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unconditionally stable, and a convergent rate O((△t)r+1 +hk+1/2) is established un-
der the L2-norm when polynomials of degree at most r and k are used for temporal and
spatial approximation, respectively. Numerical results in both 2-D and 3-D are pro-
vided to validate the theoretical prediction. An ultra-convergence of order (△t)2r+1 in
time step is observed numerically for the numerical fluxes w.r.t. temporal variable at
the grid points.
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1 Introduction

Finite element methods, including edge element methods and discontinuous Galerkin
methods, have been widely used to solve time-harmonic Maxwell’s equations [2,4,28] as
well as time-dependent Maxwell’s equations [8, 9, 11, 15, 20–27], due to their high order
accuracy and flexibility in handling complicated domains. Traditionally, they were only
used to discretize the spatial domain to produce a system of ordinary differential equa-
tions (in time t), which was then solved by the finite difference or Runge-Kutta meth-
ods [8, 11, 15, 25, 27]. Towards this end, Makridakis and Monk proposed a fully discrete
finite element method for Maxwell’s equations and investigated the corresponding er-
ror estimates in [26]. Their approach resulted in a coupled non-symmetric and indefi-
nite linear algebraic system involving both electric and magnetic fields. Later, Ciarlet Jr.
and Zou [9] analyzed a fully discrete finite element approach for a second-order elec-
tric field equation derived from Maxwell’s equations by eliminating the magnetic field.
Both optimal energy-norm error estimate and optimal L2-norm error estimate were ob-
tained. When dispersive media were involved, Li proposed some fully discrete numerical
schemes. Both mixed finite element method [20–22] and interior penalty discontinuous
Galerkin method [23] are considered for spatial discretization. Since Maxwell’s equations
are a coupled system, a fully discrete scheme was proposed by Ma [25], aimed to reduce
the computational cost by denoting the magnetic field explicitly in the numerical scheme.

The idea to discretize the temporal domain by finite element method is not something
new in the literature. Actually it was proposed as early as in late 60’s by Argyris and
Scharpf [1], and Oden [30]. Since then the space-time finite element methods have been
widely used to solve a variety of differential equations, e.g., see [3,5,16] for the implemen-
tation of time-continuous Galerkin finite element schemes. Some works on space-time fi-
nite element method for solving hyperbolic equations are available, see [29,32]. Recently,
Tu et al., proposed a space-time discontinuous Galerkin cell vertex scheme to solve con-
servation law and time dependent diffusion equations [33]. This scheme is conceptually
simpler than other existing DG-type methods. Nevertheless, to the best of our knowl-
edge, the finite element method has not been used to discretize the temporal domain in
fully discrete scheme for Maxwell’s equations up to now.

On the other hand, time-discontinuous Galerkin methods were originally developed
for the first order hyperbolic equations [19, 31] and have been successfully applied to
various hyperbolic and parabolic equations (see [12, 16] and the references therein).
They usually lead to some stable and higher-order accurate numerical schemes. Ac-
tually in [18, 19], the time-discontinuous Galerkin method was first shown to be an
A-stable, higher-order accurate ordinary differential equation solver. Furthermore, the
time-discontinuous Galerkin framework seems conducive for the rigorous justification
of the error estimates [18].

In [34] we introduced a semi-discrete locally divergence-free DG method for solv-
ing Maxwell’s equations in dispersive media under a unified framework. After the dis-
cretization of the spatial domain, we obtained a Volterra integro-differential system in
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time t. Then a continuous Galerkin method was used to solve this reduced system.
The numerical results are surprisingly good! The scheme is stable even when the time
step size △t is larger than the spatial mesh size h! Indeed, the scheme is essentially
implicit and places no restriction on the time step size. This advantage over many ex-
plicit schemes, which have a so-called CFL condition on the time step size △t, makes
the scheme worthwhile to be studied. Unfortunately, theoretical analysis of this mixed
scheme (DG method in space and continuous Galerkin finite element method in time)
seems to be very difficult.

Therefore, we want to seek for a numerical scheme, which not only is unconditionally
stable, but also is accessible for theoretical justification. Since the DG method is applied
to discretize the spatial domain in our earlier work [34], a natural consideration is to use it
to treat the temporal domain as well. Hence, we propose here a space-time DG scheme, in
which two different DG methods are used to discretize the spatial and temporal domains,
respectively. Fortunately, we are able to prove that the new scheme is unconditionally sta-
ble. Again, we obtain very accurate numerical solutions even when the time step size △t
is larger than the spatial mesh size h, as expected. Furthermore, we prove the conver-

gence rate O((△t)r+1+hk+ 1
2 ) in the L2-norm when the r-th and k-th order polynomials

are used in temporal discretization and spatial discretization respectively. Comparing
with finite difference methods used in [9, 14, 20–23, 25, 26], our space-time DG method is
a high-order scheme in temporal variable.

The situation is even better in our numerical experiments, where the optimal con-
vergence rate O(hk+1) in the spatial step is shown. Moreover, an ultra-convergence rate
O
(

(△t)2r+1
)

in the time step is observed for the numerical fluxes with respect to the tem-
poral variable at the grid points. This is another significant advantage of our approach
over many existing numerical methods.

The outline of this paper is as follows. The model problem and our proposed space-
time DG scheme are introduced in Section 2. Both the L2-stability and L2-error estimate
are proved in Section 3, where an operator splitting is introduced to decompose the er-
ror into temporal part and spatial part. Numerical examples are provided in Section 4.
Finally, some possible future works and concluding remarks are presented in Section 5.

2 Space-time discontinuous Galerkin method

2.1 Model problem

We consider Maxwell’s equations in simple homogeneous media as follows:

µ
∂H

∂t
=−∇×E, (x,t)∈Ω× I, (2.1)

ǫ
∂E

∂t
=∇×H, (x,t)∈Ω× I, (2.2)
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where ǫ and µ are the electric permittivity and magnetic permeability respectively, Ω is a
Lipschitz polyhedron and I=[0,T]. Moreover a simple initial condition

H(x,0)=H0(x), E(x,0)=E0(x) in Ω (2.3)

and a perfect conduct boundary condition

n×E=0 on ∂Ω× I (2.4)

are imposed. Here n is the outward normal of Ω, E0 and H0 are given functions with H0

satisfying [27]
∇·(µH0)=0 in Ω, H0 ·n=0 on ∂Ω. (2.5)

Then (2.5), together with (2.1), implies

∇·(µH)=0 in Ω× I, (2.6)

which is usually a statement of Maxwell’s equations. Furthermore the second condition
in (2.5), combined with (2.1) and (2.2), leads to [27]

H·n=0 on ∂Ω×(0,T]. (2.7)

As in [11], we rewrite (2.1)-(2.3) into the conservative form

QUt+∇·f(U)=0, (x,t)∈Ω× I, (2.8)

U(x,0)=U0(x), x∈Ω, (2.9)

where

U=

(

H

E

)

, U0(x)=

(

H0(x)
E0(x)

)

, f(U)= [f1(U),f2(U),f3(U)]T, (2.10)

Q=

(

µI3×3 0
0 ǫI3×3

)

, fi(U)=

(

ei×E

−ei×H

)

. (2.11)

The following notations in Soblev space will be used later. Denote Hk(Ω) and Hk(I)
the standard Soblev spaces equipped with norms ‖·‖k,Ω and ‖·‖k,I , respectively. Further,
define

L2(I,Hk(Ω))=

{

u|u(·,t)∈Hk(Ω),∀t∈ I, and
∫

I
‖u(·,t)‖2

k,Ωdt<∞

}

, (2.12)

equipped with norm

|||u|||k,0 =

(

∫

I
‖u(·,t)‖2

k,Ωdt

) 1
2

; (2.13)

and

Hk(I,L2(Ω))=

{

u|u(x,·)∈Hk(I),∀x∈Ω, and
∫

Ω
‖u(x,·)‖2

k,I dx<∞

}

, (2.14)
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equipped with norm

|||u|||0,k =

(

∫

Ω
‖u(x,·)‖2

k,I dx

) 1
2

. (2.15)

The corresponding vector function spaces are denoted by
(

Hk(Ω)
)3

,
(

Hk(I)
)3

,
(

L2(I,Hk(Ω))
)3

and
(

Hk(I,L2(Ω))
)3

. For U=(H,E)T and H(·,t),E(·,t)∈
(

Hk(Ω)
)3

, ∀t∈ I,
define

‖U(·,t)‖k,Ω =
(

‖H(·,t)‖2
k,Ω+‖E(·,t)‖2

k,Ω

)1/2
, (2.16)

and

‖Q1/2U(·,t)‖k,Ω =
(

µ‖H(·,t)‖2
k,Ω+ǫ‖E(·,t)‖2

k,Ω

)1/2
. (2.17)

2.2 Numerical scheme

Assume that Th is a triangulation of the domain Ω with the element denoted by K, the
edge by e, and the outward normal by nK. We assume that every element K of the tri-
angulation Th is affine equivalent, see [10, Section 2.3]. For each element K, we denote
by hK the diameter of K and by ρK the diameter of the biggest ball included in K. Set
h=maxK{the radius of the largest circle within K}. We also denote by EI the union of all
interior faces of Th, by ED the union of all boundary faces of Th, and by E = EI

⋃

ED the
union of all faces of Th. The triangulation we consider has to be regular, i.e. there exists a
positive constant C such that

hK

ρK
≤C, ∀K∈Th, (2.18)

see [10, Section 3.1]. Moreover, let 0=t0<t1< ···<tn=T be a uniform triangulation of the
interval I with elements denoted by Ij=[tj,tj+1], j=0,1,··· ,n−1 and the time step size by
△t= tj+1−tj.

Let Pk(K) (or Pk(Ij)) denote the space of polynomials in K (or Ij) of degree at most k.
Then the DG finite element space for the spatial discretization is

Sk
h,Ω=

{

v∈L2(Ω) : v|K ∈Pk(K), K∈Th

}

.

On the other hand, the DG finite element space for the temporal discretization is

Sr
h,I =

{

v∈L2(I) : v|Ij
∈Pr(Ij), j=0,1,··· ,n−1

}

.

Since our approach is to discretize both the spatial and temporal domains by the DG
methods, the space-time discontinuous finite element space is defined by

Vr,k
h = V̄r,k

h ⊕V̄r,k
h ,
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where
V̄r,k

h =(Sk
h,Ω⊗Sr

h,I)
3.

In fact, each component of the element in V̄r,k
h is the product of two elements from Sk

h,Ω
and Sr

h,I .
It is well known that the choice of the numerical fluxes plays a crucial role in the

design of discontinuous Galerkin schemes. In order to define numerical fluxes, we need
to introduce some notations first. Let e be an interior face belonging to element K. We
denote

vint(K)(x)= lim
δ→0−

v(x+δnK), vext(K)(x)= lim
δ→0+

v(x+δnK) ∀x∈ e.

Then we define the average and tangential jump of v on any interior face e as follows:

v̄=
vint(K)+vext(K)

2
, [v]T =nK×vint(K)−nK×vext(K).

For a boundary face e⊂ED which belongs to the element K, we denote

vint(x)=vint(K)(x) ∀x∈ e.

In addition, we define

v(t+j )= lim
t→tj+0

v(t), v(t−j )= lim
t→tj−0

v(t).

Now we are ready for the definition of the numerical scheme. Multiplying (2.8)-(2.9) by a
test function v, integrating over each QK

j =K× Ij, and then integrating by parts, we obtain

−
∫

Ij

∫

K
QU·vtdxdt+

∫

Ij

∫

∂K
(f(U)·nK)·vdsdt

−
∫

Ij

∫

K
f(U)·∇vdxdt+

∫

K
(QU·v) |

tj+1

tj
dx=0. (2.19)

Then the DG scheme based on (2.19) is to find Uh∈Vr,k
h such that

−
∫

Ij

∫

K
QUh ·(vh)tdxdt+

∫

Ij

∫

∂K

̂(f(Uh)·nK)·vhdsdt

−
∫

Ij

∫

K
f(Uh)·∇vhdxdt+

∫

K

(

QÛh ·vh

)

|
tj+1

tj
dx=0 (2.20)

for all vh ∈ Vr,k
h and all elements QK

j = K× Ij, K ∈ Th, j = 0,1,··· ,n−1. Here ̂(f(Uh)·nK)

and Ûh are the numerical fluxes on the face e⊂E and at the nodal points tj, j=0,1,··· ,n,
respectively. Motivated by [11] and [34], we take

̂f(Uh)·nK =

(

nK×(Ēh−
Z
2 [Hh]T)

−nK×(H̄h+
1

2Z [Eh]T)

)

(2.21)
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on an interior face and

̂f(Uh)·n=

(

03×1

−n×
(

Hint
h + 1

Z n×Eint
h

)

)

(2.22)

on a boundary face e=∂K
⋂

ED, where Z=
√

µ/ǫ denotes the impedance of the medium.
Obviously this numerical flux is consistent with f(U)·nK. On the other hand, we take

Ûh(x,tj)=Uh(x,t−j ), j=1,2,··· ,n, Ûh(x,0)=PhU0, (2.23)

where Ph is the element-wise L2 projection operator and will be defined later.

3 L2-stability and L2-error estimate

In this section, both the L2-stability and error estimate in L2 norm of our numerical
scheme will be analyzed. The fact that the DG methods are used to discretize spatial
and temporal domains simultaneously will facilitate the theoretical justification. Actu-
ally the corresponding theoretical analysis can be done under the framework of standard
Galerkin finite element method based on an operator decomposition technique.

3.1 L2-stability

We first focus on the L2-stability of our numerical scheme. Set

BIj,K(Uh,vh)=−
∫

Ij

∫

K
QUh ·(vh)tdxdt+

∫

Ij

∫

∂K

̂(f(Uh)·nK)·vhdsdt

−
∫

Ij

∫

K
f(Uh)·∇vhdxdt+

∫

K

(

QÛh ·vh

)

|
tj+1

tj
dx, (3.1)

and
BIj

(Uh,vh)= ∑
K∈Th

BIj,K(Uh,vh). (3.2)

According to the DG scheme (2.20), BIj,K(Uh,vh)= 0, for all vh ∈Vr,k
h . Then the solution

Uh satisfies
BIj

(Uh,vh)=0, ∀vh ∈Vr,k
h , j=0,1,··· ,n−1. (3.3)

We have the following result for the stability of the DG scheme (2.20).

Theorem 3.1. Assume that Uh=(Hh,Eh)
T is a solution of (2.20), then

‖Q1/2Uh(·,T
−)‖2

0,Ω+ΘT,Th
(Uh)≤‖Q1/2U0‖

2
0,Ω,

where

ΘT,Th
(Uh)=

n−1

∑
j=0

ΘIj ,Th
(Uh) (3.4)
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and

ΘIj ,Th
(Uh)

=
∫

Ij

∑
e⊂EI

∫

e

(

Z|[Uh,H]T |
2+

1

Z
|[Uh,E]T |

2

)

dsdt+2
∫

Ij

∑
e⊂ED

∫

e

1

Z
|n×Uint

h,E|
2dsdt.

Proof. Let vh=Uh in (3.2), we have

BIj
(Uh,Uh)=− ∑

K∈Th

∫

Ij

∫

K
QUh ·(Uh)tdxdt+ ∑

K∈Th

∫

Ij

∫

∂K

̂(f(Uh)·nK)·Uhdsdt

− ∑
K∈Th

∫

Ij

∫

K
f(Uh)·∇Uhdxdt+ ∑

K∈Th

∫

K

(

QÛh ·Uh

)

|
tj+1

tj
dx. (3.5)

By the definition of the numerical flux in (2.23) and Schwatz inequality, direct calculation
shows that

− ∑
K∈Th

∫

Ij

∫

K
QUh ·(Uh)tdxdt+ ∑

K∈Th

∫

K

(

QÛh ·Uh

)

|
tj+1

tj
dx

≥
1

2
‖Q1/2Uh(·,t

−
j+1)‖

2
0,Ω−

1

2
‖Q1/2Uh(·,t

−
j )‖0,Ω, j=1,2,··· ,n−1 (3.6)

and

− ∑
K∈Th

∫

I0

∫

K
QUh ·(Uh)tdxdt+ ∑

K∈Th

∫

K

(

QÛh ·Uh

)

|t1
t0

dx

≥
1

2
‖Q1/2Uh(·,t

−
1 )‖

2
0,Ω−

1

2
‖Q1/2U0‖0,Ω, (3.7)

where ‖PhU‖0≤‖U‖0 is used according to the definition of the projection operator Ph in
Subsection 3.2. Moreover, by following the same strategy as that in the proof of Lemma
3.1 in [34], we obtain a similar identity, i.e.,

∑
K∈Th

∫

Ij

∫

∂K

(

̂f(Uh)·nK

)

·Uhdsdt− ∑
K∈Th

∫

Ij

∫

K
f(Uh)·∇Uhdxdt

=
1

2
ΘIj ,Th

(Uh). (3.8)

The combination of (3.3) and (3.5)-(3.8) leads to

1

2
‖Q1/2Uh(·,t

−
j+1)‖

2
0,Ω−

1

2
‖Q1/2Uh(·,t

−
j )‖0,Ω+

1

2
ΘIj ,Th

(Uh)≤0 (3.9)

for j=1,2,··· ,n−1 and

1

2
‖Q1/2Uh(·,t

−
1 )‖

2
0,Ω−

1

2
‖Q1/2U0‖0,Ω+

1

2
ΘI0 ,Th

(Uh)≤0. (3.10)

Summing up (3.9) and (3.10) over j from 0 to n−1, we obtain the desired result.
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3.2 Error estimate

Now we turn to the L2 error estimate of the space-time DG solution. For this purpose, we
introduce two element-wise projection operators Πh and Ph and give the corresponding
approximation results which will be used in the proof of the L2-error estimate later. First
we introduce a projection operator Πh : Hr+1(I)→Sr

h,I , such that

Πhu(t−j+1)=u(t−j+1), (3.11)
∫

Ij

(u−Πhu)vdt=0, ∀v∈Pr−1(Ij), j=0,1,··· ,n−1, r≥1. (3.12)

Furthermore, we have the following error estimate [6].

Lemma 3.1. For any u∈Hr+1(Ij), we have

||u−Πhu||0,Ij
≤C(△t)r+1|u|r+1,Ij

. (3.13)

Moreover, we also need the element-wise L2-projection operator Ph : Hk+1(Ω)→Sk
h,Ω,

such that
∫

K

(

u−Phu
)

vdx=0, ∀v∈Pk(K), ∀K∈Th. (3.14)

For this L2 projection operator, we have the following approximation lemma.

Lemma 3.2. Let u∈Hk+1(K). Then

||u−Phu||0,K ≤Chk+1|u|k+1,K, ||u−Phu||0,∂K ≤Chk+1/2|u|k+1,K.

The error analysis of numerical methods for time-dependent problems is often more
difficult than that for the time-independent ones. Actually, the main difficulty is how
to decompose the error into the temporal part and spatial part which can be handled
independently. In our work we introduce an operator decomposition as follows:

I−Πh⊗Ph =(I−Πh)+(I−Ph)−(I−Πh)⊗(I−Ph). (3.15)

In fact, this technique was first introduced in the analysis of the finite element method
for multi-dimensional elliptic problems by Douglas, Dupont and Wheeler in [13]. Then
it was implemented to analyze the convergence property of the finite element methods
for parabolic and hyperbolic problems by Chen (see Chapter 3 in [7] for more details). In
terms of the orthogonality relations in (3.12) and (3.14), we have

∫

Ij

[(I−Πh)⊗(I−Ph)u]v=0, ∀v∈Pk−1(Ij), k≥1, (3.16)

∫

K
[(I−Πh)⊗(I−Ph)u]v=0, ∀v∈Pk(K), K∈Th. (3.17)
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Actually (3.16) can be proved by a straightforward implementation of (3.12). On the
other hand, (3.17) can be obtained immediately based on the fact that I−Πh and I−Ph

are independent of each other.
It is noted that the numerical fluxes defined in (2.21), (2.22) and (2.23) are consistent

except for Ûh(0)=PhU0. Set e=U−Uh. According to (2.19) and (2.20), we have

BIj,K(e,vh)=0,∀vh ∈Vr,k
h , j=1,2,··· ,n−1. (3.18)

On the other hand, by (2.20),

BI0,K(Uh,vh)

=−
∫

I0

[

∫

K
QUh ·(vh)tdx+

∫

∂K

̂(f(Uh)·nK)·vhds−
∫

K
f(Uh)·∇vhdx

]

dt

+
∫

K

[

QUh(x,t−1 )·vh(x,t−1 )−QPhU0 ·vh(x,0+)
]

dx

=−
∫

I0

[

∫

K
QUh ·(vh)tdx+

∫

∂K

̂(f(Uh)·nK)·vhds−
∫

K
f(Uh)·∇vhdx

]

dt

+
∫

K

[

QUh(x,t−1 )·vh(x,t−1 )−QU0 ·vh(x,0+)
]

dx. (3.19)

Taking v=vh in (2.19) and then subtracting (3.19) from (2.19) with j=0, we obtain

−
∫

I0

∫

K
Qe·(vh)tdxdt+

∫

I0

∫

∂K

̂(f(e)·nK)·vhdsdt

−
∫

I0

∫

K
f(e)·∇vhdxdt+

∫

K
Qe(x,t−1 )·vh(x,t−1 )dx=0. (3.20)

Denote the left-hand side of (3.20) by B̄I0 ,K(e,vh) and let

B̄Ij,K(e,vh)=BIj,K(e,vh) for j=1,2,··· ,n−1.

Then we obtain the following error equation

B̄Ij
(e,vh)=0, ∀vh∈Vr,k

h , j=0,1,··· ,n−1, (3.21)

where
B̄Ij

(e,vh)= ∑
K∈Th

B̄Ij ,K(e,vh). (3.22)

The error e can be decomposed into

e=U−Πh⊗PhU−(Uh−Πh⊗PhU)=R−θ, (3.23)

where
R=U−Πh⊗PhU, θ=Uh−Πh⊗PhU∈Vr,k

h . (3.24)

Substituting e=R−θ into (3.21) and taking vh= θ, we have

B̄Ij
(R,θ)= B̄Ij

(θ,θ). (3.25)
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Lemma 3.3. In terms of B̄Ij
(θ,θ), we have the following estimate

B̄Ij
(θ,θ)≥

1

2
‖Q1/2θ(·,t−j+1)‖

2
0,Ω−

1

2
‖Q1/2θ(·,t−j )‖

2
0,Ω+

1

2
ΘIj ,Th

(θ), (3.26)

for j=1,2,··· ,n−1 and

B̄I0
(θ,θ)=

1

2
‖Q1/2θ(·,t−1 )‖

2
0,Ω+

1

2
‖Q1/2θ(·,0+)‖2

0,Ω+
1

2
ΘI0 ,Th

(θ). (3.27)

Proof. By the definition of B̄Ij
(e,vh), we have

B̄Ij
(θ,θ)=− ∑

K∈Th

∫

Ij

∫

K
Qθ ·(θ)tdxdt+ ∑

K∈Th

∫

Ij

∫

∂K

̂(f(θ)·nK)·θdsdt

− ∑
K∈Th

∫

Ij

∫

K
f(θ)·∇θdxdt+ ∑

K∈Th

∫

K

(

Qθ̂ ·θ
)

|
tj+1

tj
dx, (3.28)

for j=1,2,··· ,n−1. Similar to the proof of the stability in Theorem 3.1, we have

− ∑
K∈Th

∫

Ij

∫

K
Qθ ·(θ)tdxdt+ ∑

K∈Th

∫

K

(

Qθ̂ ·θ
)

|
tj+1

tj
dx

≥
1

2
‖Q1/2θ(·,t−j+1)‖

2
0,Ω−

1

2
‖Q1/2θ(·,t−j )‖

2
0,Ω, (3.29)

for j=1,2,··· ,n−1. Following the same strategy as those in the proof of Theorem 3.1, it is
easy to obtain

∑
K∈Th

∫

Ij

∫

∂K

̂(f(θ)·nK)·θdsdt− ∑
K∈Th

∫

Ij

∫

K
f(θ)·∇θdxdt=

1

2
ΘIj ,Th

(θ). (3.30)

The combination of (3.28), (3.29) and (3.30) yields (3.26).
According to (3.19), we have

B̄I0
(θ,θ)=− ∑

K∈Th

∫

I0

∫

K
Qθ ·(θ)tdxdt+ ∑

K∈Th

∫

I0

∫

∂K

̂(f(θ)·nK)·θdsdt

− ∑
K∈Th

∫

I0

∫

K
f (θ)·∇θdxdt+ ∑

K∈Th

∫

K
Qθ(x,t−1 )·θ(x,t−1 )dx

=
1

2
‖Q1/2θ(·,t−1 )‖

2
0,Ω+

1

2
‖Q1/2θ(·,0+)‖2

0,Ω+
1

2
ΘI0 ,Th

(θ). (3.31)

The proof is complete.

Now the key point is to estimate B̄I0
(R,θ) and BIj

(R,θ), j= 1,2,··· ,n−1. In terms of
(3.1), (3.20), we have

B̄Ij
(R,θ)=− ∑

K∈Th

∫

Ij

∫

K
QR·θtdxdt+ ∑

K∈Th

∫

Ij

∫

∂K

(

̂f(R)·nK

)

·θdsdt

− ∑
K∈Th

∫

Ij

∫

K
f(R)·∇θdxdt+ ∑

K∈Th

∫

K

(

QR̂·θ
)

|
tj+1

tj
dx, (3.32)



Z. Q. Xie, B. Wang and Z. Zhang / Commun. Comput. Phys., 14 (2013), pp. 916-939 927

for j=1,2,··· ,n−1, and

B̄I0
(R,θ)=− ∑

K∈Th

∫

I0

∫

K
QR·θtdxdt+ ∑

K∈Th

∫

I0

∫

∂K

(

̂f(R)·nK

)

·θdsdt

− ∑
K∈Th

∫

I0

∫

K
f(R)·∇θdxdt+ ∑

K∈Th

∫

K
QR(x,t−1 )·θ(x,t−1 )dx. (3.33)

Now (3.15) is used to decompose R into three parts, i.e.,

R=(I−Πh⊗Ph)U

=(I−Πh)U+(I−Ph)U−(I−Πh)⊗(I−Ph)U. (3.34)

Denoted by

ξ=(I−Πh)U, η=(I−Ph)U, ρ=−(I−Πh)⊗(I−Ph)U,

then
R= ξ+η+ρ. (3.35)

According to the properties of projection Πh shown in (3.11), we have

ξ(x,t−j )=0, ρ(x,t−j )=0, ∀x∈Ω, j=1,2,··· ,n. (3.36)

Due to θ,θt ∈ Vr,k
h , thus θH(x,·)|K, (θH)t(x,·)|K , θE(x,·)|K , (θE)t(x,·)|K ∈ (Pk(K))3,

(θH)t(·,t)|Ij
, (θE)t(·,t)|Ij

∈ (Pr−1(Ij))
3. According to the definition of the projection op-

erators Πh and Ph, (3.16) and (3.17), we have the following orthogonality relations, i.e.,

∫

Ij

ξ(x,t)·θt(x,t)dt=0,
∫

Ij

ρ(x,t)·θt(x,t)dt=0, ∀x∈Ω, (3.37a)

∫

K
η(x,t)·θt(x,t)dx=0,

∫

K
ρ(x,t)·θt(x,t)dx=0, ∀t∈ (0,T], (3.37b)

∫

K
η(x,t)·θ(x,t)dx=0,

∫

K
ρ(x,t)·θ(x,t)dx=0, ∀t∈ (0,T]. (3.37c)

As a consequence,
∫

Ij

∫

K
QR·θtdxdt=

∫

Ij

∫

K
Q(ξ+η+ρ)·θt dxdt=0, K∈Th, (3.38)

for j=0,1,2,··· ,n−1. On the other hand, by (3.36) and (3.37),
∫

K

(

QR̂·θ
)

|
tj+1

tj
dx=

∫

K
Q
(

R(x,t−j+1)·θ(x,t−j+1)−R(x,t−j )·θ(x,t+j )
)

dx

=
∫

K
Q
(

ξ(x,t−j+1)+η(x,t−j+1)+ρ(x,t−j+1)
)

·θ(x,t−j+1)dx

−
∫

K
Q
(

ξ(x,t−j )+η(x,t−j )+ρ(x,t−j )
)

·θ(x,t+j )dx

=0, j=1,2,··· ,n−1. (3.39)
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Furthermore,
∫

K
QR(x,t−1 )·θ(x,t−1 )dx=

∫

K
Q
(

ξ(x,t−1 )+η(x,t−1 )+ρ(x,t−1 )
)

·θ(x,t−1 )dx=0. (3.40)

Implementing (3.38), (3.39) and (3.40) in (3.32) and (3.33), we have

B̄Ij
(R,θ)= ∑

K∈Th

∫

Ij

[

∫

∂K

(

̂f(R)·nK

)

·θds−
∫

K
f(R)·∇θdx

]

dt, (3.41)

for j=0,1,2,··· ,n−1.

Lemma 3.4. In terms of B̄Ij
(R,θ), we have

B̄Ij
(R,θ)≤Ch2k+1

∫

Ij

||U(·,t)||2k+1,Ωdt+
1

2

∫

Ij

‖Q1/2θ(·,t)‖2
0,Ωdt+

1

2
ΘIj ,Th

(θ)

+C(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,Ij
+||∇×H(x,·)||2r+1,Ij

)

dx. (3.42)

Proof. Substituting the decomposition (3.35) in (3.41), we obtain

B̄Ij
(R,θ)=

(

∑
K∈Th

∫

Ij

∫

∂K

(

̂f(ξ)·nK

)

·θdsdt− ∑
K∈Th

∫

Ij

∫

K
f(ξ)·∇θdxdt

)

+

(

∑
K∈Th

∫

Ij

∫

∂K

(

̂f(η)·nK

)

·θdsdt− ∑
K∈Th

∫

Ij

∫

K
f(η)·∇θdxdt

)

+

(

∑
K∈Th

∫

Ij

∫

∂K

(

̂f(ρ)·nK

)

·θdsdt− ∑
K∈Th

∫

Ij

∫

K
f(ρ)·∇θdxdt

)

=M1
j +M2

j +M3
j . (3.43)

Obviously, ξ=U−ΠhU is continuous in space. Therefore the consistency of the numerical

flux ̂f(Uh)·n implies

M1
j = ∑

K∈Th

∫

Ij

∫

∂K
(f(ξ)·nK)·θdsdt− ∑

K∈Th

∫

Ij

∫

K
f(ξ)·∇θdxdt

= ∑
K∈Th

∫

Ij

∫

K
(∇×ξE ·θH−∇×ξH ·θE)dxdt. (3.44)

Using Lemma 3.2 and the Young’s inequality, we have

M1
j ≤
∫

Ω

∫

Ij

(

1

2µ
|∇×ξE|

2+
1

2ǫ
|∇×ξH|

2+
µ

2
|θH|

2+
ǫ

2
|θE|

2

)

dtdx

≤C(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,Ij
+||∇×H(x,·)||2r+1,Ij

)

dx

+
1

2

∫

Ij

‖Q1/2θ(·,t)‖2
0,Ωdt. (3.45)
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By the definition of the numerical fluxes in (2.21) and (2.22), a straightforward calculation
leads to

M2
j = ∑

K∈Th

∫

Ij

∑
e⊂∂K

⋂

EI

∫

e

(

nK×(η̄E−
Z

2
[ηH]T)·θ

int(K)
H −nK×(η̄H+

1

2Z
[ηE]T)·θ

int(K)
E

)

dsdt

+ ∑
K∈Th

∫

Ij

∑
e⊂∂K

⋂

ED

∫

e
−n×

(

ηint
H +

1

Z
n×ηint

E

)

·θint
E dsdt−

∫

Ij

∑
K∈Th

∫

K
f(η)·∇θdxdt

=
∫

Ij

∑
e⊂EI

∫

e

(

η̄H ·[θE]T+
Z

2
[ηH]T ·[θH]T

)

dsdt

+
∫

Ij

∑
e⊂EI

∫

e

(

−η̄E ·[θH]T+
1

2Z
[ηE]T ·[θE]T

)

dsdt

+
∫

Ij

∑
e⊂ED

∫

e

(

−n×ηint
H ·θint

E +
1

Z
n×ηint

E ·(n×θint
E )

)

dsdt

−
∫

Ij

∑
K∈Th

∫

K
(∇×θE ·ηH−∇×θH ·ηE)dxdt. (3.46)

Similarly,

M3
j =
∫

Ij

∑
e⊂EI

∫

e

(

ρ̄H ·[θE]T+
Z

2
[ρH]T ·[θH]T

)

dsdt

+
∫

Ij

∑
e⊂EI

∫

e

(

−ρ̄E ·[θH]T+
1

2Z
[ρE]T ·[θE]T

)

dsdt

+
∫

Ij

∑
e⊂ED

∫

e

(

−n×ρint
H ·θint

E +
1

Z
n×ρint

E ·(n×θint
E )

)

dsdt

−
∫

Ij

∑
K∈Th

∫

K
(∇×θE ·ρH−∇×θH ·ρE)dxdt. (3.47)

Since ∇×θ∈Vr,k
h , by the orthogonality property of the projection operator Ph, we have

∫

K
(∇×θE ·ηH−∇×θH ·ηE)dx=0,

∫

K
(∇×θE ·ρH−∇×θH ·ρE)dx=0. (3.48)

Implementing Lemma 3.3 and the Young’s inequality, we obtain

M2
j ≤
∫

Ij

∑
e⊂EI

∫

e

(

2Z|η̄H|
2+

2

Z
|η̄E|

2+
Z

2
|[ηH]T|

2+
1

2Z
|[ηE]T|

2

)

dsdt

+
∫

Ij

∑
e⊂ED

∫

e

(

Z|ηint
H |2+

1

Z
|ηint

E |2
)

dsdt+
1

2Z

∫

Ij

∑
e⊂ED

∫

e
|n×θint

E |2dsdt

+
1

4

∫

Ij

∑
e⊂EI

∫

e

(

Z|[θH]T |
2+

1

Z
|[θE]T|

2

)

dsdt
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≤Ch2k+1
∫

Ij

||U(·,t)||2k+1,Ωdt+
1

4

∫

Ij

∑
e⊂EI

∫

e

(

Z|[θH]T|
2+

1

Z
|[θE]T |

2

)

dsdt

+
1

2Z

∫

Ij

∑
e⊂ED

∫

e
|n×θint

E |2dsdt, (3.49)

M3
j ≤
∫

Ij

∑
e⊂EI

∫

e

(

2Z|ρ̄H|
2+

2

Z
|ρ̄E|

2+
Z

2
|[ρH]T |

2+
1

2Z
|[ρE]T |

2

)

dsdt

+
∫

Ij

∑
e⊂ED

∫

e

(

Z|ρint
H |2+

1

Z
|ρint

E |2
)

dsdt+
1

2Z

∫

Ij

∑
e⊂ED

∫

e
|n×θint

E |2dsdt

+
1

4

∫

Ij

∑
e⊂EI

∫

e

(

Z|[θH]T|
2+

1

Z
|[θE]T |

2

)

dsdt

≤Ch2k+1
∫

Ij

||U(·,t)||2k+1,Ωdt+
1

4

∫

Ij

∑
e⊂EI

∫

e

(

Z|[θH]T|
2+

1

Z
|[θE]T |

2

)

dsdt

+
1

2Z

∫

Ij

∑
e⊂ED

∫

e
|n×θint

E |2dsdt. (3.50)

According to (3.45), (3.49) and (3.50), we have

B̄Ij
(R,θ)≤Ch2k+1

∫

Ij

||U(·,t)||2k+1,Ωdt+
1

2

∫

Ij

‖Q1/2θ(·,t)‖2
0,Ωdt+

1

2
ΘIj ,Th

(θ).

+C(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,Ij
+||∇×H(x,·)||2r+1,Ij

)

dx. (3.51)

The proof is complete.

Now we give the main result in terms of the L2-error estimate.

Theorem 3.2. Let Uh=(Hh,Eh)
T be the solution of (2.20) and (H,E)T the exact smooth solution

of (2.1)-(2.2). Assume that

H,E∈
(

L2([0,T],Hk+1(Ω))
)3

, ∇×E,∇×H∈
(

Hr+1([0,T],L2(Ω)
)3

.

Then

µ||H(x,T)−Hh(x,T−)||0+ǫ||E(x,T)−Eh(x,T−)||0

≤C(△t)r+1(|||∇×E|||0,r+1+|||∇×H|||0,r+1)

+Chk+ 1
2 (|||E|||k+1,0+|||H|||k+1,0)+Chk+1(||E(x,T)||k+1,Ω+||H(x,T)||k+1,Ω) ,

where C is a constant relying on T, but independent of △t and h.
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Proof. By Eq. (3.25), Lemma 3.3 and Lemma 3.4, we have

1

2
‖Q1/2θ(·,t−j+1)‖

2
0,Ω−

1

2
‖Q1/2θ(·,t−j )‖

2
0,Ω+

1

2
ΘIj ,Th

(θ)

≤
1

2

∫

Ij

‖Q1/2θ(·,t)‖2
0,Ωdt+

1

2
ΘIj ,Th

(θ)+Ch2k+1
∫

Ij

||U(·,t)||2k+1,Ωdt

+C(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,Ij
+||∇×H(x,·)||2r+1,Ij

)

dx, (3.52)

for j=1,2,··· ,n−1, and

1

2
‖Q1/2θ(·,t−1 )‖

2
0,Ω+

1

2
‖Q1/2θ(·,0+)‖2

0,Ω+
1

2
ΘI0 ,Th

(θ)

≤
1

2

∫

I0

‖Q1/2θ(·,t)‖2
0,Ωdt+

1

2
ΘI0 ,Th

(θ)+Ch2k+1
∫

I0

||U(·,t)||2k+1,Ωdt

+C(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,I0
+||∇×H(x,·)||2r+1,I0

)

dx. (3.53)

Thus we obtain

‖Q1/2θ(·,t−j+1)‖
2
0,Ω

≤e△t‖Q1/2θ(·,t−j )‖
2
0,Ω+Ce△th2k+1

∫

Ij

||U(·,t)||2k+1,Ωdt

+Ce△t(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,Ij
+||∇×H(x,·)||2r+1,Ij

)

dx, (3.54)

for j=1,2,··· ,n−1, and

‖Q1/2θ(·,t−1 )‖
2
0,Ω

≤Ce△th2k+1
∫

I0

||U(·,t)||2k+1,Ωdt

+Ce△t(△t)2r+2
∫

Ω

(

||∇×E(x,·)||2r+1,I0
+||∇×H(x,·)||2r+1,I0

)

dx, (3.55)

by using Gronwall’s inequality. Hence we obtain

||Q1/2θ(x,T−)||20

≤CeT(△t)2r+2
(

|||∇×E|||20,r+1+|||∇×H|||20,r+1

)

+CeTh2k+1
(

|||E|||2k+1,0+|||H|||2k+1,0

)

. (3.56)

On the other hand,

||Q1/2R(·,T−)||20,Ω = ||Q1/2η(·,T−)||20,Ω ≤Ch2k+2‖U(·,T)‖2
0,Ω. (3.57)
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By using a triangular inequality, we have

||Q1/2e(·,T−)||20,Ω ≤C
(

||Q1/2R(·,T−)||20,Ω+||Q1/2θ(·,T−)||20,Ω

)

≤CeT(△t)2r+2
(

|||∇×E|||20,k+1+|||∇×H|||20,k+1

)

+CeTh2k+1
(

|||E|||2k+1,0+|||H|||2k+1,0

)

+Ch2k+2‖U(·,T)‖2
0,Ω, (3.58)

which completes the proof.

Remark 3.1. It is noted that only semi-norms are used in Lemmas 3.1 and 3.2. Hence all
norms in the right hand side of the error estimate in Theorem 3.2 can be replaced by the
corresponding weaker semi-norms.

4 Numerical results

In this section, some numerical examples are given to justify our theoretical prediction.
The uniform Cartesian mesh is used in all numerical examples. According to the theoret-
ical analysis above, we know that our numerical scheme is stable without any restriction
on the time step size △t. Actually we obtain accurate numerical solutions even when △t
is larger than h. Moreover, in this section, the L2−errors are computed in the following
way,

‖u−uh‖0=

(

∑
K∈Th

∫

K
|u−uh|

2dΩ

) 1
2

.

4.1 2-D numerical example

The similar error estimate for 2-D Maxwell equations can be obtained in the same way as
we have done for 3-D case, by introducing the scalar and vector curl operators

curlE=
∂E2

∂x
−

∂E1

∂y
, ∇×E=(

∂E

∂y
,−

∂E

∂x
)T.

To justify our theoretical analysis, we first give a 2-D numerical example. Consider the
following 2-D model problem

∂Hx

∂t
+

∂Ez

∂y
=R1,

∂Hy

∂t
−

∂Ez

∂x
=R2,

∂Ez

∂t
−(

∂Hy

∂x
−

∂Hx

∂y
)=R3,
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Table 1: The convergence rate of L2 error for r= k=1 (2-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=0.5 N=2 4×4 1.1050e-3 2.4184e-3

N=4 8×8 2.6692e-4 2.0496 6.7874e-4 1.8331

N=8 16×16 6.4997e-5 2.0380 1.8910e-4 1.8437

N=16 32×32 1.6012e-5 2.0212 5.2727e-5 1.8425

T=5 N=20 4×4 1.6172e-2 9.3017e-2

N=40 8×8 3.4368e-3 2.2344 3.2580e-2 1.5135

N=80 16×16 7.1898e-4 2.2570 9.4835e-3 1.7805

N=16 32×32 1.6111e-4 2.1579 2.6381e-3 1.8459

T=50 N=200 4×4 1.1388e-1 7.8949e-1

N=400 8×8 2.2959e-2 2.3104 3.5336e-1 1.1598

N=800 16×16 6.5688e-3 1.8054 1.1757e-1 1.5876

N=1600 32×32 1.5181e-3 2.1134 3.3316e-2 1.8192

Table 2: The convergence rate of L2 error for r= k=2 (2-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=1 N=4 4×4 2.7357e-4 8.7101e-4

N=8 8×8 3.3301e-5 3.0383 1.1044e-4 2.9794

N=16 16×16 4.1122e-6 3.0176 1.3904e-5 2.9897

T=10 N=40 4×4 2.6332e-3 7.6589e-3

N=80 8×8 3.2889e-4 3.0011 9.4570e-4 3.0177

N=160 16×16 4.1015e-5 3.0034 1.1561e-4 3.0321

T=100 N=400 4×4 2.4882e-2 8.0735e-2

N=800 8×8 3.1777e-3 2.9690 1.0267e-2 2.9752

N=1600 16×16 3.9790e-4 2.9975 1.2652e-3 3.0206

in [0,1]2, where Ri, i=1,2,3 are chosen such that the exact solution is





Hx

Hy

Ez



=100





x(1−x)(1−2y)tsin t
−y(1−y)(1−2x)tsin t

xy(1−x)(1−y)tsin(t+x+y)



.

First we choose the time step size △t equal to the spatial mesh size h and the polynomials
of the same degree for both temporal and spatial variables, i.e. r=k. The results and their
corresponding convergence order are shown in Tables 1 and 2 for r= k= 1 and r= k= 2
respectively. It is observed that the convergence rate of both Eh and Hh in L2-norm is
O(hk+1), which is better than the theoretical prediction.

As mentioned above, this space-time DG scheme is unconditionally stable. Here we
use a numerical experiment to verify this claim. We take the time step size △t larger than
the spatial mesh size h and r= 1, k= 2. The L2-errors are listed in Table 3. It is noticed
that, even when the time step size △t=0.2,0.3, which is larger than the spatial mesh size
h=0.125, the relative errors do not increase when T=20,30.
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Table 3: The unconditional stability of the space-time DG method for r=1, k=2, 8×8 mesh (2-D case).

△t ||E(·,T)−Eh(·,T
−)||0 Relative error ||H(·,T)−Hh(·,T

−)||0 Relative error

in percentage in percentage

0.2 T=0.2 9.9558e-5 1.6499 9.8708e-5 1.6665

T=2 1.1146e-4 0.5758 2.8505e-4 0.1051

T=20 1.5273e-3 0.2792 2.3957e-3 0.0880

0.3 T=0.3 4.9772e-4 5.3331 3.3515e-4 2.5360

T=3 7.6311e-4 1.0170 5.6473e-4 0.8948

T=30 7.2032e-3 1.5779 4.7357e-3 0.1072

Table 4: The ultra-convergence of order 2r+1 in t, h=(△t)2, r= k, T=1 (2-D case).

k △t mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

1 1
2 4×4 3.0011e-3 1.0045e-2
1
4 16×16 1.4082e-4 4.4136 9.8193e-4 3.3547
1
8 64×64 1.1089e-5 3.6667 8.8256e-5 3.4759

2 1
2 4×4 1.3478e-4 2.8061e-4
1
4 16×16 4.3510e-6 4.9531 1.4025e-5 4.3225
1
8 64×64 8.7343e-8 5.6385 2.2980e-7 5.9315

Table 5: The ultra-convergence of order 2r+1 in t, h=∆t, r=1, k=2 (2-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=1 N=4 4×4 2.7227e-4 9.1652e-4

N=8 8×8 3.3998e-5 3.0015 1.1903e-4 2.9448

N=16 16×16 4.4534e-6 2.9325 1.8143e-5 2.7138

T=10 N=40 4×4 2.7070e-3 7.6651e-3

N=80 8×8 3.3387e-4 3.0193 9.2605e-4 3.0491

N=160 16×16 4.1596e-5 3.0048 1.2621e-4 2.8753

T=100 N=400 4×4 2.5961e-2 8.0891e-2

N=800 8×8 3.3121e-3 2.9705 1.0226e-2 2.9837

N=1600 16×16 4.1525e-4 2.9957 1.2654e-3 3.0146

Besides the unconditional stability, our approach has another important advantage
over many existing numerical schemes, i.e., the implementation of the DG method in
time-discretization leads to an ultra-convergence of order 2r+1 in time step for the nu-
merical fluxes w.r.t. t at the grid points. Numerical results in Tables 4 and 5 show this
phenomenon from two different ways. On the one hand, we set r=k and choose h=(△t)2

in Table 4. Then the ultra-convergence rate of O((△t)3) and O((△t)5) for k=1 and k=2
are observed numerically. On the other hand, we let ∆t= h but choose r=1 and k=2, a
convergence rate of order O((∆t)3) of the L2-error is observed in Table 5.

4.2 3-D numerical example

We consider the following 3D Maxwell’s equation
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Table 6: The convergence rate of L2 error for r= k=1 (3-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=1 N=2 2×2×2 4.4143e-2 5.2740e-2

N=4 4×4×4 1.1601e-2 1.9279 1.4352e-2 1.8776

N=8 8×8×8 2.9482e-3 1.9763 3.9000e-3 1.8797

T=10 N=20 2×2×2 5.6905e-1 6.2508e-1

N=40 4×4×4 1.4497e-1 1.9728 1.8246e-1 1.7765

N=80 8×8×8 3.7722e-2 1.9423 5.3541e-2 1.7689

T=100 N=200 2×2×2 5.2164 5.9581

N=400 4×4×4 1.3730 1.9257 1.6040 1.8932

N=800 8×8×8 3.5143e-1 1.9660 4.3788e-1 1.8731

Table 7: The convergence rate of L2 error for r= k=2 (3-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=1 N=2 2×2×2 7.3451e-3 7.6816e-3

N=4 4×4×4 9.8885e-4 2.8974 1.0552e-3 2.8639

N=8 8×8×8 1.2276e-4 3.0099 1.3771e-4 2.9378

T=10 N=20 2×2×2 8.3531e-2 6.7427e-2

N=40 4×4×4 1.0484e-2 2.9941 1.0641e-2 2.6637

N=80 8×8×8 1.2073e-3 3.1183 1.5122e-3 2.8149

T=100 N=200 2×2×2 7.5887e-1 7.9374e-1

N=400 4×4×4 1.1413e-1 2.7332 1.2132e-1 2.7098

N=800 8×8×8 1.3973e-2 3.0300 1.7080e-2 2.8284

∂H

∂t
+∇×E=R1,

∂E

∂t
−∇×H=R2,

in Ω=[0,1]3. Here R1, R2 are chosen such that the exact solution is

E=





(y−y2)(z−z2)
(x−x2)(z−z2)
(x−x2)(y−y2)



tcos(t+x+y+z), H=





y−z
z−x
x−y



tcos(t+x+y+z).

Like the 2-D case we firstly choose the time step size △t equal to the spatial mesh
size h and the polynomials of the same degree for both temporal and spatial variables,
i.e. r= k. The L2-errors and their corresponding convergence order are shown in Tables
6 and 7 for r = k= 1 and r = k= 2 respectively. It is observed that the convergence rate
of both Eh and Hh in L2-norm is O(hk+1), which is better than the theoretical prediction
also.

To show the unconditional stability, we take the time step size △t larger than the
spatial mesh size h and r= k=1. The L2-errors are listed in Table 8. It is noticed that the
relative errors do not increase when T=20,30 even when the time step size △t=0.2,0.3
is larger than the spatial mesh size h=0.125.
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Table 8: The unconditional stability of the space-time DG method for r= k=1, 8×8×8 mesh (3-D case).

△t ||E(·,T)−Eh(·,T
−)||0 Relative error ||H(·,T)−Hh(·,T

−)||0 Relative error

in percentage in percentage

0.2 T=0.2 7.7699e-4 17.5035 9.1458e-4 1.7056

T=2 5.5194e-3 5.4308 7.5872e-3 0.6083

T=20 6.5066e-2 6.7243 1.0559e-1 0.8895

0.3 T=0.3 2.3168e-3 32.1315 2.0479e-3 2.3443

T=3 1.2185e-2 17.1600 1.4581e-2 1.6959

T=30 9.3355e-2 5.8148 1.4147e-1 0.7178

Table 9: The ultra-convergence of order 2r+1 in t, h=(△t)2, k= r, T=1 (3-D case).

r △t mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

1 1
2 4×4×4 1.3154e-2 1.7351e-2
1
4 16×16×16 1.1674e-3 3.4941 1.9320e-3 3.1669

2 1
2 4×4×4 1.0361e-3 1.1264e-3
1
4 16×16×16 1.9060e-5 5.7645 2.2478e-5 5.6471

Table 10: The ultra-convergence of order 2r+1 in t, h=∆t, r=1, k=2 (3-D case).

time time step mesh ||E(·,T)−Eh(·,T
−)||0 order ||H(·,T)−Hh(·,T

−)||0 order

T=1 N=2 2×2×2 9.3503e-3 1.2122e-2

N=4 4×4×4 1.3368e-3 2.8062 1.9090e-3 2.6667

N=8 8×8×8 1.8422e-4 2.8593 2.5069e-4 2.9288

T=10 N=20 2×2×2 8.8436e-2 6.6557e-2

N=40 4×4×4 1.1200e-2 2.9811 1.0717e-2 2.6347

N=80 8×8×8 1.3099e-3 3.0960 1.5308e-3 2.8075

T=100 N=200 2×2×2 8.3760e-1 7.9378e-1

N=400 4×4×4 1.2389e-1 2.7572 1.2196e-1 2.7023

N=800 8×8×8 1.5200e-2 3.0269 1.7169e-2 2.8285

Numerical results in Tables 9 and 10 show the ultra-convergence of our method nu-
merically. In Table 9 we set r= k and choose h=(△t)2. Then the ultra-convergence rate
of O((△t)3) and O((△t)5) for k = 1 and k = 2 are observed numerically. In Table 10,
we choose the time step size ∆t equal to the spatial mesh size h, and r = 1, k = 2. An
ultra-convergence of order O((∆t)3) is observed numerically.

Remark 4.1. Although the theoretical error bound is O(hk+1/2+(∆t)r+1), our numerical
tests indicate that the actual error seems to be O(hk+1+(∆t)2r+1). Therefore, we propose
the following two strategies in practice to optimize the scheme: 1) Use the same polyno-

mial space (Pk)3×Pk and different element scale h=(∆t)2− 1
k+1 ; 2) Use the same element

scale ∆t=h and different polynomial spaces (Pk)3×Pr with 2r=k. The first strategy sug-
gests to use the larger time steps while the second one recommends to use higher order
polynomial spaces for spatial discretization.
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5 Concluding remarks

A space-time DG method is proposed to solve time-dependent Maxwell’s equation in
homogeneous media. The L2-stability is proved. Based on a technical operator decom-

position, the convergence rate of O
(

hk+ 1
2 +(∆t)r+1

)

in the L2-norm is established under
the standard Galerkin finite element framework.

The proposed space-time DG method is essentially an implicit scheme. The main ad-
vantages of it over the traditional explicit time step approaches are 1) its unconditionally
stable property, and 2) its ultra-convergence in time steps. These favorable properties
make it possible to compute long time behavior of time-dependent Maxwell’s equations
and offset the disadvantage of the computational cost of the implicit method. As ex-
plained in Remark 4.1, it is advised to use h≈ (∆t)2 in our scheme instead of ∆t=O(h)
in most explicit methods. A systematic study of comparison of the proposed space-time
DG method with the explicit time step approaches (spatial semi-discretization by DG)
would be a separate work. Other future works include the rigorous justification of the
ultra-convergence in time steps, the h-version and hp-version space-time DG methods
for Maxwell’s equations in dispersive media and meta-materials, and their correspond-
ing theoretical analysis and applications.
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