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Abstract. The numerical solution of blow-up problems for nonlinear wave equations
on unbounded spatial domains is considered. Applying the unified approach, which
is based on the operator splitting method, we construct the efficient nonlinear local ab-
sorbing boundary conditions for the nonlinear wave equation, and reduce the nonlin-
ear problem on the unbounded spatial domain to an initial-boundary-value problem
on a bounded domain. Then the finite difference method is used to solve the reduced
problem on the bounded computational domain. Finally, a broad range of numerical
examples are given to demonstrate the effectiveness and accuracy of our method, and
some interesting propagation and behaviors of the blow-up problems for nonlinear
wave equations are observed.
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1 Introduction

This paper is devoted to studying the numerical solution of blow-up problems for the
nonlinear wave equation of the form

utt= a2∆u+|u|p, x∈Ω, t>0, (1.1)

u(x,0)=φ0(x), ut(x,0)=φ1(x), x∈Ω, (1.2)
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where u(x,t) represents the wave displacement at position x and time t, ∆ denotes the
Laplacian, a is the given reference wave speed, φ0(x) and φ1(x) are the initial values,
and the spatial domain Ω is given by Ω=R

d (d= 1,2,···). The wave equation appears
in applications in various areas of mathematical physics. As an example, the blow-up
problem would be that of the focusing energy-subcritical nonlinear wave equations with
electromagnetic potential in electromagnetism [1] (For more applications see the list of
the references in [2–4]).

The theory of finite-time blow-up for nonlinear wave equations has an interesting and
exciting history. We will only give a brief summary and refer the reader to the papers
[5–11] and the survey paper [12]. Strauss [5] conjectured that if the critical value, p0(d),
is the positive root of (d−1)x2−(d+1)x−2=0, then, if 1< p< p0(d), the solution of the
nonlinear wave equation blows up in finite time for any choice of the initial conditions.
Glassey [6, 7] subsequently verified the conjecture in two dimensions by showing that
p0(2) =

1
2(3+

√
17). Sideris proved in his PhD thesis that there exists blow-up in finite

time for all p> 1 when d= 1, and he also proved in [8] the conjecture of Strauss in high
dimensions by averaging the Riemann function in time. The papers [9–11] contain a
systematic analysis of the life-span of classical solutions for nonlinear wave equations.

For semilinear parabolic PDEs (reaction-diffusion equations) arising as models in
combustion theory, the theoretical and physical aspects of single-point blow-up versus
total blow-up are well understood (see for example Bebernes and Eberly [13], Section 5.5,
and Lacey [14]). However, analogous studies on the possible sets of blow-up points for
nonlinear wave equations do to the best of our knowledge not exist.

The numerical analysis of the blow-up problems for nonlinear wave equations (1.1)-
(1.2) has so far received little attention, see [15, 16] and their references. For the bounded
computational domain case, there are only few papers studying the numerical solution
of blow-up problems. Cho [4] gave a finite difference scheme and proposed a rule for
time-stepping for blow-up solutions of the one-dimensional nonlinear wave equation.
For unbounded computational domains, the difficulties in the numerical solution of the
problem (1.1)-(1.2) include three parts: the nonlinearity, the unboundedness, and the
multidimensionality. To deal with the nonlinearity, we use the idea of the unified ap-
proach which was introduced by Zhang et al. [17, 18]; the basic idea underlying the uni-
fied approach is the well-known time-splitting method. Xu et al. [19] designed absorb-
ing boundary conditions for nonlinear Schrödinger equations by using the time-splitting
method. The idea of time-splitting method was extended for solving two-dimensional
sine-Gordon equation by Han et al. [20]. For unboundedness, one of the most popu-
lar approaches is the use of the absorbing boundary conditions (ABCs) method, which
is a powerful method to reduce the problems on an unbounded domain to a bounded
domain, for an appropriate bounded computational domain. For the multidimensional
case, it is hard to find suitable absorbing boundary conditions at the corners of a rect-
angle; we construct the conditions of corners by the average of two artificial boundary
conditions to overcome this difficulty.

How to select a suitable bounded computational domain and derive appropriate ab-
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sorbing boundary conditions on the artificial boundaries is a challenge, since we expect
that the ABCs not only be easy to implement, but also imitate the perfect absorption of
waves traveling out of the bounded domain through the artificial boundary. Many math-
ematicians, engineers and physicists have well developed the artificial boundary method
for more than three decades. Higdon [21] proposed the high order local absorbing bound-
ary conditions for linear wave equation. For a detailed account of artificial boundary
method, the interested reader should consult [22–27] and the references therein. In recent
years, there has been some new progress on the artificial boundary method for nonlin-
ear partial differential equations (PDEs) on unbounded domains, see the papers [28–33]
and the review [34]. However, as we all know, there are only few papers to study the
numerical simulation of blow-up problems for semilinear parabolic PDEs on unbounded
domains. Brunner and his co-workers [35, 36] proposed the nonlinear absorbing bound-
ary conditions for the one-dimensional and two-dimensional cases and gave an efficient
adaptive time-stepping scheme. Zhang et al. [37] studied the numerical blow-up of semi-
linear parabolic PDEs on unbounded domains, derived the nonlinear absorbing bound-
ary conditions, and employed an adaptive time-stepping scheme.

In general, the absorbing boundary conditions can be classified into nonlocal ABCs
(also called global ABCs) and local ABCs. The nonlocal ABCs are usually expensive for
practical simulations, since the nonlocal ABCs try to simulate the effect of the exterior in
an exact sense and are fully coupled in space and time; while the local ABCs are local
in both space and time, which are computationally efficient and tractable. In order to
save the computational cost, we are concerned with the construction of local ABCs and
the numerical solution of the blow-up problem for the nonlinear wave equation on the
unbounded domain in this paper.

The rest of this paper is organized as follows. In Section 2 we review the unified ap-
proach and the local absorbing boundary conditions for the linear wave equation, and
use them to construct the nonlinear local absorbing boundary conditions for the nonlin-
ear wave equation. Consequently, we obtain an initial-boundary-value problem on the
bounded computational domain. Section 3 presents a discretization scheme for the re-
sulting initial-boundary-value problem. Numerical examples are shown in Section 4 to
confirm our theoretic analysis. In the practical computations, we observe the interest-
ing phenomenon that the number of the blow-up points are different for different initial
conditions or nonlinear terms. Finally, some conclusions are drawn in Section 5.

2 Nonlinear local absorbing boundary conditions

In this section, we first review the idea underlying the unified approach and the local
absorbing boundary conditions for the linear wave equation, and then combine these
methods to design nonlinear local absorbing boundary conditions for the nonlinear wave
equation.
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2.1 Review of unified approach

The well-known time-splitting method is a powerful approach for the numerical simu-
lation of complex physical time-dependent models. Based on the time-splitting method,
the basic idea of the unified approach is to distinguish between incoming and outgoing
waves along the boundaries for the linear subproblem, and to approximate the corre-
sponding linear operator by using a ‘one-way operator’ (to make waves outgoing), then
the approximate operator and the nonlinear subproblem is united to yield the nonlinear
boundary conditions.

We concentrate on analyzing the two-dimensional case. Extending the idea underly-
ing the unified approach, we now aim to design the nonlinear local ABCs of Eq. (1.1). We
assume v=ut, and define the vector function U=[u,v]T. Then Eq. (1.1) can be equivalently
written in the operator form

Ut≡ (ut,vt)
T =LU+NU, (2.1)

where L represents the linear operator, and N represents the nonlinear operator that gov-
erns the effect of the nonlinearity. The operators are given by

LU :=

(

v
a2∆u

)

and NU :=

(

0
|u|p

)

. (2.2)

The time-splitting approach means that the wave propagation carries out the action
of a kinetic energy step and a potential energy step separately for a small time size τ.
Hence, using the operator splitting in a time interval from t to t+τ for small τ, we obtain

U(x,t+τ)≈ e(L+N)τU(x,t), (2.3)

in analogy to the well-known Strang splitting [38]

U(x,t+τ)≈ eLτ/2eNτeLτ/2U(x,t). (2.4)

First of all, making the wave outgoing of the computational domain, we derive the ap-
proximate operator L̃ for the linear operator L, then replace the operator L in (2.3). By
restricting to the artificial boundaries and letting τ tend to zero, we have the one-way
equation

Ut= L̃U+NU. (2.5)

Once we obtain the approximation operator, Eq. (2.5) takes the role of the nonlinear local
ABCs. The difficulty is how to design a good approximation operator L̃ for the linear
operator L. The derivation of the operator L̃ is explained in the coming subsection.
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2.2 Local absorbing boundary conditions for the linear wave equation

In this subsection we recall the construction of local ABCs for the linear wave equation

utt= a2∆u, (2.6)

which is equivalent to the operator form

Ut≡ (ut,vt)
T =LU. (2.7)

In the frequency domain, Eq. (2.6) implies the dispersion relation

ω2= a2(ξ2+η2), (2.8)

where ω is the time frequency, and ξ and η are the wave numbers in the x direction and
the y direction, respectively. To make the wave outgoing, one solves Eq. (2.8) to find

aξ=±ω

√

1− a2η2

ω2
, (2.9)

where the positive sign in (2.9) corresponds to the dispersion relation on the east bound-
ary, and the negative sign in (2.9) corresponds to the one on the west boundary. The
exact absorbing boundary conditions can be obtained by transforming the dispersion
equation (2.9) into the space-time domain. However, it can not be implemented in space-
time coordinates, since the inverse transformation of the square-root term in (2.9) re-
sults in a pseudo-differential operator that can not be implemented using numerical
methods. Naturally, by approximating the square-root in (2.9) and using the duality
ξ⇔−i∂x , η⇔−i∂y and ω⇔ i∂t between the frequency and physical domains, some local
ABCs can be obtained [22, 23].

In [21, 24], Higdon proposed the following local ABCs on the east boundary:

r

∏
l=1

(

cosθl∂t+a∂x

)

u=0. (2.10)

Here r is an integer and ±θl (l = 1,2,··· ,r) are the angles between the wave incident
direction and the normal direction of the boundary (here |θl |< π

2 for all l).
In the practical numerical simulation, it is expensive to calculate the high-order deriva-

tives for very large r; instead, we simply select r=2. On the east boundary we have

cosθ1cosθ2utt+a(cosθ1+cosθ2)uxt+a2uxx =0. (2.11)

Using the assumption v=ut and setting

S=

(

1 0
a(cosθ1+cosθ2)∂x cosθ1cosθ2

)

,
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Eq. (2.11) can be equivalently rewritten as

Ut=S−1

(

v
−a2uxx

)

≡ L̃U. (2.12)

Combining Eq. (2.7) with Eq. (2.12), we obtain the approximation operator L̃ for the op-
erator L, namely

L≈ L̃ :=S−1

(

0 1
−a2∂2

x 0

)

. (2.13)

By the same argument, we can achieve the corresponding approximation operator
L̃ on the other artificial boundaries from the corresponding west, north and south local
ABCs, which are respectively governed by

cosθ1cosθ2utt−a(cosθ1+cosθ2)uxt+a2uxx =0,

cosθ1cosθ2utt+a(cosθ1+cosθ2)uyt+a2uyy=0,

cosθ1cosθ2utt−a(cosθ1+cosθ2)uyt+a2uyy=0.

For other strategies to construct the local ABCs for nonlinear wave equation, see the
papers [22, 28] and the references therein.

2.3 Local absorbing boundary conditions for the nonlinear wave equation

In this subsection, we construct the local ABCs for the nonlinear wave equation (1.1)-
(1.2). For the sake of simplicity, we only discuss the derivation of the local absorbing
boundary condition on the east boundary in detail. Recalling Eq. (2.1) in the procedure
of the unified approach and the approximation operator L̃ of (2.13), we obtain the one-
way equation

Ut= L̃U+NU. (2.14)

Multiplying the operator S to Eq. (2.14) and using the relation v=ut, we arrive at the local
absorbing boundary condition of the nonlinear wave equation on the east boundary:

cosθ1cosθ2utt+a(cosθ1+cosθ2)uxt+a2uxx−cosθ1cosθ2|u|p =0. (2.15)

Similarly, we obtain the corresponding local ABCs on the west, north and south bound-
ary, respectively,

cosθ1cosθ2utt−a(cosθ1+cosθ2)uxt+a2uxx−cosθ1cosθ2|u|p =0. (2.16)

cosθ1cosθ2utt+a(cosθ1+cosθ2)uyt+a2uyy−cosθ1cosθ2|u|p =0, (2.17)

cosθ1cosθ2utt−a(cosθ1+cosθ2)uyt+a2uyy−cosθ1cosθ2|u|p =0. (2.18)
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Coupling these local ABCs (2.15)-(2.18) with the nonlinear wave equation (1.1)-(1.2),
we have the reduced initial-boundary-value problem (IBVP) on the bounded computa-
tional domain, which can be solved by the finite difference or finite element method.

We conclude this section with a brief remark on the stability of the reduced IBVP with
the local ABCs on the bounded computational domain. According to the design of the
local ABCs, the local ABCs annihilate only the energy arising in the bounded domain. It
will not propagate energy from the exterior domain into the interior domain. Therefore,
the perturbation appearing in the artificial boundaries will not affect the interior solution,
and the obtained local ABCs are stable and efficient. The numerical results are presented
in Section 4 demonstrate the stability and efficiency of the proposed local ABCs. For more
a relevant discussion of this issue, see [36, 37].

3 Difference scheme

In this section, we consider the reduced IBVP on the bounded computational domain
Ωi=[xw,xe]×[ys ,yn]. We divide the bounded domain Ωi by the uniform grids, and choose
hx =(xw−xe)/J and hy =(ys−yn)/K for the grid sizes in space, where J and K are two
positive integers.

The grid points are given by

Ωi=
{

(xj,yk,tn)|xj = xw+ jh,yk =yn+kh, tn =n∆t, j=0,··· , J, k=0,··· ,K, n=0,··· ,
}

.

Denote the operators D+
· , D−

· and D0
· by forward, backward and centered differences

in x, y and t directions, respectively. S0
· represents centered sums, for example, S0

t un
j,k =

(un+1
j,k +un−1

j,k )/2. un
j,k represents the numerical approximation of the wave function u at

the grid point (xj,yk,tn), where tn is the time-level and ∆t is the time-step.

First of all, from time t= tn−1 to time t= tn+1, where tn+1= tn+∆t, t0=0, we discretize
Eq. (1.1) at the points (xj,yk,tn) in the interior domain Ωi and obtain

D+
t D−

t un
j,k= a2

(

D+
x D−

x S0
t un

j,k+D+
y D−

y S0
t un

j,k

)

+|un
j,k|p,

where 1≤ j≤ J−1, 1≤ k≤K−1.

Then we discuss the discretized forms on the artificial boundaries and the corners.
For the sake of simplicity, we only give the discretized difference schemes on the east
boundary and the east-north corner. The local ABC (2.15) on the east boundary can be
discretized by

a(cosθ1+cosθ2)D0
xD0

t un
J−1,k+cosθ1cosθ2D+

t D−
t un

J−1,k

+a2D+
x D−

x S0
t un

J−1,k−cosθ1cosθ2|un
J−1,k|p=0, (3.1)

where 1≤ k≤K−1.
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For the corner point (J,K), the corresponding discretized scheme has the form

a(cosθ1+cosθ2)D0
xD0

t un
J−1,K+cosθ1cosθ2D+

t D−
t un

J−1,K+a2D+
x D−

x S0
t un

J−1,K

+a(cosθ1+cosθ2)D0
yD0

t un
J,K−1+a2D+

y D−
y S0

t un
J,K−1+cosθ1 cosθ2D+

t D−
t un

J,K−1

−cosθ1cosθ2|un
J−1,K|p−cosθ1 cosθ2|un

J,K−1|p=0. (3.2)

By the same procedure, the discretization of the other three boundary conditions and the
corners can be obtained.

For other strategies to discretize the local ABCs on the corners, see the paper [39] and
the references therein.

4 Numerical results

From the derivation of the local ABCs for the two-dimensional nonlinear wave equa-
tion, we can easily obtain the corresponding local ABCs by (2.15) and (2.16) for the one-
dimensional case. In order to illustrate the performance of our proposed method, we
now present some numerical examples. In the calculations, we choose the reference wave
speed a=1.0. Through numerical experiments, we find that if one simply chooses r=2,
θ1 = π/3 and θ2 = 0, the given method is nearly transparent for the wave propagation.
Compare also the remark in Section 5.

4.1 The one-dimensional case

In this subsection, we consider the one-dimensional nonlinear wave equation of the form

utt=uxx+|u|p, x∈Ω, t>0,

u(x,0)=φ0(x), ut(x,0)=φ1(x), x∈Ω.

4.1.1 Blow-up phenomena

Example 4.1. We consider the nonlinear wave equation with the parameter of nonlinear
term p=2 and different initial conditions.

The bounded computational domain is 0≤x≤1, and we set ∆t=0.2h. The computation
stops when max(u) attains 1.0e6, Tb(∆t,h) is the numerical blow-up time. From Table 1,
we can see that Tb(∆t,h) has a limit as ∆t→0 when h=∆t/0.2. This example illustrates
the dependence of the numerical blow-up time on the spatial mesh size.

Example 4.2. The parameter of nonlinear term is p=2, and the initial functions are given
by

φ0(x)=30sin(πx), φ1(x)=0.

The bounded computational domain is 0≤ x≤1.
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Table 1: Tb(∆t,h) with different initial data.

φ0(x)=300sin(πx), φ1(x)=0 φ0(x)=500sin(πx), φ1(x)=20sin(2πx)

Mesh Tb(∆t,h) Tb(∆t,h)

h=1/128 0.175000 0.134375

h=1/256 0.172656 0.132813

h=1/512 0.171484 0.132031

h=1/1024 0.170898 0.131641

h=1/2048 0.170801 0.131348

h=1/4096 0.170654 0.131250

Fig. 1 shows the evolution of u(x,t) in time until max(u) reaches 1.2e4. We choose
this example to compare our method with the results obtained in [4]; our results show
that they are similar to the ones in [4].

Figure 1: Evolutions of u(x,t) for different times.

Example 4.3. We consider the nonlinear wave equation with different nonlinear terms
|u|p and initial conditions. The bounded computational domain is 0≤ x≤1.

In Fig. 2 (left) we consider the evolutions of u(x,t) for different times until max(u)
reaches 1.0e6 when the nonlinear term is |u|2 and initial conditions are φ0(x)=10sin(πx),
φ1(x)=−200sin(2πx). The right of the Fig. 2 shows the evolutions of u(x,t) for different
times until max(u) attains 1.0e4 when the nonlinear term is |u|3 with φ0(x)=30sin(2πx),
φ1(x)= 0. This example illustrates that our method can be applied to different p in the
nonlinearity.

4.1.2 Efficiency of the constructed local ABCs

Example 4.4. Suppose the parameter of nonlinear term is p= 2 and the initial functions
are

φ0(x)=20.0sin2(2x)exp(−x2), φ1(x)=0.
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Figure 2: Evolutions of u(x,t) for different times. (Left) Nonlinear term is |u|2, and φ0(x)=10sin(πx),φ1(x)=
−200sin(2πx). (Right) Nonlinear term is |u|3, and φ0(x)=30sin(2πx),φ1(x)=0.

−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

x

u(
x,

0)

Figure 3: Initial condition φ0(x).

The computational domain is −3≤ x≤ 3. Fig. 3 plots the initial condition φ0(x). We
compare the numerical values at the left absorbing boundary with the corresponding
reference (“exact”) solution obtained by computing the numerical solution in the larger
interval [−18,18] with smaller mesh size h=1/1024 and ∆t=1.0e-6; the blow-up threshold
is 1.0e4, and the reference blow-up time is T = 1.08591. In Table 2, we list the “exact”
values and the numerical values at the left artificial boundary with different spatial mesh
sizes. We observe that the numerical solution approximates the “exact” solution well in
the small computational domain.

Table 2: Comparison of “exact” solution with numerical solution at left boundary when p=2.0.

Mesh exact values at x=−3.0 numerical values at x=−3.0 relative error
h=1/128 0.10524 0.10313 0.0200
h=1/256 0.10524 0.10327 0.0187
h=1/512 0.10524 0.10333 0.0181
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4.1.3 Comparison of local ABCs with zero Dirichlet boundary condition

Example 4.5. The parameter of nonlinear term is p= 2, and the initial conditions of the
nonlinear wave equation are given by

φ0(x)=

{

0.5sin2(πx
2 )exp(−x4

36 ), −4≤ x≤4,

0, otherwise,

φ1(x)=0.

The initial condition φ0(x) is plotted in Fig. 4. Table 3 lists the “exact” blow-up time
and numerical blow-up time with the local absorbing boundary conditions, zero Dirichlet
boundary condition (BC) and Neumann BC, respectively. The computational domain is
set to be the interval [−4.5,4.5]. The “exact” blow-up time obtained by computing in the
larger interval [−18,18] with smaller mesh size h= 1/1024 and ∆t= 1.0e-6, the blow-up
threshold is 1.0e4. Table 3 shows that the value of blow-up time with the local absorbing
boundary conditions is more accurate than the zero Dirichlet BC and Neumann BC. We
see from Table 3 that the performance of the local absorbing boundary conditions is better
than the zero Dirichlet BC and Neumann BC. One can also see that the performance of
the local ABCs with θ1 =

π
3 , θ2 =0 is the best among the given choices of the parameters

θ1 and θ2.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

u(
x,

0)

Figure 4: Initial condition φ0(x).

Table 3: Comparison of the blow-up time of local ABCs with zero Dirichlet BC and Neumann BC.

Exact time local ABCs Dirichlet BC Neumann BC

θ1=
π
3 , θ2=0 θ1=

π
3 , θ2=

π
3 θ1=

π
3 , θ2=

π
4

5.973873 5.973590 5.974930 5.974280 5.985390 5.961750
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Example 4.6. Assume the parameter of nonlinear term p=2, and let the initial functions
be

φ0(x)=

{

sin2(πx
2 +5.7π)exp(−0.01x4), −1.4≤ x≤2.6,

0, otherwise,

φ1(x)=0.

Fig. 5 shows that the initial condition is nonsymmetric, and the location of the blow-
up point is not in the center. We compare the time and location as blow-up of the local
absorbing boundary conditions with the zero Dirichlet boundary condition. The compu-
tational domain is the interval [−3.5,3.5]. The “exact” blow-up time obtained by com-
puting in the larger interval [−18,18] with smaller mesh size h=1/1024 and ∆t=1.0e-6,
respectively; the blow-up threshold is 1.0e4. Table 4 illustrates that the performance of
the local ABCs is better than the zero Dirichlet boundary condition.
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u(
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−4 −3 −2 −1 0 1 2 3 4
0
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4000

6000

8000

10000

12000

x

u(
x,

t)

Figure 5: Initial data (left). Numerical solution with threshold 104 (right).

Table 4: Comparison of the blow-up time and the location of the blow-up point of local ABCs with zero Dirichlet
BC.

Exact blow-up time local ABCs zero Dirichlet BC

4.661058 4.660930 4.664290

Exact location of blow-up point local ABCs zero Dirichlet BC

0.533203125 0.533203125 0.43359375

Example 4.7. Set the parameter of nonlinear term p=2, and let the initial conditions be
given by

φ0(x)=

{

0.6sin2(πx
2 +10.7π)exp(−0.01x4), −1.4≤ x≤2.6,

0, otherwise,

φ1(x)=0.
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Figure 6: Numerical solution of blow-up problem. (Left) The initial condition. (Middle) Blow-up with zero
Dirichlet boundary condition. (Right) Blow-up with local absorbing boundary conditions.

The computational domain is [−4.0,4.0]. Fig. 6 and Table 5 also show that the perfor-
mance of the local ABCs is better than the zero Dirichlet boundary condition.

Table 5: Comparison of the blow-up time and the location of the blow-up point of local ABCs with zero Dirichlet
BC.

Exact blow-up time local ABCs zero Dirichlet BC

6.752440 6.751790 6.795140

Exact location of blow-up point local ABCs zero Dirichlet BC

0.51953125 0.54296875 -0.15234375

Example 4.8. The parameter of nonlinear term is p=2, and we choose the initial functions
as

φ0(x)=

{

0.5sin2(πx
2 +10.7π)exp(−0.01x4), −1.4≤ x≤2.6,

0, otherwise,

φ1(x)=0.

Fig. 7 shows the evolutions of the numerical solutions with zero Dirichlet bound-
ary condition, absorbing boundary conditions and the reference (“exact”) solutions at
times t=2,3,4,5. Fig. 8 presents the blow-up solution with zero Dirichlet boundary con-
dition, absorbing boundary conditions and the reference solution. The computational
domain is chosen interval [−4.75,4.75], the reference solutions are shown in a larger do-
main [−10,10] with smaller mesh size. In all cases the agreement between the reference
and compute solutions with absorbing boundary conditions is excellent. Figs. 7-8 and
Table 6 demonstrate the better performance and more efficiency of the local absorbing
boundary conditions than the zero Dirichlet boundary condition; thus, in practical com-
putations we can select the smaller computational domain with local absorbing boundary
conditions.
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Figure 7: Evolutions of u(x,t) at times t=2,3,4,5. (Left) Numerical solutions with zero Dirichlet BC. (Middle)
“Exact” solutions. (Right) Numerical solutions with local absorbing boundary conditions.
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Figure 8: Blow-up for threshold 1.0e4. (Left) Numerical solutions with zero Dirichlet BC. (Middle) “Exact”
solutions. (Right) Numerical solutions with local absorbing boundary conditions.
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Table 6: Comparison of the blow-up time and the location of the blow-up point of local ABCs with zero Dirichlet
BC.

Exact blow-up time local ABCs zero Dirichlet BC

7.719670 7.719560 7.731350

Exact location of blow-up point local ABCs zero Dirichlet BC

0.5126953125 0.5156250 0.1484375

Example 4.9. We choose the parameter of nonlinear term p=2 and the initial functions

φ0(x)=

{

0.15sin2(πx
2 +10.7π)exp(−0.01x4), −5≤ x≤5,

0, otherwise,

φ1(x)=0.

Fig. 9 shows the evolutions of the numerical solutions with zero Dirichlet boundary
condition, absorbing boundary conditions and the reference (“exact”) solutions at times
t=8,10,13,15. The computational domain is chosen the domain [−10,10]. Since the ana-
lytic solution is unknown, the numerical solutions with the smaller mesh sizes by using
the zero Dirichlet BC in a large domain [−20,20] are taken to be the “exact” solutions. The
numerical solutions with local absorbing boundary conditions show an agreement with
the reference solutions in all cases. Fig. 9 and Table 7 illustrate the better performance and
more efficiency of local absorbing boundary conditions; thus, in practical computations
we can choose the smaller computational domain.

Table 7: Comparison of the blow-up time and the location of the blow-up point of local ABCs with zero Dirichlet
BC.

Exact blow-up time local ABCs zero Dirichlet BC

16.06725 16.06741 16.06755

Exact location of blow-up point local ABCs zero Dirichlet BC

-0.029296875 -0.02734375 -0.0156250

4.1.4 Dependence of the blow-up time on the length of the computational domain

We now discuss the influence of the length of the computational domain on the blow-up
time.

Tables 8-9 show that the blow-up time is insensitive to the choice of the computational
domain with the nonlinear local ABCs. Thus, in practical computations, we can obtain
the numerical blow-up time using a small computational domain.

Table 8: The initial conditions are φ0(x)=20.0sin2(2x)exp(−x2), φ1(x)=0 and p=2.

computational domain [−3,3] [−4,4] [−5,5]

blow-up time 1.085910 1.085910 1.085910
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Figure 9: Evolutions of u(x,t) at times t = 8,10,13,15. (Left) Numerical solutions with zero Dirichlet BC.
(Middle) “Exact” solutions. (Right) Numerical solutions with local absorbing boundary conditions.

Table 9: The initial values are the same as in Example 4.6 with p=2.

computational domain [−4,4] [−5,5] [−6,6]

blow-up time 4.660930 4.660930 4.660930

4.1.5 Single-point blow-up versus two-point blow-up

In practical computations, we observe the interesting phenomenon that the number of the
blow-up points is different for different initial conditions or nonlinear terms. In order to
test the number of the blow-up points, we select different initial functions and nonlinear
force terms.
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Figure 10: Numerical solution with different nonlinear force terms in different computational domain, p=2.025
(top), p=2.0225 (bottom).

Example 4.10. The nonlinear wave equation is considered with the different nonlinear
terms and initial functions

φ0(x)=bsin2(2x)exp(−x2), φ1(x)=0.

From Table 10, one can see that the number of blow-up points is different for different
nonlinear terms p and fixed initial functions.

From Table 11, we can see that the number of blow-up points is different for different
amplitude b of the initial conditions and fixed nonlinear term.

Table 10: b=20.0 in the initial function φ0(x).

parameter p blow-up point(s) blow-up time in [−10,10] blow-up time in [−3,3]

1.5 1 2.839350 2.839350

2.0 1 1.085920 1.085920

2.0125 1 1.066060 1.066060

2.0225 1 1.050660 1.050660

2.025 2 1.046460 1.046460

2.05 2 0.995180 0.995180

4.0 2 0.033940 0.033940
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Figure 11: Numerical solution of blow-up problem for nonlinear wave equation, the initial conditions are φ0(x)=
20.0sin2(2x)exp(−x2),φ1(x)=0, and p=2.025, the mesh size is h=1/256, the thresholds are 1.0e4 and 1.0e6,
respectively.
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Figure 12: Numerical solution of blow-up problem, the nonlinear term is p= 2, and the initial conditions are

φ0(x) = 21.25sin2(2x)exp(−x2),φ1(x) = 0, the mesh size is h = 1/256, the thresholds are 1.0e5 and 1.0e6,
respectively.
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Figure 13: Numerical solution of blow-up problem, the nonlinear term is p= 2, and the initial conditions are

φ0(x) = 21.25sin2(2x)exp(−x2),φ1(x) = 0, the mesh size chosen h = 1/512, thresholds are 1.0e4 and 1.0e6,
respectively.

From Figs. 11, 12 and 13, we observe that the location of the two blow-up points are
fixed in the same spatial mesh size for different thresholds.
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Table 11: The parameter of nonlinear term is p=2 for different amplitude b of the initial functions.

parameter b blow-up point(s) blow-up time in [−10,10] blow-up time in [−3,3]

20.0 1 1.085920 1.085920

21.0 1 1.062840 1.062840

21.125 1 1.060090 1.060090

21.25 2 1.057350 1.057350

21.50 2 1.050690 1.050690

22.0 2 1.035860 1.035860

4.2 The two-dimensional case

In this subsection, we consider the nonlinear wave equation

utt=uxx+uyy+|u|p, (x,y)∈Ω, t>0,

u0(x,y,0)=φ0(x,y), ut(x,y,0)=φ1(x,y), (x,y)∈Ω.

4.2.1 Efficiency of the constructed local ABCs

Example 4.11. We consider the nonlinear wave equation with the parameter of nonlinear
term p=2 and the initial functions

φ0(x,y)=30.0sin2(2x+2y)exp(−x2−y2), φ1(x,y)=0.

An important way to measure the performance of the absorbing boundary conditions
is to see the convergence rate with respect to the discrete L1-norm or L2-norm, which are
defined by

L1(t)=
||u(x,y,t)−uh(x,y,t)||1

||u(x,y,t)||1
, L2(t)=

||u(x,y,t)−uh(x,y,t)||2
||u(x,y,t)||2

,

where u(x,y,t) is the “exact” solution obtained by computing the numerical solution in
the larger domain [−6,6]×[−6,6] with smaller mesh size hx = hy =

1
64 and time size ∆t=

5.0e-6, uh(x,y,t) is the numerical solution obtained by different mesh sizes and constant
time size ∆t=1.0e-5 in the smaller computational domain [−3,3]×[−3,3]. The threshold
is 1.0e4, and the blow-up time is T=0.83016.

Table 12 lists the errors and convergence rates for L1-norm and L2-norm, respectively.
Table 12 shows the second-order convergence rate in the bounded computational do-
main.

4.2.2 Dependence of the blow-up time on the length of the computational domain

Now, we discuss the influence of the length of the computational domain on the blow-up
time in the two-dimensional case.
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Table 12: The errors and convergence rates for different mesh sizes.

Mesh size L1 error Order L2 error Order

h= 1
8 1.164e-1 - 1.336e-1 -

h= 1
16 2.517e-2 2.209 2.811e-2 2.249

h= 1
32 6.303e-3 1.998 6.976e-3 2.011

Table 13 shows the blow-up time for the same initial functions in Example 4.11. We
see that the blow-up time is not sensitive to the choice of the computational domains
with the local ABCs, it also illustrates the efficiency of the constructed local ABCs. Thus,
in practical computations we can generate the numerical blow-up time in a smaller com-
putational domain.

Table 13: φ0(x,y)=30.0sin2(2x+2y)exp(−x2−y2), φ1(x,y)=0.

computational domain [−3,3]×[−3,3] [−4,4]×[−4,4] [−5,5]×[−5,5]

blow-up time 0.830160 0.830160 0.830160

4.2.3 Single-point blow-up versus two-point blow-up

We consider the number of blow-up points for different types of initial conditions and
nonlinear force terms in this subsection.

Example 4.12. Different nonlinear force terms and initial conditions:

φ0(x,y)=bsin2(2x+2y)exp(−x2−y2), φ1(x,y)=0.

The computational domain is set to be [−3,3]×[−3,3].
From Figs. 14 and 15 we can see that there exists one blow-up point when b=30.0 and

two blow-up points when b=35.0 for fixed p=2.0.
Comparing Fig. 15 with Fig. 16, one can observe that the locations of the blow-up

points are different for different initial conditions.

Example 4.13. Suppose that

ϕ(x,y,x0,y0)=exp[−(x−x0)
2−(y−y0)

2],

the initial conditions given by

φ0(x,y)=

{

g1 ϕ(x,y,1,1)+g1 ϕ(x,y,−1,−1), (x,y)∈ [−3.5,3.5]×[−3.5,3.5],

0, otherwise,

φ1(x,y)=0.

The computational domain is set to be [−4,4]×[−4,4].
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Figure 14: Numerical solution of blow-up problem, p=2.0 and the initial conditions are φ0(x,y)=30.0sin2(2x+
2y)exp(−x2−y2),φ1(x,y)=0. (Left) The initial condition. (Right) Blow-up.

Figure 15: Numerical solution of blow-up problem, p=2.0 and the initial conditions are φ0(x,y)=35.0sin2(2x+
2y)exp(−x2−y2),φ1(x,y)=0. (Left) The initial condition. (Right) Blow-up.

Figure 16: Numerical solution of blow-up problem, p = 2.0 and the initial conditions φ0(x,y) = 35.0sin2(x+
y)exp(−x2−y2), φ1(x,y)=0. (Left) The initial condition. (Right) Blow-up.
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Figure 17: Numerical solution of blow-up problem, g1 = 3.0. (Left) The initial condition. (Middle) Blow-up
when p=2.0. (Right) Blow-up when p=2.35.

Figure 18: Numerical solution of blow-up problem, p=2.0 and g1 =4.15. (Left) The initial condition. (Right)
Blow-up.

Figure 19: Numerical solution of blow-up problem, p= 2.0 and g1 = 5.0. (Left) The initial condition. (Right)
Blow-up.

From Fig. 17, one can see that for fixed g1 =3.0 there exists one blow-up point when
p=2.0 and two blow-up points when p=2.35.

Figs. 18 and 19 illustrate that for fixed p= 2.0 there exist two blow-up points when
g1≥4.15.
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5 Conclusion

Based on the unified approach and the ABCs of Higdon for the linear wave equation, we
have developed local ABCs for the nonlinear wave equation. The proposed local ABCs
involve no high derivatives, and are thus amenable for the standard finite difference
method. Furthermore, the performance shown in the numerical examples illustrates that
the given method is feasible and effective, and a broad range of numerical examples
confirm the correctness of the theoretical analysis. How to adaptively choose the optimal
integer r and ±θl (l=1,2,··· ,r) in order to reduce the amplitude of the reflected waves is
still open. For linear waves it has been studied in some detail; see for example [26,27] and
its references. Some related theoretical issues for these problems remain to be answered,
including a rigorous analysis of the blow-up of coupling the high-order local absorbing
boundary conditions. We intend to address these questions in a future paper.
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