

)

1
2

.
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Then the trace inequality (2.7) and the assumption δ<H/2 imply

|I2|≤Cδ−
1
2 ||g||L2(∂Ω)

(

∑
K∈T H

1

‖v̄‖2
L2(K)

)

1
2

≤Cδ−
1
2 ||g||L2(∂Ω)

(

∑
K∈T H

‖v̄‖2
L2(K)

)
1
2

.

By the fact that v̄ and ṽ are L2(K)-orthogonal,

|I2|≤Cδ−
1
2 ||g||L2(∂Ω)

(

∑
K∈T H

(‖v̄‖2
L2(K)+‖ṽ‖2

L2(K))

)
1
2

≤Cδ−
1
2 ||g||L2(∂Ω)

(

∑
K∈T H

‖v̄+ ṽ‖2
L2(K)

)
1
2

.

Thus, (2.5) yields

|I2|≤Cδ−
1
2 ||g||L2(∂Ω)||v||DG .

To estimate I3, we use a similar argument as above. First, by the assumption that
c0≤ a, we have

∑
K∈T H

‖∇v‖2
L2(K)≤

1

c0
||v||2DG .

Then by the Cauchy-Schwarz inequality, we have

|I3|≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

1

∥

∥

∥
H

1
2 ṽ
∥

∥

∥

2

L2(∂K∩∂Ω)

)

1
2

≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

1

∥

∥

∥
H

1
2 ṽ
∥

∥

∥

2

L2(∂K)

)

1
2

.

Using the trace inequality (2.7),

|I3|≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

(‖ṽ‖2
L2(K)+H2‖∇ṽ‖2

L2(K))

)
1
2

.

Since ṽ has zero average on each coarse grid block K, (2.6) yields

|I3|≤CH− 1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

H2‖∇ṽ‖2
L2(K)

)
1
2

.

Thus, we have

|I3|≤CH
1
2 ||g||L2 (∂Ω)

(

∑
K∈T H

‖∇v‖2
L2(K)

)
1
2

≤CHδ−
1
2 ||g||L2 (∂Ω)||v||DG .
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Finally we will estimate I4. We first emphasize that, by definition,~b ·~n∂Ωṽ−a∇ṽ ·~n∂Ω

is a constant on each e ∈EH with e⊂ ∂Ω. Let e⊂ ∂Ω be a boundary edge. We define a
quadratic polynomial we on e so that we equals zero at the two end points of e and equals

6(~b ·~n∂Ωṽ−a∇ṽ ·~n∂Ω)/4 at the mid-point of e. Let K be the coarse grid block that has the
edge e. Without loss of generality, we assume~ne=~n∂Ω. We can then define φe as the weak
solution of the following problem

−∆φe =0, in K,

φe =we, on e,

φe =0, on ∂K\e.

By standard theory, we have

‖φe‖H1(K)≤CH− 1
2 ‖we‖L2(e)≤CH− 1

2 ||~b ·~neṽ−a∇ṽ ·~ne||L2(e), (2.8)

where the dependence on H− 1
2 is obtained by scaling argument. Since the basis functions

are obtained by solving (2.1), we have
∫

K
(~bṽ−a∇ṽ)∇φe =

∫

∂K
(~b·~neṽ−a∇ṽ ·~ne)φ

e.

By the boundary condition of φe defined above, we have
∫

K
(~bṽ−a∇ṽ)∇φe=

∫

e
(~b·~neṽ−a∇ṽ ·~ne)φ

e.

Using the Simpson’s rule on the right hand side, we have
∫

K
(~bṽ−a∇ṽ)∇φe =H(~b·~neṽ−a∇ṽ ·~ne)

2= ||~b ·~neṽ−a∇ṽ ·~ne||
2
L2(e).

Thus,

||~b ·~neṽ−a∇ṽ ·~ne||
2
L2(e)≤C

(

‖ṽ‖L2(K)+‖∇ṽ‖L2(K)

)

‖∇φe‖L2(K)

and (2.8) implies

||~b ·~neṽ−a∇ṽ ·~ne||L2(e)≤CH− 1
2

(

‖ṽ‖L2(K)+‖∇ṽ‖L2(K)

)

.

Hence, we obtain

|I4|
2≤‖g‖2

L2(∂Ω)‖
~b ·~neṽ−a∇ṽ ·~ne‖

2
L2(∂Ω)

≤CH−1‖g‖2
L2(∂Ω) ∑

K∈T H

(

‖ṽ‖2
L2(K)+‖∇ṽ‖2

L2(K)

)

≤CH−1‖g‖2
L2(∂Ω)‖v‖2

DG.

Combining all results above, we obtain the required estimate.
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Finally, we state and prove our main result of this section.

Theorem 2.1. Let uH ∈V(0) be the solution of (2.3) and δ≤H/2. Then, for H≤H0, we have

‖uH‖DG ≤C
(

‖ f‖L2(Ω)+δ−
1
2 ‖g‖L2(∂Ω)

)

.

Proof. By the above two lemmas,

‖uH‖
2
DG =BH(uH,uH)

=
∫

Ω
f uH−

∫

∂Ω

(~b ·~n∂Ω

2
g[uH ]−ag(∇uH ·~n∂Ω)−

1

2δ
ag[uH ]

)

≤C||uH||DG

(

‖ f‖L2(Ω)+δ−
1
2 ‖g‖L2(∂Ω)

)

,

and the theorem is proved.

We remark that the factor of δ−
1
2 in the above estimate is common for IPDG method,

see [23]. This is because the Dirichlet boundary condition is imposed weakly in (2.3).

3 Numerical results

In this section, we will present some numerical examples to illustrate the accuracy of
our new IPDG approach. We use H > 0 to represent the coarse mesh size and h > 0 to
represent fine mesh size which is used to compute the reference solutions and to numer-
ically solve the local basis functions wK

i . We also use u,uh,uc and ub to represent the ex-
act/reference solution, numerical solution obtained by our sub-grid structure enhanced
IPDG method, numerical solution obtained by classical central difference method and
numerical solution obtained by classical upwind difference method respectively. In the
following sections, we will compute and compare the following error quantities

E=
‖uh−u‖2

‖u‖2
, Ec=

‖uc−u‖2

‖u‖2
and Eb =

‖ub−u‖2

‖u‖2
,

where ‖·‖2 denotes L2 norm. Unless specified, the Dirichlet boundary data g is assumed
to be zero.

3.1 Accuracy and convergence tests

We will test the accuracy and convergence rate of our method applied to the convection-

diffusion problem (1.1) with a,~b and f chosen as follows:

a=
1.2+sin(19πx)cos(31πy)

1.2+sin(43πx)sin(43πy)
, ~b=

(

sin(2πx)cos(2πy)
−cos(2πx)sin(2πy)

)

and f =1.
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Table 1: Relative errors for convection-diffusion problem with a fixed fine mesh size.

H E Ec

1/10 0.0734 0.1830
1/20 0.0306 0.0924
1/40 0.0150 0.0334

Table 2: Relative errors for convection-diffusion problem with a fixed local problem size.

H h E
1/10 1/200 0.0826
1/20 1/400 0.0327
1/40 1/800 0.0150

For these tests, the penalty parameter is chosen as δ=H/2 and a reference solution is ob-
tained with the mesh size h=1/800. First, we will consider the case with fixed fine mesh
size (h=1/800) and test the convergence with different coarse mesh sizes H=1/10,1/20
and 1/40. For these three cases, the local problems for finding basis functions on coarse
grids are obtained with grid sizes 80×80, 40×40 and 20×20 respectively. The relative er-
rors for numerical solutions computed by our method and the classical central difference
method are shown in Table 1. We observe, from the second column of Table 1, that our
method gives first order rate of convergence with respect to the coarse mesh size H. This
result agrees with the fact that our DG finite element space V(0) contains piecewise con-
stant functions. Also, from the second and the third columns of Table 1, we see that our
method produces more accurate solutions compared with the classical central difference
method. In particular, with a very coarse mesh size H = 1/10, our method produces a
numerical solution with relative error of 7.34% while the central difference method gives
a relative error of 18.3%. As the coarse mesh size is reduced to H=1/40, our method still
performs better, giving a relative error of 1.5% while the central difference method gives
a relative error of 3.34%. In addition, we see that the error difference between the two
methods is decreased when smaller coarse mesh size is used. We expect that when very
fine coarse mesh is used, the errors of the two methods should tend to identical.

Besides, we will perform accuracy and convergence rate tests with various coarse
mesh sizes and a fixed local problem size. The coarse mesh sizes we used are H =
1/10,1/20 and 1/40 while the local problems for solving the basis functions are defined
on a 20×20 grid. Thus, the fine mesh sizes, which are used to discretize the local prob-
lems, are h= 1/200,1/400 and 1/800 respectively. The relative errors for the numerical
solutions obtained by our method for the above three settings are shown in Table 2. We
see that the relative error is reduced approximately by a factor of two when the coarse
mesh size is also reduced by a factor of two. This numerical result shows that our method
has a first order convergence with respect to the coarse mesh size when the local problem
size is fixed.

Furthermore, for a comparison, the reference solution, numerical solution computed
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by our method with coarse mesh size H= 1/20 and the central difference solution with
mesh size H=1/20 are shown in Fig. 2. From the middle plot of Fig. 2, we see that our
method is able to produce a numerical solution with the correct coarse behavior. On the
contrary, the central difference method is unable to perform well. From the right plot
of Fig. 2, we see that the central difference solution contains some unwanted oscillations
near the domain boundary, and does not give the correct coarse behavior.
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Figure 2: Left: Reference solution with mesh size h= 1/800. Middle: Solution obtained by our method with
mesh size H=1/20. Right: Solution obtained by central difference with mesh size H=1/20.

3.2 Performance with internal or boundary layers

In this section, we illustrate the performance of our new method for static convection-
dominated diffusion problems with boundary or internal layers. First, we consider a
problem with a boundary layer. We choose the following problem setting:

a=
1

100
, ~b=

(

1
2

)

and f =1.

For the penalty parameter, we take δ = 1/100. A reference solution is again obtained
with mesh size h = 1/800. The numerical solutions using our method, the central dif-
ference method and the upwind difference method are obtained with a coarse mesh size
H = 1/20. The numerical results are shown in Fig. 3. From the two figures on the top
of Fig. 3, we see that our method can accurately capture the coarse behavior of the so-
lution. Moreover, the boundary layer of the solution is accurately computed, without
artificial oscillations. Since we are using a coarse grid to approximate the solution, the
boundary layer, as it can be seen in the top-right figure of Fig. 3, is only captured on
the coarse grid level, and this is the reason for the thick layer near the bottom part of
the domain. From the bottom-left figure of Fig. 3, however, we see that the central dif-
ference method produces a solution that is oscillating which is a well-known result. In
the bottom-right figure of Fig. 3, we compare the behavior of the 4 solutions on the line
defined by x=0.925, where we use red dash line and blue line to represent the solution
obtained by our method and the reference solution respectively. We see that the upwind
difference method (red solid line) produces a solution that is smeared too much and the
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Table 3: Relative errors for a problem with a boundary layer.

H E Ec Eb

1/10 0.1636 0.4653 0.3570
1/20 0.1238 0.2302 0.2250
1/40 0.0949 0.0960 0.1331

central difference method (green line) produces an oscillatory solution. In terms of rela-
tive errors, we obtain a relative error of 12.38% for our method. For central and upwind
difference methods, the relative errors are 23.02% and 22.50% respectively. We see that
among the 3 numerical solutions, our method gives the most accurate result.

In Table 3, we present some numerical results to further analyze the accuracy of the
numerical solutions computed by our method, and compare its performance with the
central difference method and the upwind difference method for various coarse mesh
sizes. From the table, we see that performance of our method is significantly better than
that of the upwind difference method for the 3 coarse mesh sizes we used. Moreover, with
coarse mesh sizes H=1/10 and H=1/20, our method shows better accuracy compared
with the central difference method. For the case with coarse mesh sizes H = 1/40, the
relative errors for our method and the central difference method are about the same. This
is due to the fact that for this mesh size, the central difference method is able to eliminate
the artificial oscillations.

Next we consider a problem with an internal layer. The coefficients and source data
are chosen as follows:

a=
1

400
+

cos2(22πx)cos2(38πy)

2
, ~b=

(

1
2

)

and f =1.

We also take a non-homogeneous Dirichlet boundary condition for which the function g
is defined by

g=1, on {0.25≤ x≤1, y=0}∪{0.75≤ x≤1, y=1}∪{x=0, 0≤y≤1},

and g= 0 otherwise. The penalty parameter is chosen as δ= H/2. For the comparison
of accuracy, a reference solution is obtained with mesh size h = 1/800 and is shown in
Fig. 4. Using the coarse mesh size H=1/40, three numerical solutions computed by our
method, the central difference method and the upwind difference method are obtained,
and the results are shown in Fig. 4. From the two figures on the top of Fig. 4, we see that
our method is able to capture this internal layer accurately. Moreover, most structures of
the solution are computed precisely. On the contrary, from the bottom-left figure of Fig. 4,
we see that the central difference method produces a solution that is oscillatory near the
boundary {x = 1}, and the internal layer of the exact solution is not captured. From
the bottom-right figure of Fig. 4 we see that the backward difference method produces a
solution that is smeared out too much, as evident from the magnitude of the numerical
solution. Also, the internal layer cannot be accurately computed. Regrading errors, the
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Figure 3: Top-left: Reference solution with mesh size h=1/800. Top-right: Solution obtained by our method
with mesh size H = 1/20. Bottom-left: Solution obtained by central difference with mesh size H = 1/20.
Bottom-right: Comparison of solutions on the line x=0.925.
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Figure 4: Top-left: Reference solution obtained with mesh size h=1/800. Top-right: Solution obtained by our
method with mesh size H=1/40. Bottom-left: Solution obtained by central difference with mesh size H=1/40.
Bottom-right: Solution obtained by upwind difference with mesh size H=1/40.
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Table 4: Relative errors for a problem with an internal layer.

H E Ec Eb

1/10 0.1703 0.1798 0.1511
1/20 0.0888 0.1373 0.1376
1/40 0.0527 0.1226 0.1128

relative error is 5.27% for our method. For central and upwind difference methods, the
relative errors are 12.26% and 11.28% respectively. We see that our method is significantly
better than the classical methods.

In Table 4, we present some numerical results to further analyze the accuracy of the
numerical solutions computed by our method, and compare its performance with the
central difference method and the upwind difference method for various coarse mesh
sizes. From this table, we see that performance of our method is significantly better than
that of the central and upwind difference methods for the 3 coarse mesh sizes we used.
We also see that for the coarse mesh size H = 1/10, all the three methods are unable to
perform well with the upwind difference method performs a bit better. With the refine-
ment of the coarse mesh size, we see that the error for our method improves significantly
while the errors for the other two methods improve only slightly. Consequently, we see
that in order to obtain a reasonably accurate solution, we need the coarse mesh size to be
fine enough but it is no need to be taken too small to resolve all details.

3.3 Time-dependent problems

We now turn our discussion to time-dependent problems. We will consider a convection-
diffusion problem in non-homogeneous media which is defined by the following settings:

a=
1.2+sin(11πx)cos(11πy)

1.2+sin(43πx)sin(43πy)
, ~b=

(

sin(21πx)cos(21πy)+2
−cos(21πx)sin(21πy)+2

)

and f=(t+0.2)−3,

with homogeneous initial condition u0 = 0. The penalty parameter is taken as δ= H/2
and a reference solution is computed on a fine grid with mesh size h= 1/800. We will
compare the accuracy of the solutions obtained by our method and the central difference
method at various times and for various choices of coarse mesh sizes and time steps. The
relative errors for these cases are shown in Tables 5-7. In Table 5, the relative errors for
the solution obtained by our method at the time T= 0.3 are shown on the left while the
relative errors for the solution obtained by the central difference method at the same time
T=0.3 are shown on the right. From the table on the left, we see the convergence of our
method with respect to the coarse mesh size H. In particular, when the time step size
is taken as ∆t= H, the time step size is comparatively large and the time discretization
error dominates. This is confirmed by the second order convergence of the errors in the
third column of the left table of Table 5. On the other hand, when the time step size is
taken as ∆t=H/4, the time step size is comparatively small and the spatial discretization
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Table 5: Comparison of relative errors at time T=0.3. Left: our method. Right: central difference.

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.3895 0.0808 0.0418

1/20 0.0753 0.0212 0.0174

1/40 0.0184 0.0102 0.0095

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.4369 0.2725 0.2602

1/20 0.2405 0.2248 0.2218

1/40 0.1777 0.1728 0.1719

Table 6: Comparison of relative errors at time T=0.4. Left: our method. Right: central difference.

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.4991 0.0910 0.0431

1/20 0.0984 0.0226 0.0177

1/40 0.0219 0.0100 0.0094

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.3800 0.2564 0.2483

1/20 0.2279 0.2138 0.2117

1/40 0.1703 0.1660 0.1652

Table 7: Comparison of relative errors at time T=0.5. Left: our method. Right: central difference.

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.6521 0.1008 0.0447

1/20 0.1266 0.0242 0.0179

1/40 0.0261 0.0098 0.0092

H ∆t=H ∆t=H/2 ∆t=H/4

1/10 0.5089 0.2417 0.2369

1/20 0.2175 0.2031 0.2016

1/40 0.1628 0.1588 0.1582

error dominates. This is again confirmed by the first order convergence of the errors in
the fourth column of the left table in Table 5. On the contrary, from the right table of
Table 5, we see that the accuracy of using standard central difference method is much
lower than that of our method. For instance, when the coarse mesh size is H = 1/40
and the time step size is ∆t = H/4, the relative error of the solution computed by our
method is approximately 1% while the relative error of the solution computed by the
central difference method is about 17%. In Table 6 and Table 7, a similar comparison is
performed when the solution is computed at the time T=0.4 and T=0.5 respectively, and
a similar conclusion is obtained.

3.4 Performance with more general media

In this final section, we will illustrate the performance of our new IPDG method for
convection-diffusion problems in more general media. First, we will consider a convection-
diffusion problem in a random medium, for which the coefficient a is taken as the func-
tion shown in the left plot in Fig. 5.

From Fig. 5, we see that the medium has some random non-local features as well as
large contrasts. It is also defined on a 400×400 grid. For the other parameters of the
problem, we take

~b=

(

1
2

)

and f =2.

The penalty parameter is chosen as δ = H/2. A reference solution is obtained with
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Figure 5: Left: A random medium. Right: A medium with checkerboard structure.

Table 8: Relative errors with fixed fine mesh size.

H E Ec

1/10 0.1123 0.9708

1/20 0.0641 0.1858

1/40 0.0303 0.1794

h = 1/400. The relative errors for various coarse mesh size are shown in Table 8. We
see that the relative error for the solution computed by our method is reduced by a factor
of two when the coarse mesh size is also reduced by a factor of two. However, the rela-
tive error for the solution computed by the central difference method does not decrease
much as coarse mesh size is decreased. Comparing the two schemes, we see that when
the coarse mesh size is H = 1/10, the relative errors for the solutions computed by our
method and the central difference method are 11.23% and 97.08% respectively. When the
coarse mesh size is reduced to H = 1/40, the errors are 3.03% and 17.94% respectively.
Therefore, it is evident that our method has a first order convergence rate and that the
error for the solution computed by our method is much lower than that of the central dif-
ference approximation. Reference and numerical solutions computed by our method and
the central difference method are shown in Fig. 6. On the top row of Fig. 6, we present the
reference solution defined on the original 400×400 fine grid and the reference solution
projected to the coarse grid with H = 1/20. We note that the projected reference solu-
tion is for comparison purpose. In the bottom-left figure of Fig. 6, the numerical solution
computed by our method with H=1/20 is shown. Comparing this and the projected ref-
erence solution, we see that all features of the exact solution are captured by our scheme,
and the relative error is only 6.41%. On the other hand, in the bottom-right figure of
Fig. 6, the numerical solution computed by the finite difference method, with a relative
error of 18.58%, by the same coarse mesh is shown. It is clear that some features of the
exact solution are missing.
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Figure 6: Top-left: Reference solution with mesh size h = 1/400. Top-right: Reference solution projected
to a coarse mesh with H = 1/20. Bottom-left: Solution obtained by our method with mesh size H = 1/20.
Bottom-right: Solution obtained by central difference with mesh size H=1/20.

Figure 7: Top-left: Reference solution with mesh size h=1/960. Top-right: Solution obtained by our method
with mesh size H = 1/40. Bottom-left: Solution obtained by central difference with averaged coefficient and
mesh size H= 1/40. Bottom-right: Solution obtained by central difference with non-averaged coefficient and
mesh size H=1/40.
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Next we will consider a medium with a checker-board structure, shown in the right
diagram of Fig. 5. In this case, the diffusion coefficient a(x) has a very high contrast, with
the value 1 in the blue region and the value 500 in the red region. Thus, there are both

convection-dominated and diffusion dominated regions. The vector~b, the function f and
the boundary condition g are defined as follows:

~b=

(

−100
100

)

, f =0,

g(x,y)=1, x=1 or y=0, g(x,y)=0, otherwise.

A reference solution is obtained using the fine mesh size h= 1/960 and the penalty pa-
rameter is chosen as δ= H/2. We will illustrate the performance of our scheme with a
coarse mesh size H=1/40. In Fig. 7, the reference solution, the numerical solution com-
puted by our method and the central difference method are shown. From the top two
diagrams of Fig. 7, we see that our method is able to capture the behavior of the exact so-
lution. In particular, both the narrow layer near the boundary and the interior structures
of the solution are accurately computed. As a comparison, we also show the numerical
solutions obtained by the classical central difference method. In the bottom left diagram
of Fig. 7, we present the case with the coefficient a(x) is averaged out on each coarse grid
while in the bottom right diagram of Fig. 7, we present the case that the coefficient a(x) is
not averaged out. We see that in both cases, the finite difference method cannot produce
an accurate numerical solution on a coarse grid with mesh size H = 1/40. Moreover, in
terms of accuracy, the relative error is 5.23% for our method and it is 15.54% and 29.16%
for finite difference with average and non-average coefficients respectively. Therefore,
we see that our new IPDG method is able to produce an accurate numerical solution on
a relatively coarse grid.

4 Conclusion

In this paper, we present and study a new sub-grid enhanced IPDG method for diffu-
sion and convection-diffusion problems in heterogeneous media as well as convection-
dominated problems. The formulation of the discrete problem is based on the IPDG
approach, and the main contribution and success of this work is the choice of the lo-
cal approximation space. The finite element space contains two components, one is the
classical polynomial space and the other is spanned by local basis functions which are
solution of local cell problems. The key feature is that we do not assume that these local
problems can be solve analytically, which allows our method to handle more complex
media. Stability of our method is proved, and extensive numerical results show that our
method is able to capture the coarse scale behavior of the exact solution on a coarse grid.
In the future, we plan to further enhance the accuracy of our method by using higher
order basis functions.
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