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Abstract. Robust optimization is an approach for the design of a mechanical structure
which takes into account the uncertainties of the design variables. It requires at each
iteration the evaluation of some robust measures of the objective function and the con-
straints. In a previous work, the authors have proposed a method which efficiently
generates a design of experiments with respect to the design variable uncertainties
to compute the robust measures using the polynomial chaos expansion. This paper
extends the proposed method to the case of the robust optimization. The generated
design of experiments is used to build a surrogate model for the robust measures over
a certain trust region. This leads to a trust region optimization method which only re-
quires one evaluation of the design of experiments per iteration (single loop method).
Unlike other single loop methods which are only based on a first order approxima-
tion of robust measure of the constraints and which does not handle a robust measure
for the objective function, the proposed method can handle any approximation order
and any choice for the robust measures. Some numerical experiments based on finite
element functions are performed to show the efficiency of the method.

AMS subject classifications: 60H15, 65K05, 62K20, 62K05
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1 Introduction

The design of a mechanical structure is usually formulated as an optimization problem
as follows:

min
x

f (x)

s.t. gi(x)≤0, i=1,··· ,r,

xl ≤ x≤ xu,

(1.1)
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where x∈R
M is a vector of M design variables (geometry, load,···), f is an objective func-

tion (weight, cost,···) and gi is a set of r constraint functions representing the mechanical
requirements (deformation, buckling load,···). Due to the uncertainties in the design
variables, the f and gi functions (the response of the mechanical system) have a deter-
ministic component and a random component. The random component of each function
is characterized by a robust measure. This robust measure consists in defining φ the prob-
ability density functions (pdf) of the design variable uncertainties and propagating them
through the mathematical model of the mechanical system in order to characterize the
random component of the output functions. In [2–4], a detailed review of the possible
mathematical definitions of the robust measures is available. Let ǫ be the vector of the
M design variable uncertainties. In this paper, only the case of Gaussian uncertainties
is considered, but the proposed algorithm applies to any other continuous uncertainty
type. For the objective function, one can define its robust measure R f (x) as one of the
following possibilities:

• the function itself, R f (x)= f (x);

• its mean value with respect to the design variable uncertainties:

R f (x)=E[ f |x]=
∫

f (x+ǫ)φ(ǫ)dǫ;

• a combination of its mean value and its variance:

R f (x)=E[ f |x]+var( f |x)

with

var( f |x)=
∫

( f (x+ǫ)−E[ f |x])2φ(ǫ)dǫ;

• the probability that f is less than a certain threshold q:

R f (x)=Pr[ f <q|x].

The robust measure Rgi
(x) of the constraints can be defined as:

• its statistical feasibility:

Rgi
(x)=Pr[gi ≤0|x]≥P0

for some confidence probability P0;

• its feasibility robustness:

Rgi
(x)= gi(x)+

√

∑
j

( ∂gi

∂xj

)2
≤0.
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Robust optimization is an approach for the design of a mechanical structure which
takes into account the uncertainty of the design variables. It replaces the objective func-
tion and the constraints by their robust measures with respect to the uncertainties of the
design variables. The robust optimization problem becomes:

min
x

R f (x)

s.t. Rgi
(x)≥P0, i=1,··· ,r,

xl ≤ x≤ xu.

(1.2)

Unlike deterministic optimization in (1.1), where at each iteration the objective function
and the constraints are only evaluated for the current values of the design variables, the
robust optimization requires at each iteration the evaluation of these functions for all the
possible scenarios of the design variable uncertainties. This requires two loops: the outer
one for the optimization itself and the inner one for computing robust measures. For
example, take the case of a gradient method used to perform the robust optimisation.
At each iteration point xk, the gradient of the robust measures is computed using a finite
difference approximation. This requires the evaluation of the robust measures at points xk

and xk+dxi for i=1,··· ,M. If the evaluation of the robust measure requires N evaluations
of f and gi, then, each iteration of the gradient method requires N×(M+1) evaluations
of f and gi. The high number of evaluations of the f and gi due to the double loop
constitutes the main difficulty of the robust optimization.

Papers [2–4] give a review of the possible methods to solve the robust optimization
problem (1.2). They are classified in three categories: the double loop methods, the single
loop methods and the decoupled methods. The double loop methods solve problem
1.2 without any approximation of the functions R f and Rgi

. They are the most accurate
of the three categories but the most expansive in computations. They are based on the
construction of surrogate models or evolutionary algorithms like in [5–8, 16].

The single loop and the decoupled methods make use of some approximations to
avoid the double loop (see [2,9,10]). The single loop methods are restricted to R f = f as a
robust measure (the first choice in the previous list) and computes the Rgi

functions using
a first-order approximation (the FORM method). In this case, the analytical expressions
of the derivatives of the robust measures are available. One does not have to compute
the robust measures at xk+dxi for i=1,··· ,M, which reduces the number of evaluations
of f and gi to only N evaluations per iteration. In many cases, these methods use a trust
region algorithm to solve the optimization problem.

The decoupled methods separate the design variables space from the uncertainty
space. They perform a deterministic optimization and add a shift to the design variables
in order to comply with the constraints without computing robust measures at each iter-
ation. They are the cheapest of the three categories but also the less accurate.

The Polynomial Chaos Expansion (PCE) method builds a multidimensional polyno-
mial function which approximates f and gi in order to compute their robust measures.
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Such approximation can be computed using an intrusive method like in [18], or non in-
trusive method like in [20] or [15].

The contribution of this paper is the following. In a previous paper, the authors have
proposed a method which efficiently generates a design of experiments with respect to
the design variable uncertainties to compute the robust measures using the polynomial
chaos expansion. This paper extends the proposed method to the case of the robust op-
timization. The generated design of experiments is used to build a surrogate model for
the robust measures of the objective function and the constraints over a defined trust re-
gion. The degree of these surrogates is equal to the degree of the PCE and only requires
one evaluation of the design of experiments to build the surrogate model. This leads to
a trust region optimization method. Only one evaluation of the design of experiments is
required per iteration (no double loops). It has the advantage over the above mentioned
single loops methods that it can handle any choice of R f , any choice of method to com-
pute Rgi

and any surrogate degree. Some numerical experiments based on finite element
functions are performed to show the efficiency of the method.

2 Probability space and random variables

Computing the output of a mechanical system with uncertain design variables is con-
sidered as a random experiment and can be studied using the PCE. In order to give a
mathematical framework of the PCE, a brief review of some definitions regarding proba-
bility space and random variables is introduced in the following paragraph.

A probability space is a mathematical entity which models the uncertainty in the in-
put and the output of the mechanical system. Three ingredients (Ω,F ,P) are necessary
to define a probability space, where:

• Ω is the set of all possible outcomes;

• F is a σ-algebra over Ω containing all possible events;

• P is a function F→R which gives a probability measure for each random event.

A random variable X is a function X : (Ω,F ,P)→R.

Using the preceding definitions, one can also define the expectation and the variance
of a random variable:

X̄=E[X]=
∫

XdP, (2.1)

var(X)=E[(X−X̄)2]=
∫

(X−X̄)2dP. (2.2)

We call <X,Y>=
∫

XYdP the inner product of two random variables on the probability
space and L2(Ω,F ,P) the set of random variables having a finite variance.
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Before introducing the PCE, one must also have a look at the Hermite polynomials.
These polynomials of degree n are defined in a recursive way as follows:

H0=1, (2.3)

Hn+1(x)= xHn(x)−(n)Hn−1(x), (2.4)

and they have the property of being orthogonal with respect to the Gaussian measure. If
Hi and Hj are two Hermite polynomials of degrees i and j respectively, we have:

∫

Hi(x)Hj(x)e−x2/2dx= i!δij , (2.5)

where δij is the Dirac function. Thus, if ξ is a Gaussian random variable, the two random
variables Hi(ξ) and Hj(ξ) are orthogonal with respect to the above inner product and the
Gaussian measure. This orthogonality property constitutes the basis of the PCE.

Note that, if ξ is a Gaussian random variable, the Hermite polynomials must be re-

placed by the Legendre polynomials and the density function e−x2/2 by 1.

3 The polynomial chaos expansion (PCE)

The PCE method consists in considering a set of orthogonal multivariate polynomials
with respect to the previous inner product. Let M be the number of uncertain design
variables in the mechanical system and ξ = {ξi}

M
i=1 be a set of M independent Gaussian

random variables. Each random variable is associated to an uncertain design variable
and represents its perturbation. Consider Γp the space of multivariate polynomials of de-
gree less or equal to p and Γ̃p the space of polynomials of degree equal to p and orthog-

onal to Γp−1. We have Γp =⊕
p
i=1Γ̃i. If the inner product is considered with the Gaussian

measure, Γ̃p is spanned with the multivariate Hermite polynomials {ψα(ξ)} of degree

p, where α∈N
M and ∑

M
i=1αi = p. These multivariate Hermite polynomials {ψα(ξ)} are

defined as the product of M univariate Hermite polynomials of degree αi:

ψα(ξ)=
M

∏
i=1

Hαi
(ξi). (3.1)

Let S be the random output of the mechanical system. If S has a finite variance (S ∈
L2(Ω,F ,P)), it can be expressed as an infinite series of multivariate Hermite polynomials
(see [12, 13]):

S(x+ξ)=
|α|=∞

∑
|α|=0

σα(x)ψα(ξ)=
∞

∑
i=0

σi(x)ψi(ξ). (3.2)

Here, the multi-index α of ψ is replaced by an index i given the univocal relationship
between these two notations. σi are the deterministic coefficients of the PCE.



S. Zein / Commun. Comput. Phys., 14 (2013), pp. 412-424 417

One of the advantages of such a representation of the random output S is that com-
puting the mean and variance of S is straight-forward. From the orthogonality property
of ψi, one can deduce that:

S̄=σ0, (3.3)

var(S)=
∞

∑
i=1

σ2
i . (3.4)

For computational reasons, the space of multivariate polynomials must be truncated to
degree p and S is replaced by S̃ with:

S(x+ξ)= S̃(x+ξ)+ǫ=
N

∑
i=0

σi(x)ψi(ξ)+ǫ, (3.5)

where N= (M+p)!
M!p! is the number of terms involved in S̃ and ǫ is the truncation error.

In this paper, we consider the regression method to compute the coefficients σi of the
PCE (see [14, 15]). This method consists in defining a design of experiments, Ξ(x,ξ) =
{x+ξ j}j=1,···,Q, which is a set of Q different perturbations of the design variables and
then computing (by simulation) the output of S for each value x+ξ j of the design of
experiment. These output values are gathered in a vector Ssim(Ξ)∈R

Q and the following
equation can be deduced:

Ssim(Ξ(x,ξ))=Ψ(Ξ(x,ξ))σ(x)+ǫ, (3.6)

where Ψ(Ξ(x,ξ)) is a rectangular matrix in R
Q,N defined by Ψji=ψi(ξ

j). Each row j of this

matrix is the set of all ψi’s computed for the experiment ξ j. The computation of σ from
equation (3.6) corresponds to a linear least squares problem which is detailed in [11].

In brief, the evaluation of the robust measure of an output function using the regres-
sion PCE requires:

1. defining a design of experiments Ξ like in [1];

2. computing the output function Ssim at each point of the design of experiments;

3. computing the coefficients σ of the PCE by the least squares method;

4. computing the robust measure from these coefficients.

It is assumed that step 2, the computation of Ssim by simulation, is the most expensive
one.

In [1], the generation of the design of experiments is based on maximising the de-
terminant of its information matrix (the D-optimal criterion). It is a coupling between
the Fedorov algorithm with the genetic algorithms. The advantage of this method is be-
ing able to generate accurate design of experiments with the fewest possible number of
simulations.
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4 The optimization method

The optimization method proposed in this paper is based on a trust region one. It consists
in solving an optimization subproblem at each iteration where the objective function and
the constraint are replaced by some surrogate models which approximate these functions
over a trust region. This trust region is defined by a hypersphere of radius ∆k and cen-
tered at xk the current values of the design variables. The optimization subproblem is the
following:

min
x

R̃ f (x)

s.t. R̃gi
(x)≥P0, i=1,··· ,r,

and |x−xk|≤∆k,

(4.1)

where the R̃ f and R̃gi
are the surrogate models of the robust measures of f and gi respec-

tively. At each iteration, xk is updated with the solution of this optimisation subproblem.
In order to guarantee the efficiency of the trust region method, the construction of these
surrogate models and the resolution of the optimization subproblem must not be expen-
sive in terms of computations.

The construction of the surrogate model takes advantage of the regression based PCE.
Unlike other non-intrusive methods, the regression method does not require a fixed de-
sign of experiments for the perturbations. One can use any design of experiments to
perform the PCE.

Let S be any function of f and gi. At iteration k, define the design of experiments
Ξ(xk,ξ)={xk+ξ j}j=1,···,Q and compute Ssim(Ξ) the values of S corresponding to the per-
turbations Ξ. Using the regression method, compute Rs(xk) the robust measure of s at xk.
Now, we want to compute the robust measure at another point x. There are two possibili-
ties. Either compute a new vector Ssim(Ξ) corresponding to a new Ξ(x,ξ)={x+ξ j}j=1,···,Q

or change the design of experiments such that it can reuse the same vector Ssim
k . The

second possibility has advantage of not requiring a reevaluation of Ssim(Ξ) for each
value of x in the trust region. Define h = x−xk. The new design of experiments is
Ξ(x,ξ−h) = {x+ξ j−h}j=1,··· ,Q, centered about x and the perturbations are ξ j−h. One
can see that this new design of experiments is such that it defines the same points of
Ξ(xk,ξ). Thus, it can reuse the vector Ssim(Ξ(xk,ξ)). Eq. (3.6) can be written as

Ssim(Ξ(x,ξ−h))=Ψ(Ξ(x,ξ−h))σ̃(x)+ǫ, (4.2)

where σ̃(x) are the PCE coefficients computed at point x using Ξ(x,ξ−h) and ǫ is the
truncation error.

4.1 Computer implementation

The optimization algorithm is summarized as follows.
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At each iteration k, a design of experiments Ξ(xk,ξ) is defined as for example in [1].
The objective function and the constraints are evaluated with respect to this design of
experiments in order to have the vectors f sim(Ξ(xk,ξ)) and gsim

i (Ξ(xk,ξ)). Then, the opti-
mization subproblem (4.1) is solved and xk is updated by the solution of the subproblem.
In this paper, it is chosen to use the local search method coupled with the penalty method
to solve this optimization sub-problem. It is an inner loop of the optimization algorithm
which does not require any additional evaluation of f and g. The values of R̃ f (x) and

R̃gi
(x) needed by the local search method at point x are computed as follows. A new

design of experiments is generated such that it can reuse the same vectors f sim(Ξ(xk,ξ))
and gsim

i (Ξ(xk,ξ)). Then, the PCE coefficients at point x are computed based on this
generated design of experiments. Finally, these PCE coefficients give the polynomial ap-
proximations of f and gi. The value of R̃ f (x) is deduced from Eqs. (3.3) and (3.4) and

R̃gi
(x) is computed using this approximation with a Monte Carlo method.
Note that one can choose any optimization method to solve the optimization sub-

problem other than the local search method and any other method than Monte Carlo to
compute the constraints. The proposed optimization method is not restricted to these
choices.

5 Numerical experiment

The test case used in this paper is the design of a stiffener shown in Fig. 1. It is composed
of two panels and one stringer and it is subjected to a compression load parallel to the
stringer (10 N/cm). The uncertain parameters of this model are the thickness of both
panels (1cm), the thickness of the stringer (1cm), and the height of the stringer (10cm).
In total, we have three uncertain parameters. They are the solid arrows in Fig. 1. The
uncertain outputs are the mass of the structure and the first six buckling modes of the
structure. The finite elements model and the first three buckling modes are in Fig. 2.
These finite element based functions are commonly used in structural analysis and struc-
tural optimization.
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Figure 1: Description of the finite element based test: the solid arrows are the uncertain variables.
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Figure 2: The finite elements model and the first three buckling modes of the structure.
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Figure 3: Deterministic optimization: evolution of the mass and the first three critical loads with respect to the
number of iterations.

The optimization problem consists in minimizing the weight of the structure while
ensuring that the first six buckling loads are higher than one.

A deterministic optimization (1.1) is performed using the GCM method, described
in [17]. Fig. 3) shows the evolution of the mass and the first three critical buckling modes
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Table 1: The results obtained with the deterministic and the two robust optimizations.

Deterministic Degree 1 Degree 2
Panel thickness 0.70 0.719 0.722

Stringer thickness 3.19 3.188 3.26
Stringer height 9.18 9.32 9.32

Weight 68196 69578 70000
Prob. of viol. Cri. Load 1 - 0.011 0.009
Prob. of viol. Cri. Load 2 - 0.005 0
size of DoE × #iterations - 4×30 10×30

with respect to iterations. The solution is shown in Table 1.
The initial point for the robust optimization is taken as the deterministic optimum.

Given that in this point the constraints are active and the violation probability is equal
to 1%, this point is necessarily a non admissible solution for the robust optimization.
Therefore during the optimization, the weight increases to find the robust optimum.

Two numerical tests have been performed for the robust optimization with PCE of
degree one and two. The Gaussian variables have a standard deviation equal to 1% of
their nominal values. The probability of violation is equal to 1%. With degree one and
two, the trust region radii ∆k are equal to 0.25 and 0.5 respectively in the normal Gaussian
space. The sizes of the design of experiments are 4 and 10 respectively. This means
that each iteration only requires 4 and 10 evaluations respectively. Figs. 4 and 5 show
the evolution of the robust measures of the weight and the first three critical loads with
degree one and two. The results of the robust optimizations are shown in Table 1. Note
that the two optimal solutions satisfy the constraints. They show that we have an increase
in the weight of the structure of 2% and 2.6% due to the 1% uncertainty in the three
design variables and the 1% probability of violation. One can see that these results are
obtained with designs of experiments of small sizes which allows to take small trust
regions and perform a lot of iterations (30 iterations) which demonstrates the efficiency
of the proposed method.

6 Conclusions

A trust region method is proposed to solve a robust optimization problem. This method
is based on the polynomial chaos expansion method to compute the robust measures
of the objective function and the constraints. Here, the coefficients of the polynomial
chaos expansion are obtained by defining a design of experiments and solving a regres-
sion problem. The advantage of this method is that it only requires one evaluation of
the design of experiments per iteration. Therefore, it can be classified as a single loop
method.

The efficiency of the proposed method is demonstrated with a test case using a finite
element model to optimize (design) a stringer. The method is able to generate an optimal
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Figure 4: Robust optimization with PCE degree 1: evolution of the weight and the first three critical loads with
respect to the number of iterations.
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Figure 5: Robust optimization with PCE degree 2: evolution of the weight and the first three critical loads with
respect to the number of iterations.

design for the stringer with a relatively low cost in computations and satisfy all design
constraints.
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