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Abstract. This paper presents a gaskinetic study and analytical results on high speed
rarefied gas flows from a planar exit. The beginning of this paper reviews the results
for planar free jet expanding into a vacuum, followed by an investigation of jet im-
pingement on normally set plates with either a diffuse or a specular surface. Presented
results include exact solutions for flowfield and surface properties. Numerical simula-
tions with the direct simulation Monte Carlo method were performed to validate these
analytical results, and good agreement with this is obtained for flows at high Knudsen
numbers. These highly rarefied jet and jet impingement results can provide references
for real jet and jet impingement flows.

PACS: 98.58.Fd, 47.45.Ab, 52.25.Fi, 52.55.Fa, 52.35.Py

Key words: Gaskinetic theory, jet, jet impingement, Monte Carlo method.

1 Introduction

Gaseous jets expanding into a vacuum and jet impingement on a normally set plate are
two fundamental fluid dynamic problems with numerous applications in engineering,
physics, chemistry and other disciplines. As the counterpart to the continuum flow sit-
uation, highly rarefied jet and jet impingement flows provide one bounding limit with
insights to many problems by solely including molecular movement. In many applica-
tions, the contribution from particle collisions is insignificant. One important application
is the atomic/molecular beam [1, 2] which is a crucial tool that leads to many extremely
important scientific discoveries. Other important applications include materials process-
ing inside vacuum chambers [3] and rocket plume effects in aerospace engineering [4, 5].
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As the most important signature, rocket plume is widely used for inferred radar detec-
tions and performance evaluations. Due to the importance, many communities have
been investigating rarefied gaseous jet and jet impingement flows for decades.

This paper presents some solutions for highly rarefied, or collisionless, planar jet and
jet impingement flows. Section 2 reviews some background; Section 3 presents the exact
solutions for the problem of high Knudsen number planar free jet into a vacuum; Section
4 shows the exact solutions for rarefied two dimensional jet impingement on a normally
set flat plate with a diffuse surface; Section 5 reports some exact solutions for planar
rarefied gaseous jet impingement on a specular flat plate; and Section 6 includes com-
parisons of the exact analytical solutions and direct simulation Monte Carlo (DSMC) [6]
simulation results of rarefied impingement flows. The last section summarizes this paper
with a few conclusions.

2 Background

Compressible flows can usually be summarized into four categories by the definition
of the Knudsen number (Kn), which is related with the Mach (Ma) and Reynolds (Re)
numbers [6–8]:

Kn=
λ0

L
=

1
√

2πd2n0L
∼

Ma

Re
, (2.1)

where λ0 is the molecular mean free path, L is a characteristic length, d is the molecular
diameter, and n0 is the gas number density at the nozzle exit. These four regimes are: con-
tinuum (0<Kn<0.01), velocity slip and temperature jump (0.01<Kn<0.1), transitional
(0.1<Kn<10), and free molecular (or collisionless) (10<Kn). This paper discusses two
flows in the free molecular regime, we choose the duct width as the characteristic length
L. For the numerical validations at the end of this paper, we choose Kn= 100 and use
Eq. (2.1) to determine the number density n0 at the nozzle exit.

This paper focuses on exact solutions for the problems of rarefied planar jet expanding
into a vacuum and jet impingement on a normally set plate with a diffused or a specular
surface. A diffused reflection occurs when a particle collides at a surface, and it bounces
back reversely and uniformly inside the solid angle on the other side of the local tangent
plane. For a planar plate surface, the solid angle forms a span of π. For a specular
reflection case, the reflected particle’s normal momentum is reversed while the tangent
momentum maintains unchanged.

For rarefied jet and jet impingement flows, there are many studies based on contin-
uum theories, for example, the Navier-Stokes equations, boundary layer theory, charac-
teristic lines, and Prandtl-Meyer flows [9]. For the high Knudsen number regime, there
are many numerical and experimental studies and reports for the complete flowfield and
surface properties. Most of the past studies adopted some simplifications. Noller [10]
proposed a solid angle treatment to consider the nozzle exit geometry and obtained the
plume density field expressed with integrations over the solid angle. Kogan [11] dis-
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cussed two free molecular flows, over a convex wall or out of a nozzle. His discussions
considered the effects from the speed ratio and angle of attack; however, the detailed ge-
ometry factors are not included at all. For jet and jet impingement flows, the geometry
factors, such as the nozzle width and the distance from the nozzle center to the plate cen-
ter, are more complex than the speed ratio factor. Narasimha [12] discussed the problem
of a collisionless effusion flow through a circular hole between two chambers of differ-
ent pressure. The average gas velocity at the two chamber ends is assumed to be zero.
For the case of free molecular flows out of a planar exit with a nonzero average velocity,
Narasimha’s investigation [13] indicated that the plume solution is rather complicated
involving many cosine functions. Another rocket plume treatment, which is also based
on collisionless flows, was suggested by Woronowicz [14]. This treatment splits the exit
into many small segments; as such, the unsteady density and pressure distributions in
the flowfield can be computed numerically. Further, the concept of starting surface was
proposed and alleviates the difficulty of the problem.

Recently, an approach [15–18] to study rarefied free jet into a vacuum was suggested
and applied. It provided two sets of detailed solutions for rarefied planar and circular
plume flows. These plume solutions only considered collisionless flow situations, such
as plasma flows fire from an electric propulsion device. The collision effects were com-
pletely neglected. A recent validation work on this set of gaskinetic solutions extend the
solutions for highly rarefied round jet into a vacuum to the near-continuum regime [19].
The conclusions are:

1. Even though the set of formulae were derived for collisionless flows, they are ap-
plicable for transitional and near continuum flow regimes as well, due to the fact
that at high speed, molecules have less time to diffuse normally from the main flow
direction. We can also equivalently use the relation among the Knudsen, Mach and
Reynolds numbers, Eq. (2.1). This relation indicates, for a fixed Reynolds number,
a high Mach number actually ensures a high Knudsen number.

2. The gaskinetic solutions for highly rarefied plume flow provide complete and ac-
curate flowfields of density, velocity and pressure, with complex factors of speed
ratio and geometry factors. By comparison, the widely used cosine law or the Si-
mons plume model [20] provides density fields only with a simple cosine function;
and Kogan’s results did not include the important geometry factors.

3. Even for density, the gaskinetic solutions are more accurate than the Simons plume
model.

As the counterpart to the problems of round jet and jet impingement flows, [21] we
expect that the problems of rarefied planar jet and jet impingement can provide us new
insights. This paper summarizes the past solutions for rarefied free planar jet into a vac-
uum, in the following section. Based on these solutions, we can extend the results to
planar jet impingement problems.
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In this paper, subscripts ”0”, ”1”, ”2”, ”3” represent properties at nozzle exit, a flow-
field point for the problem of free jet, and impingement on a plate of diffuse or specular
reflections, respectively.

3 Analytical solutions for rarefied planar jet into a vacuum

For a dilute equilibrium gas flow with a zero average macroscopic velocity, it is reason-
able to assume the velocity distribution is Maxwellian [6, 7, 22]. With a number density
n0 and a temperature T0, the thermal velocity distribution function is:

f (u,v,w)=n0

(β0

π

)

3
2

exp
(

−β0(u
2+v2+w2)

)

, (3.1)

where β0 =
1

2RT0
. The highest velocity probability occurs at the origin point. For a flow

with a nonzero average value of U0 along the X direction but a zero value along the
Y direction, the integration domain for a flowfield point maintains the same shape but
shifts left along the u-axis by U0.

With a known velocity distribution f (u,v,w) at a point (X,Y,Z), the macroscopic av-
erage number density, velocity components, temperature and pressure can be evaluated
using the velocity distribution function [7]:

n(X,Y,Z)=
∫

Ω

f (u,v,w)dudvdw, (3.2a)

U(X,Y,Z)=
1

n(X,Y,Z)

∫

Ω

u f (u,v,w)dudvdw, (3.2b)

V(X,Y,Z)=
1

n(X,Y,Z)

∫

Ω

v f (u,v,w)dudvdw, (3.2c)

T(X,Y,Z)=
1

3Rn(X,Y,Z)

∫

Ω

(C2
1+C2

2+C2
3) f dudvdw, (3.2d)

P(X,Y,Z)=n(X,Y,Z)kT(X,Y,Z), (3.2e)

where k is the Boltzmann constant, and Ω represents the integral domain in the thermal
velocity space [16].

Recently, a gaskinetic approach with a velocity-location relation was proposed and
applied to obtain the exact solutions for planar rarefied jet into a vacuum [16]:

X

u+U0
=

Y−y

v
. (3.3)

With this approach and relation, it is possible to obtain exact solutions for several highly
rarefied flows [16, 19, 23]. The key relation of velocity-location is as follows: from a spe-
cific point (x,y) at the exit, only particles with specific velocity components can arrive at a
specific point P(X,Y) in front of the exit. This equation guarantees a one-to-one mapping
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relation between velocities and locations, provides boundaries for the integral domain,
and simplifies the integration process by changing integral variables. For a planar situa-
tion:

tan(θ)=
Y−y

X
=

v

u+U0
, −H<y<H, (3.4a)

tan(θ1)=
Y−H

X
, tan(θ2)=

Y+H

X
, (3.4b)

where H is the semi-height of a planar exit. To simplify the results, we define A(x) =
1+erf(S0cos(x)), and S0=U0

√

β0 as the exit speed ratio; the free jet flow field results are:

n1(X,Y)

n0
=

θ2−θ1

2π
exp(−S2

0)+
1

4

[

erf(S0sinθ2)−erf(S0sinθ1)
]

+
S0

2
√

π

∫ θ2

θ1

exp(−S2
0sin2θ)cosθerf(S0cosθ)dθ, (3.5a)

U1(X,Y)
√

2RT0
=

1

2π

n0

n1
exp(−S2

0)

{

1

2
S0(θ2−θ1)+

1

4
S0

[

sin(2θ2)−sin(2θ1)
]

+

√
π

2

∫ θ2

θ1

(1+2S2
0 cos2θ)cosθexp(S2

0cos2θ)A(θ)dθ

}

, (3.5b)

V1(X,Y)
√

2RT0
=

1

4
√

π

n0

n1

{

exp(−S2
0sin2θ1)cosθ1 A(θ1)−exp(−S2

0sin2θ2)cosθ2 A(θ2)

}

, (3.5c)

T1(X,Y)

T0
=

1

6π

n0

n1
exp(−S2

0)

{

(3+S2
0)(θ2−θ1)+

S2
0

2

[

sin(2θ2)−sin(2θ1)
]

+2
√

π
∫ θ2

θ1

(2+S2
0cos2θ)S0cosθexp(S2

0cos2θ)A(θ)dθ

}

−
U2

1+V2
1

3RT0
, (3.5d)

P1(X,Y)=n1(X,Y)kT1(X,Y). (3.5e)

The free jet center line results are:

θ1=−θ2, tanθ2=
H

X
, (3.6a)

n1(X,0)

n0
=

θ2

π
exp(−S2

0)+
1

2
erf(S0sinθ2)

+
S0√

π

∫ θ2

0
exp(−S2

0sin2θ)cosθerf(S0cosθ)dθ, (3.6b)

U1(X,0)
√

2RT0
=

1

2π

n0

n1
exp(−S2

0)

{

S0θ2+
S0

2
sin(2θ2)

+
√

π
∫ θ2

0
(1+2S2

0 cos2 θ)cosθexp(S2
0cos2θ)A(θ)dθ

}

, (3.6c)
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T1(X,0)

T0
=

−U2
1

3RT0
+

1

6π

n0

n1
exp(−S2

0)

{

(6+2S2
0)θ2+S2

0sin(2θ2)

+4
√

π
∫ θ2

0
(2+S2

0 cos2 θ)S0cosθexp(S2
0cos2 θ)A(θ)dθ

}

. (3.6d)

This set of solutions include two types of factors: geometry factors represented by θ1 and
θ2 and complex nonlinear relations with normalized average exit velocity, S0.

There are asymptotes for the centerline velocity and temperature:

lim
X→∞

U1(X,0)
√

2RT0
=

πexp(−S2
0)
{

S0+
√

π( 1
2+S2

0 exp(S2
0))

}

exp(−S2
0)+

√
πS0

, (3.7a)

lim
X→∞

T1(X,0)

T0
=

3+2S2
0+2

√
πS0exp(S2

0)(2+S2
0)

exp(−S2
0)+

√
πS0

. (3.7b)

4 High Knudsen number jet impingement on a normally set

flat diffuse plate

This section presents solutions for rarefied jet impingement on a flat diffusive plate, as an
extension from the problem of rarefied jet into a vacuum.

Figs. 1 and 2 illustrate the problem of impingement flow with diffuse reflections and
the corresponding velocity phase. For a high speed gaseous jet into a vacuum from a
nozzle with width 2H, the flow at the exit is characterized by a number density n0 and
a temperature T0. At any point in front of the nozzle, the velocity phase consists of two
groups of particles, one group from the nozzle and the other from the diffused flat plate.

This set of solutions are closely related to those for free jet flows. For example, there

Figure 1: Illustration for the problem of jet im-
pingement on a flat plate with diffuse reflections.

Figure 2: Thermal velocity phases for the problem of
jet impingement on a flat plate with diffuse reflections.
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are two parts in the number density at the plate surface:

n2(L,Y)=n1(L,Y)+n′
w(Y). (4.1)

On the right hand side, n′
w(Y) is the density factor contributed from the plate surface, and

n1(L,Y) is the jet solution directly evaluated from Eq. (3.5a). It can be assumed that the
group of reflected particles at the wall follow a special Maxwellian velocity distribution:

fw(Y)=nw(Y)
βw

π
exp

[

−βw(c
2
1+c2

2)
]

. (4.2)

An integration over u as a moment yields the flux relation at the wall:

n1(L,Y)U1(L,Y)=
nw

√
RTw√

2π
. (4.3)

The slip velocity at the plate is:

V2(L,Y)=

√
RTwV1(L,Y)

√
RTw+

√
π/2U1(L,Y)

. (4.4)

On the plate, the temperature component is along the X-direction. The normal is defined
along the X-direction.

T2(L,Y)

T0
=

nwTw

2n2(L,Y)T0
+

n0exp(−S2
0)

2πn2(L,Y)

∫ θ2

θ1

cos2 θ
{

2+2S2
0 cos2θ

+
√

πS0cosθ(3+2S2
0 cos2θ)exp(S2

0cos2θ)A(θ)
}

dθ, (4.5a)

P2(L,Y)=n2(L,Y)kT2(L,Y). (4.5b)

The pressure and shear stress coefficients along the wall surface are:

Cp=
nwTw

2n0T0S2
0

+
exp(−S2

0)

2πS2
0

∫ θ2

θ1

cos2 θ
{

2(1+S2
0 cos2 θ)

+
√

πS0cosθ(3+2S2
0 cos2θ)exp(S2

0cos2 θ)A(θ)
}

dθ, (4.6a)

C f =
1

2πS2
0

{

(cos2θ1−cos2θ2)exp(−S2
0)+

√
πS0cos3θ1exp(−S2

0sin2 θ1)A(θ1)

−
√

πS0cos3θ2exp(−S2
0sin2 θ2)A(θ2)

}

. (4.6b)

The location with the maximum shear stress is of special interest, and an approximation
for this location is:

ycrit

D
=

√

(L/D)2

3S2
0

−
1

12
, (4.7)
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this result is based on one assumption that the L/D is large. In one NASA dust experi-
ment, it was found that the largest ground shear stress happens at a location proportional
to L/D, while inversely proportional to the nozzle exit Mach number [24]. Eq. (4.7) pro-
vides a strong support for this result. The corresponding simplified maximum shear
stress value is:

τmax

ρ0U2
0/2

=
1

2
√

3π
[1+erf(S0)]

[

1+
3

2S2
0

]D

L
. (4.8)

Heat flux on the plate surface is:

Cq=
exp(−S2

0)

4πS2
0

[

∫ θ2

θ1

{√
π

S0

[3

2
+6S2

0cos2θ+2S4
0 cos4θ+

(1

2
+β0V2

2

)

(1+2S2
0 cos2θ)

]

×exp(S2
0cos2θ)A(θ)+cosθ(6+2S2

0 cos2 θ+2β0V2
2 )

}

cosθdθ

−
V2

U0

∫ θ2

θ1

sin(2θ)
{

2+2S2
0 cos2 θ

+
√

πexp(S2
0cos2 θ)A(θ)(3S0cosθ+2S3

0 cos3θ)
}

dθ

]

−
1+

βwV2
2

2√
πS3

0

nw

n0
. (4.9)

The density field n2(X,Y) is:

n2(X,Y)=n1(X,Y)+
L−X

2π

∫ W

−W

nw(y0)dy0

(Y−y0)2+(X−L)2
, (4.10)

where the integral element is the contribution from the plate. If we define α as the slop
for a line connecting point P(X,Y) and a specific point (L,y0) at the plate surface, the
integration on α is transformed to an integration over y0, with another format of velocity-
position relation:

u

v
= tan(α)=

X−L

Y−y0
(4.11)

and

dα=
X−L

(Y−y0)2+(X−L)2
dy0. (4.12)

The integration on y0 ranges within a region (−W,W), which can be either finite or infi-
nite.

Similarly, other flow field solutions are as follows:

U2(X,Y)=
n1

n2
U1−

(L−X)2

4n2

√

πβw

∫ W

−W

nw(y0)dy0
[

(Y−y0)2+(X−L)2
]

3
2

, (4.13a)

V2(X,Y)=
n1

n2
V1+

(L−X)

4n2

√

πβw

∫ W

−W

nw(y0)(Y−y0)dy0
[

(Y−y0)2+(X−L)2
]

3
2

, (4.13b)
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T2(X,Y)=
n1

n2
T1+

L−X

2n2πβw

∫ W

−W

nw(y0)dy0

(Y−y0)2+(X−L)2
−

U2
2+V2

2

3R
, (4.13c)

P2(X,Y)=n2(X,Y)kT2(X,Y). (4.13d)

5 High Knudsen number jet impingement on a normally set

flat specular plate

A specular plate is the second limiting case for molecule reflections, corresponding to
the diffuse reflection type. These two limiting cases bound all practical plate reflections,
which are special combinations of completely specular and completely diffuse reflections.
For specular reflections, a crucial requirement is to satisfy the zero flux along the normal
direction of the wall, while the tangent direction velocity is unchanged. A slip velocity
along the tangent direction is expected.

Fig. 3 illustrates this problem and an approach to solve this problem. An identical
”virtual” nozzle is placed at the other side of the plate. The logic for this approach is the
same as the continuum potential flow of a point source at one side of a flat plate. Fig. 4
shows the velocity phase for a general point P(X,Y) between the nozzle and the plate.
This velocity phase for the new nozzle has the same format of a general zero-centered
Maxwellian distribution which is characterized by the same n0 and T0. By following this
approach, we can illustrate the particle’s thermal velocity components related to the ac-
tual and virtual nozzles within one picture. Molecules from the true nozzle are confined
inside the triangle with a vertex (−U0,0), and those particles reflected from the specu-
lar plate, i.e., the virtual nozzle, are confined within the other triangular domain with a
vertex (U0,0).

With the same gaskinetic theory for the diffuse reflection case, and definitions for two

Figure 3: Illustration for the problem of jet impinge-
ment on a flat plate with specular reflections.

Figure 4: Thermal velocity phases for the problem
of jet impingement on a flat plate with specular
reflections.
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new angles,

θ3=π−arctan
Y+H

2W−X
, θ4=π−arctan

Y−H

2W−X
, (5.1)

the following macroscopic properties can be obtained:

n3(X,Y)

n0
=

exp(−S2
0)

2π
(θ2−θ1+θ4−θ3)+

1

4

[

erf(S0sinθ2)−erf(S0sinθ1)+erf(S0sinθ4)

−erf(S0sinθ3)
]

+
S0

2
√

π

{

∫ θ2

θ1

exp(−S2
0sin2θ)cosθerf(S0cosθ)dθ

+
∫ θ4

θ3

exp(−S2
0 sin2 θ)cosθerf(S0cosθ)dθ

}

, (5.2a)

U3(X,Y)
√

2RT0
=

exp(−S2
0)

2π

n0

n3

{

S0

2
(θ2−θ1+θ3−θ4)+

S0

4

[

sin(2θ2)−sin(2θ1)+sin(2θ3)

−sin(2θ4)
]

+

√
π

2

[

∫ θ2

θ1

(1+2S2
0 cos2θ)cosθexp(S2

0cos2θ)A(θ)dθ

+
∫ θ4

θ3

(1+2S2
0 cos2θ)cosθexp(S2

0cos2θ)
[

1−erf(S0cosθ)
]

dθ
]

}

, (5.2b)

V3(X,Y)
√

2RT0
=

1

4
√

π

n0

n3(X,Y)

{

exp(−S2
0sin2θ1)cosθ1 A(θ1)−exp(−S2

0sin2 θ2)cosθ2 A(θ2)

+exp(−S2
0sin2θ4)cosθ4

[

1−erf(S0cosθ4)
]

−exp(−S2
0sin2θ3)cosθ3

[

1−erf(S0cosθ3)
]

}

, (5.2c)

T3(X,Y)

T0
=

exp(−S2
0)

6π

n0

n3

{

S2
0

2

[

sin(2θ2)−sin(2θ1)+sin(2θ4)−sin(2θ3)
]

+(3+S2
0)(θ2−θ1

+θ4−θ3)+2
√

π
[

∫ θ2

θ1

(2+S2
0 cos2θ)S0cosθexp(S2

0cos2θ)A(θ)dθ

−
∫ θ4

θ3

(2+S2
0 cos2θ)S0cosθexp(S2

0cos2θ)
[

1−erf(S0cosθ)
]

dθ
]

}

−
U2

3+V2
3

3RT0
, (5.2d)

P3(X,Y)=n3(X,Y)kT3(X,Y). (5.2e)

It is evident that the above solutions of density, velocity, temperature, and pressure re-
sults have two parts due to the real and virtual nozzles.

As to the plate properties, they simplify to concise formats due to the symmetry and
U3=0 condition. The density, slip velocity, temperature, and pressure at the plate are:

n3(L,Y)

n0
=

exp(−S2
0)

π
(θ2−θ1)+

1

2
[erf(S0sinθ2)−erf(S0sinθ1)]
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+
S0√

π

[

∫ θ2

θ1

exp(−S2
0sin2θ)cosθerf(S0cosθ)

]

dθ, (5.3a)

V3(L,Y)
√

2RT0
=

n0

2
√

πn3

{

exp(−S2
0sin2θ1)cosθ1 A(θ1)−exp(−S2

0sin2θ2)cosθ2 A(θ2)
}

, (5.3b)

T3(L,Y)

T0
=

exp(−S2
0)

2π

n0

n3(L,Y)

[

∫ θ2

θ1

cos2 θ
{

2(1+S2
0 cos2 θ)

+
√

πS0cosθ(3+2S2
0 cos2 θ)exp(S2

0 cos2 θ)A(θ)
}

dθ+
∫ θ4

θ3

cos2θ
{

2(1+S2
0 cos2θ)

−
√

πS0cosθ(3+2S2
0 cos2 θ)exp(S2

0 cos2 θ)
[

1−erf(S0cosθ)
]

}

dθ

]]

, (5.3c)

Cp=
exp(−S2

0)

2πS2
0

[

∫ θ2

θ1

cos2 θ
{

2(1+S2
0 cos2θ)

+
√

πS0cosθ(3+2S2
0 cos2 θ)exp(S2

0cos2θ)A(θ)
}

dθ+
∫ θ4

θ3

cos2 θ
{

2(1+S2
0 cos2θ)

−
√

πS0cosθ(3+2S2
0 cos2 θ)exp(S2

0cos2θ)
[

1−erf(S0cosθ)
]

}

dθ

]

. (5.3d)

Shear stress and heat flux on the plate are zero due to the symmetry condition:

τw =qw =0. (5.4)

Along the impingement flow center line, due to special geometry relations, the solutions
further degenerate:

θ1=−θ2, θ4=2π−θ3, (5.5a)

tanθ2 =
H

X
, tanθ3=

H

X−2L
, (5.5b)

n3(X,0)

n0
=

S0√
π

{

∫ θ2

0
exp(−S2

0 sin2θ)cosθerf(S0cosθ)dθ

+
∫ π

θ3

exp(−S2
0sin2θ)cosθerf(S0cosθ)dθ

}

+
exp(−S2

0)

π
(π+θ2−θ3)+

1

2

[

erf(S0sinθ2)−erf(S0sinθ3)
]

, (5.5c)

U3(X,0)
√

2RT0
=

1

2π

n0

n3
exp(−S2

0)

{

S0(θ2+θ3−π)+
1

2
S0

[

sin(2θ2)+sin(2θ3)
]

+
√

π
[

∫ θ2

0
(1+2S2

0 cos2θ)cosθexp(S2
0cos2 θ)A(θ)dθ

+
∫ π

θ3

(1+2S2
0 cos2 θ)cosθexp(S2

0cos2θ)
[

1−erf(S0cosθ)
]

dθ
]

}

, (5.5d)
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T3(X,0)

T0
=

1

6π

n0

n3
exp(−S2

0)

{

S2
0

[

sin(2θ2)−sin(2θ3)
]

+(6+2S2
0)(θ2−θ3+π)

+4
√

π
[

∫ θ2

0
(2+S2

0 cos2θ)S0cosθexp(S2
0cos2θ)A(θ)dθ

−
∫ π

θ3

(2+S2
0cos2θ)S0cosθexp(S2

0cos2θ)
[

1−erf(S0cosθ)
]

dθ
]

}

−
U2

3

3RT0
. (5.5e)

6 Validations

Even though most of the above analytical solutions involve several integral terms that
cannot be explicitly removed, numerical evaluations were convenient via a computer.
Most simulations were performed with a special DSMC package, GRASP [25]. In sim-
ulations for the free jet problem, an inlet boundary was used to represent the nozzle
which was located at the left bottom corner; a symmetric line at the domain bottom rep-
resents the jet centerline and vacuum boundaries for other sides. For the jet impingement
problem, an extra diffused or specular wall replaced the right vacuum boundary at the
right side of the simulation domain. For less rarefied situations, molecular collisions
were simulated using the Variable Hard Sphere (VHS) model, and the No Time Counter
(NTC) method was adopted for the simulations. The mesh was uniform with ∆x =∆y
and ∆x/λ0 = 1.0, and the time step was ∆t/t0 = 1.0, where λ0 and t0 were the reference
mean free path and reference collision time based on the exit properties for the Kn =100
scenario. For different DSMC simulations, a simulation time of at least 10,000t0 was per-
formed before actual sampling processes started.

6.1 Free jet expanding into a vacuum

The rarefied free jet into a vacuum problem is different from the Prandtl-Meyer flow
where gas can expand around the duct lip. If the exit average velocity is, U0 = 0, the
boundary line between the flow field and a vacuum is a vertical line extending upward
from the upper exit lip. When the average velocity U0 increases, the boundary line levels
down towards the plume center, though it still starts with the upper lip (0,H). For the
analytical solutions, an effective boundary line of n/n0=0.0001 is introduced to represent
the plume edge [16], and the comparisons were restricted to areas within this boundary.

From the previous validation work, we conclude that the analytical free plume solu-
tions, e.g., number density, velocity and pressure fields, are accurate. This set of free
molecular flow solutions have some advantages over the traditional plume solution,
which usually only contains the density results. Because the solutions for the problem
plume impingement on a flat surface rely on the ones for the free plume, a detailed vali-
dation on the impingement solutions can further support free plume solutions. Because
of this, the next two subsections validate the solutions for the problems of jet impinge-
ment thoroughly.
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6.2 High Knudsen number jet impingement on a diffuse flat plate

Figs. 5, 6 and 7 show density, and velocity contours from the exact solutions and DSMC
simulations. The Knudsen number is 100, which represents a highly rarefied flow well,
and the speed ratio S0=2.0. For this test case, essentially identical agreement is observed,
and strongly supports the analytical collisionless flow solutions. To check the Knudsen
number effects on flow field results, Fig. 8 shows the density contours at Kn= 0.01 and
1.0. As we can see, the patterns eventually transform from the collisionless flow to a near
continuum flow with a developing shock wave.

Fig. 9 shows the wall pressure distributions. This figure illustrates the rarefication
effect with a fixed speed ratio, S0 = 2.0. A DSMC simulation was performed to validate
the collisionless pressure results. In the collisionless flow case, faster particles are less im-
peded and there are more high kinetic energy particles reaching the plate surface without
losing their kinetic energy. As a result, higher Knudsen number flows have steeper pres-
sure distributions at the plate center region. For flows with denser gas, more collisions
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reduce the incoming particles’ kinetic energy and result in a relatively flatter pressure
distribution curve.

Fig. 10 shows the rarefication effects on the plate surface shear stress and the Knudsen
numbers are different, but the speed ratios are the same. A group of DSMC simulation
results of shear stress along the plate surface are used to validate the high Knudsen num-
ber exact solution, Eq. (4.6b). The comparison yields identical results. As the Kn number
decreases, more frequent collisions scatter particles off the main flow direction and shift
the highest shear stress point further off the center region. The highest shear stress coef-
ficients and the corresponding places do not vary monotonically with the Kn numbers.

Fig. 11 shows the heat flux at the plate surface with different Knudsen numbers and
the same speed ratio S0=2. An exact analytical rarefied flow heat flux coefficient, Eq. (4.9),
is plotted to compare the results. The agreement between the analytical and DSMC sim-
ulation results for the exact collisionless flow is fairly good. As the Kn number continues
to decrease, the heat flux continues to drop because more frequent collisions scatter high
speed molecules before they reach the plate.

Fig. 12 shows profiles of normalized slip velocity along a diffusive plate surface,
V(L,y), with the same S0 = 2 but different Kn numbers. This picture illustrates that the
slip velocity does not always decrease following the Knudsen numbers. This can be ex-
plained by the fact that there are two competing factors in the slip velocity expression of
Eq. (4.4). The collisions affect them differently with varying Knudsen numbers.

Figs. 13 and 14 show the centerline number density and velocity for the diffuse plate
surface scenario. At the exit, the density profiles increase due to the fact that faster
molecules effuse from the exit, and this effect is larger than the reflected back particles.
With the same reason, the centerline velocity increases as S0 increases; at the plate cen-
ter, all the centerline velocities must be zero the satisfy the non-penetration boundary
condition.
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6.3 Collisionless jet impingement on a flat specular plate

Fig. 15 compares analytical collisionless flow density results, Eq. (5.2a), and the corre-
sponding results from DSMC simulations, Kn=100 and S0 =2. Figs. 16 and 17 compare
the corresponding velocity components. Fig. 18 shows comparison of exact analytical
Eq. (5.2d) and DSMC simulation results of the temperature field. For these cases, the
speed ratio is S0=2 for the analytical and DSMC simulation results, while a Kn number
of 100 is used for the DSMC simulation. These four figures yield the following conclu-
sions:

1. The analytical and numerical simulation results are virtually identical, and this fact
indicates results are correct for this specular reflection case;

2. Due to the virtual nozzle, the flow patterns are symmetric with ∂()/∂n= 0 at the
plate surface. By comparison, this pattern is not illustrated by the diffuse reflection
case;
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3. The U-velocity at the plate is zero to satisfy the zero flux wall boundary condition;

4. At regions close to the plate, the temperature is high and irrelevant to the plate tem-
perature. This is because at that region, there are two groups of molecules moving
along opposite directions but the same speed. As a result, the velocity distribution
function has a flatter span which means a higher temperature.

Figs. 19 and 20 show several pressure coefficient distributions along a specular reflec-
tive surface. The first one compares the rarefication effect the exact analytical Eq. (5.3d)
is presented and validated with a DSMC simulation, where the speed ratio is S0=2. The
pressure distribution at the plate center region achieves the maximum when the Kn num-
ber is the largest, i.e., collisionless flows. The other figure compares the speed ratio effects
on the pressure results. If the gas is collisionless, then an increase of the speed ratio re-
sults in steeper and narrower pressure profiles because particles have high velocity and
less time to diffuse along the direction normal to the jet flow direction.
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Fig. 21 presents profiles of normalized slip velocity along a specular plate, with S0 =
2 and different Kn numbers; the collisionless flow results are validated with a DSMC
simulation. As the Kn number decreases, extra collisions actually push particles off the
high density plate center. More particles with higher V-velocity component contribute
to the slip velocity. This is the reason that the slip velocity increases with a decreasing
Kn number. Different from diffuse plate slip velocity, Fig. 12 for the specular reflections,
the slip velocity increases monotonically with lower Knudsen numbers, due to no extra
contribution from the outer region to the plate center.

Fig. 22 shows profiles of centerline density for the case of a specular reflective flat
plate with Kn= 100 but different S0. As the speed ratio increases, more molecules fire
from the nozzle, resulting in higher density profiles. The S0 = 2 profile is validated by
DSMC simulation results. The density profile shifts up with S0, due to more incoming
particles from the exit and more reflected particles from the plate.
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7 Conclusions

This paper investigates collisionless planar jet impinging on a flat plate with either com-
pletely diffused or completely specular reflections. First, solutions for a planar free jet
expanding into a vacuum are reviewed because they are the foundations for the impinge-
ment problem. An approach with a crucial velocity-location relation is used to solve these
problems. Flowfield properties which include number density, velocity, temperature, and
pressure formulae are presented for these problems. For the jet impingement problems,
surface properties such as pressure coefficients, shear stress, heat flux, and slip veloc-
ity are included. Several DSMC simulations are performed to validate these analytical
solutions, good or even essentially identical agreement is observed. To understand the
rarefication effects on the flows, several DSMC simulation results for different Knudsen
number flows are also presented. When flows become near continuum, the departure
from the exact solutions becomes more significant.

These final solutions are complex, and involve both geometry and speed ratio factors.
The fundamental assumptions are the Maxwellian distributions at the nozzle exit and a
velocity-locations relation. These solutions are the counterpart solutions for the contin-
uum gaseous jet and jet impingement problems and provide us some insights to study
these flows.
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