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Abstract. Linear/nonlinear and Stokes based-stabilizations for the filter equations for
damping out primitive variable (PV) solutions corrupted by uniformly distributed ran-
dom noises are numerically studied through the natural convection (NC) as well as the
mixed convection (MC) environment. The most recognizable filter-scheme is based on
a combination of the negative Laplace equation multiplied with the selection of the
spatial scale and a linear function in order to preserve the uniqueness of the filtered
solution. A more complicated filter-scheme, based on a Stokes problem which couples
a filtered velocity and a filtered (artificial) pressure (or Lagrange multiplier) in order
to enforce the incompressibility constraint, is also studied. Linear and Stokes based-
filters via nested iterative (NI) filters and the consistent splitting scheme (CSS) are pro-
posed for the NC/MC problems. Inspired by the total-variation (TV) model of image
diffusion, well preserved feature flow patterns from the corrupted NC/MC environ-
ment are obtained by TV-Stokes based-filters together with the CSS. Our experimental
results show that our proposed algorithms are effective and efficient in eliminating
the unwanted spurious oscillations and preserving the accuracy of thermal convective
fluid flows.

AMS subject classifications: 65M60, 76M10

Key words: Linear/nonlinear differential filter, Stokes differential filters, Leray-alpha model,
total-variation regularization.

1 Introduction

The differential filter is one of the most straightforward regularization or stabilization
methods in Computational Fluid Dynamics (see [7] for a review), where resolved ampli-
tudes of fluctuations of fluid flows can be diminished. Let ξ and ξ be an unfiltered and
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a filtered scalar or vector field variable, respectively. The model equation is based on a
partial differential equation of evolution type described as follows (e.g., [8, 9]):

Given ξ, find a unique solution ξ such that

{
−α2∇2ξ+ξ= ξ, in Ω,

ξ= ξ, on ∂Ω,
(1.1)

where α, 0< α, represents a regularization length (or spatial) scale. By adjusting α, the
reduction of the unwanted spurious oscillations corrupted by uniformly distributed ran-
dom noises, can be accomplished simply by the smoothing filter (−α2∇2+ I)−1, where
∇2 and I are the Laplace and identity operators, respectively.

When considering the incompressible flow problems, the extension to Eq. (1.1) is done
by adding a filtered pressure gradient term as a Lagrange multiplier and enforcing the
incompressibility constraint, often referred to as the Stokes differential filter (e.g., [10,12]).
The method is described as follows:

Given ξ, find a pair of unique solutions (ξ,λ) such that





−α2∇2ξ+ξ+∇λ=ξ, in Ω,

∇·ξ=0, in Ω,

ξ=ξ, on ∂Ω,

(1.2)

where the filtered pressure λ is assumed known up to an arbitrary constant. It is known
that the choice of the boundary conditions in (1.1) and (1.2) is an open problem. However,
those that we used are the most reasonable choices and are widely accepted in literature.

Let us consider the NC as well as the MC environment. Assume at each time, the
primitive variable (PV) ξ={u,v,p,T}, where u and v are velocities, p is the pressure and
T is the temperature, in this study is generated from the error-free one and is assumed to
have random noise, as shown in Eq. (1.3)

ξ= ξfree+ωσ̂, (1.3)

where the term σ̂ is the standard deviation of the random errors, which is supposed
constant and ω is a random variable with normal distribution, zero mean, and unitary
standard deviation, so that Eq. (1.3) describes an unpredictable error in the solution of
ξ. In order to recover/preserve the fluid flow details as much as possible, the noise
is removed in different successive filtering steps that consist of the following four-step
strategy [13]:

At each time, evolve-filter-deconvolve-relax.

The four-step strategy can be sequentially described as follows:

1. The evolution step is used to determine each PV (or unfiltered) solution at the n+1th

time-step from the nth time-step.
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2. The filtration step is used to stabilize the solutions and conduct the noise reduction
by means of Eq. (1.1) or Eq. (1.2).

3. The deconvolution step is used to enhance the accuracy of the filtered solutions
when using Eq. (1.1) or Eq. (1.2) again.

4. The relaxation step is used to reduce the induced numerical diffusion driven by the
filtration and deconvolution steps as the time-step size ∆t tends to zero (e.g., [14]).

As we shall see below, proper use of the deconvolution and the relaxation steps is
required when adding the random noise. Based on our numerical experiments, the filtra-
tion step used to reduce noise in numerical data with linear/nonlinear filters would not
be efficiently worked out due to the one-step iteration. Inspired by the works of Ingram
et al. [15] and Mays [17], in turn, we shall combine the filtration step with the decon-
volution step and formulate these two steps as a nested iterative process, coined as an
iterative filter/deconvolve step that dampens spurious solutions and correctly predicts the
flow. Henceforth, the relaxation step will work effectively. A three-step strategy is:

At each time, evolve-‘iterative filter/deconvolve’-relax.

Iterative differential and iterative Stokes-based filters may work fine in a class of large
amplitudes of fluctuations of an unfiltered solution. As reported by many others, these
diffusion-based filters may introduce too much diffusion when faced with steep gradi-
ents and sharp corners of the fluid flow structure, and other applications for example [6].
In this work, the TV based regularization is used; adding the anisotropic filter (or nonlin-
ear diffusion) term in Eqs. (1.1) and (1.2) improves the situation. By introducing a smooth
auxiliary (or dual) variable(s) in the shrinkage formulation

g(ξ)=





∇ξ

‖ξ‖TV

, if ‖ξ‖TV≥ǫ,

0, otherwise,

(1.4)

where ‖ξ‖TV :=
∣∣ ∂ξ

∂x

∣∣+
∣∣ ∂ξ

∂y

∣∣, and ǫ>0 is the regularized parameter chosen near a zero value,

Eqs. (1.1) and (1.2) can be reformulated as:
Given ξ, find a unique solution ξ such that

{
−α2∇2ξ−α2

TV∇·
(

g(ξ)
)
+ξ= ξ, in Ω,

ξ= ξ, on ∂Ω,
(1.5)

and given ξ, find a pair of unique solutions (ξ,λ) such that





−α2∇2ξ−α2
TV∇·

(
g(ξ)

)
+ξ+∇λ=ξ, in Ω,

∇·ξ=0, in Ω,

ξ=ξ, on ∂Ω,

(1.6)
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where αTV, 0<αTV, also represents a regularization length scale. It is well-known that the
choice of regularization parameters α and αTV is problem-dependent, and the method for
systematically choosing these parameters is currently not known. Thus, we will present
the best results by comparing various choices of these parameters. The use of (1.4) is
related to the nonlinear diffusion approach introduced in [11]. Instead of using Eq. (1.4)
to control diffusion, the authors in [11] use an indicator function to control diffusion.

Using the combination of the consistent splitting scheme (CSS) [18] for solving the
momentum equations and mixed finite element (FE) methods for spatial discretization
(see e.g., [19]), the aim of the present research is:

• to numerically study linear and nonlinear iterative differential filters (cf. Algo-
rithm 3.1 and Algorithm 3.3 describe Eq. (1.1) and Eq. (1.5), respectively) for cutting
down on the unpredictable error in the solutions of {p,T}, and use iterative Stokes
differential filters (cf. Algorithm 3.2 and Algorithm 3.4 describe Eqs. (1.2) and (1.6),
respectively) for reducing the unpredictable error in the solution of u at each time-
step,

• to propose a decoupling scheme for ξ̄ and λ from the system of two iterative Stokes
differential filters using the CSS (cf. Eqs. (1.2) and (1.6)), and

• to shed some light on the numerical study of the Leray-alpha model for NC and
MC problems (cf. Algorithm 4.1).

We remark that there are other choices of solvers for the NC and MC problems, see
for example [3] and [4].

This paper contains six sections. In this first section, the current research in the field
of regularization methods of fluid flows is introduced and the motivation/feature for
using the proposed method in the thermal convection problem are stated. Next, a two-
dimensional transient incompressible NC problem in the presence of the point-source
function is introduced in Section 2. In Section 3, the computational algorithm of the
Leray-alpha model is shown and the key features of two kinds of iterative regularization
techniques are stated. In Section 4, implementations of the numerical procedures of each
algorithm are given. A list of worked examples are employed to demonstrate and discuss
the results of the proposed algorithms in Section 5. Finally, the overall contribution of
this work to the field of iterative regularization methods on NC and MC flow problems
is discussed in the Conclusion.

2 Problem description

Let Ω be a bounded domain in the Euclidean space R
2 with a piecewise smooth bound-

ary ∂Ω. A fixed final time is denoted by t f . Let ∂Ω = ∂Ω1∪∂Ω2, where ∂Ω consists of
two piecewise smooth boundaries. The aim of the following problem is to study the
fluid flow structure of the velocity, the pressure and the temperature fields driven by a
specified strength of a time-varying heat source G(t) in (0,t f ]. The governing equations
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for the two-dimensional time-dependent NC problem, assuming air to be of constant
thermo-physical properties with the Boussinesq approximation considered valid, are the
Navier-Stokes equation (x- and y- momentum equations), the continuity equation (or the
incompressibility constraint) and the equation of energy. These equations are described
by the PV formulation and are normalized using the appropriate non-dimensional pa-
rameters, and turn out as follows [20]:





∂u

∂t
+(u·∇)u=−∇p+Pr∇2u+RaPrTj, in Ω×(0,t f ],

∇·u=0, in Ω×(0,t f ],

u=0, on ∂Ω×(0,t f ],

∂T

∂t
+(u·∇)T=∇2T+G(t)δk(x−x†)δk(y−y†), in Ω×(0,t f ],

T|∂Ω1
=0 and

∂T

∂n

∣∣∣
∂Ω2

=0, on ∂Ω×(0,t f ],

(2.1)

with the initial conditions

u(x,t=0)=0 and T(x,t=0)=0, in Ω, (2.2)

where u(x,t)= (u,v) is the velocity field, p(x,t) is the pressure scalar field, T(x,t) is the
temperature scalar field, and (x†,y†) is the location of the point source.

The following non-dimensional variables are defined:

x=
x′

dx
, y=

y′

dy
, t=

κt′

d2
y

, u=
dyu′

κ
, T=

T′−T′cold

T′hot−T′cold

,

p= p⋆−(T′cold−T′ref)
d3

y

κ2
α∗gy, p⋆=

d2
y p′

ρκ2
,

and T′ref = (T′hot+T′cold)/2 is the average temperature of the system, α∗ is the thermal
expansion coefficient, Pr=ν/κ is the Prandtl number, and Ra= βTg(T′hot−T′cold)d

3
y

/
κν is

the Rayleigh number, where βT is the thermal expansion coefficient, g is the gravitation
constant, κ is the thermal diffusivity, ρ is the density, ν is the kinematic viscosity, j is
the unit vector in the y-direction, T′hot is the nominal bottom temperature, T′cold is the
dimensional temperature at the top boundary, dx is half of the width and dy is half of the
depth of the cavity. A two-dimensional square cavity is considered for the present study
with the physical dimensions given in Fig. 1.

The dimensionless strength of the heat source G(t) is related to the dimensional
strength G′(t′) as follows:

G(t)=
G′(t′)dy

(T′hot−T′cold)k̃d3
x

,

where k̃ is thermal conductivity. The characteristic temperature of the system T′hot is re-
lated to the characteristic magnitude of the dimensional heat source G′ref by the following
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Figure 1: Geometry, coordinates and a source location.

connection:

T′hot−T′cold =
G′ref

k̃
.

Combining Ra and the above result gives

Ra=α∗g
d3

yG′ref

κνk̃
.

The function δk(x−x†), for example, approximates the point source in the cavity and
becomes the Dirac delta function as k tends to infinity, and is defined by

δk(x−x†)=
k

2cosh2(k(x−x†))
.

Then, δk(y−y†) can be defined similar to δk(x−x†). In this work, in order to avoid having
the point-source distribution become too spiky, k=20 is used.

In what follows, two different types of regularization methods to control the irregular
and unstable fluid flows are revisited and proposed.

3 Mathematical formulation

It was Leray in 1934 [21] who introduced the regularization technique of incompressible
Newtonian fluid flow that can be described as follows:





∂u

∂t
+(u·∇)u=−∇p+ν∇2u+ f ,

∇·u=0,
(3.1)
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where u denotes convolution with a Gaussian function with a filter radius α > 0. The
idea of the Leray-alpha model is to replace convolution with a Gaussian function by the
so-called differential filter (or the alpha filter):

−α2∇2u+u=u. (3.2)

Its computational advantages were discussed by [7].
One of the main advantages of the differential filter is to filter out unwanted noise

from u. However, after filtering, the divergence free condition will be violated, see [1]
and [22] for more detailed discussions. Adding the filtered pressure gradient ∇λ as a
Lagrangian multiplier allows us to enforce the incompressibility constraint ∇·u=0. The
Leray-alpha model can be formulated as follows:





∂u

∂t
+(u·∇)u=−∇p+ν∇2u+ f ,

∇·u=0,

−α2∇2u+u+∇λ=u,

∇·u=0.

(3.3)

When converting this idea into the numerical solutions of the thermal convection flow
problems, the first step in the solution procedure is to discretise the above governing
equations, applying conventional differencing to the partial derivative terms. At each
time, each PV is determined using the four-step strategy. For time stepping, the second-
order backward difference method is used, while all nonlinear terms are treated using a
semi-implicit approach and a linear extrapolation involving the pressure and the temper-
ature in the momentum equations, i.e.,

wn,∗ :=

{
wn, n=1,

2wn−wn−1, n≥2,
(3.4)

where w = {u,p,T}. The decoupling scheme of the velocity and the pressure from the
momentum equations (cf. Eqs. (3.5) and (3.10)) and the filtered velocity and the filtered
pressure from the Stokes differential filter (cf. Eqs. (3.6) and (3.11)) based on the CSS is
used in order to reduce the (filtered) pressure boundary layer effect stemming from the
(filtered) pressure Poisson equation.

In general form, this can be expressed as:

Momentum Equations

Calculation of velocities

Evolution step




3un+1

2∆t
+(un,∗ ·∇)un+1

=
4un−un−1

2∆t
−∇pn,∗+Pr∇2un+1+PrRaTn,∗j, in Ω×(0,t f ],

un+1
∣∣
∂Ω

=0, on ∂Ω×(0,t f ].

(3.5)
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Filtration step





−α2∇2ũn+1+ũn+1+∇λ̃n =un+1, in Ω×(0,t f ],

ũn+1
∣∣
∂Ω

=0, on ∂Ω×(0,t f ],

(∇ψ̃n+1,∇q)=
(
un+1−ũn+1,∇q

)
, ∀q∈H1(Ω),

λ̃n+1= ψ̃n+1+λ̃n−α2∇· ũn+1.

(3.6)

Deconvolution step





−α2∇2˜̃un+1+
˜̃
un+1+∇

˜̃
λn = ũn+1, in Ω×(0,t f ],

˜̃
un+1

∣∣
∂Ω

=0, on ∂Ω×(0,t f ],

(∇
˜̃
ψn+1,∇q)=

(
ũn+1−

˜̃
un+1∇q

)
, ∀q∈H1(Ω),

˜̃
λn+1=

˜̃
ψn+1+

˜̃
λn−α2∇·

˜̃
un+1,

(3.7)

and

D(ũn+1) :=2ũn+1−
˜̃
un+1. (3.8)

Relaxation step

un+1=(1−χ)un+1+χD(ũn+1), (3.9)

where χ is a time relaxation parameter.

Calculation of pressure

Evolution step





(∇φn+1,∇q)=
(3un+1−4un+un−1

2∆t
,∇q

)
, ∀q∈H1(Ω),

pn+1=φn+1+pn,∗−Pr∇·un+1.

(3.10)

Filtration step





−α2∇2 p̃n+1+ p̃n+1= pn+1, in Ω×(0,t f ],

∂ p̃n+1

∂n

∣∣∣
∂Ω

=0, on ∂Ω×(0,t f ].

(3.11)
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Deconvolution step




−α2∇2˜̃pn+1+
˜̃
pn+1= p̃n+1, in Ω×(0,t f ],

∂
˜̃
pn+1

∂n

∣∣∣
∂Ω

=0, on ∂Ω×(0,t f ],

(3.12)

and

D( p̃n+1) :=2p̃n+1−
˜̃
pn+1. (3.13)

Relaxation step

pn+1=(1−χ)pn+1+χD( p̃n+1). (3.14)

Energy Equation

Evolution step




3Tn+1

2∆t
+(un+1 ·∇)Tn+1=

4Tn−Tn−1

2∆t
+∇2Tn+1, in Ω×(0,t f ],

Tn+1
∣∣
∂Ω1

=0 and
∂Tn+1

∂x

∣∣∣
∂Ω2

=0, on ∂Ω×(0,t f ].

(3.15)

Filtration step




−α2∇2T̃n+1+ T̃n+1=Tn+1, in Ω×(0,t f ],

T̃n+1
∣∣
∂Ω1

=0 and
∂T̃n+1

∂x

∣∣∣
∂Ω2

=0, on ∂Ω×(0,t f ].

(3.16)

Deconvolution step





−α2∇2˜̃Tn+1+
˜̃
Tn+1=Tn+1, in Ω×(0,t f ],

˜̃
Tn+1

∣∣∣
∂Ω1

=0 and
∂
˜̃
Tn+1

∂x

∣∣∣
∂Ω2

=0, on ∂Ω×(0,t f ],

(3.17)

and

D(T̃n+1) :=2T̃n+1−
˜̃
Tn+1. (3.18)

Relaxation step

Tn+1=(1−χ)Tn+1+χD(T̃n+1). (3.19)
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The above three sets of four-step computations works efficiently when there is no
random noise involved at each time. Now we assume un+1 in Eq. (3.5), pn+1 in Eq. (3.10)
and assume Tn+1 in Eq. (3.15) contain unpredictable random noise. We then observed
the following:

• Not only is the pressure being filtered (cf. Eq. (3.11)), but the temperature is also
being filtered (cf. Eq. (3.16)). Hence, using the differential filter to get the smooth
pressure and temperature solutions is an indispensable step towards solving the
NC flow problems.

• Owing to the one-step iteration, the relaxation step in Eqs. (3.8)-(3.9), Eqs. (3.13)-
(3.14) and Eqs. (3.18)-(3.19) also contain noise.

Putting the filtration step and the deconvolution step together to create an iterative
process dampens spurious oscillations at each iteration. Algorithm 3.1 and Algorithm
3.2 describe two iterative algorithms for linear and Stokes differential filters, respectively.
Here, a few notes are:

• Eqs. (3.6)-(3.7), Eqs. (3.11)-(3.12) and Eqs. (3.16)-(3.17) are formulated as iterative
algorithms.

• Computations to Eqs. (3.8) and (3.13)/(3.18) are replaced by Eqs. (4.8) and (4.13),
respectively (see Algorithm 4.2 and Algorithm 4.3).

• In these two algorithms, the stopping criterion depends on the desired value of N.

• Two DO-loops in Algorithm 3.2 are considered; an inner loop controls the discrete
Stokes differential filter for each j-th iteration and the convergence of (ξ j,λk) is con-
trolled by the choice of K, while an outer loop that is controlled by the choice of N
performs a smoothing effect in order to obtain filtered velocity solutions.

Algorithm 3.3 and Algorithm 3.4 describe two iterative algorithms for nonlinear TV
and TV Stokes differential filters, respectively. Here, a few notes are:

• The nonlinear diffusion filter term is treated as a semi-implicit form.

• The unfiltered variable ξ0 with the noise remains unchanged at each time-step. At
each iteration, the approximate profile of ξ j,h will be recovered in spite of the cor-
ruption term ξ0,h.

• To distinguish between Algorithm 3.2 and Algorithm 3.4, the auxiliary pressure
Poisson equation in Algorithm 3.4 is

(∇ψk,∇q)=
(
ξ0−ξ j,∇q

)
, ∀q∈H1(Ω)

instead of

(∇ψk,∇q)=
(
ξ j−1−ξ j,∇q

)
, ∀q∈H1(Ω).
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Algorithm 3.1: Solution of the algorithm for the iterative differential filter.

Set ξ0 :=ξn+1;
DO j=1,··· ,N

−α2∇2ξ j+ξ j =ξ j−1,

ξ j

∣∣
∂Ω1

=0 and
∂ξ j

∂x

∣∣∣
∂Ω2

=0 or
∂ξ j

∂n

∣∣∣
∂Ω

=0;

END DO
Update ξn+1← ξN.

Algorithm 3.2: Solution of the algorithm for the iterative Stokes differential filter.

Set ξ0 :=un+1;
DO j=1,··· ,N

Set λk−1 :=0
DO k=1,··· ,K

−α2∇2ξ j+ξ j+∇λk−1=ξ j−1,

ξ j

∣∣
∂Ω

=0,

(∇ψk,∇q)=
(
ξ j−1−ξ j,∇q

)
, ∀q∈H1(Ω),

λk =ψk+λk−1−α2∇·ξ j;

END DO
END DO
Update un+1← ξN .

Note that Algorithm 3.1 is used for the temperature and pressure while Algorithms
3.2 is used for the velocity. Moreover, Algorithms 3.1-3.2 are used when the solutions are
smooth enough. When the solutions contain sharp gradients, we have to replace Algo-
rithms 3.1-3.2 by Algorithms 3.3-3.4 respectively, which are TV-based methods designed
to capture the sharp gradients.

4 Numerical procedure

A complete description of the CSS to solve the thermal convection problems can be found
in [19]. In the following, we will provide a brief account of the numerical procedure. Note
that it is proved in [18] that the CSS is unconditionally stable.
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Algorithm 3.3: Solution of the algorithm for the iterative TV differential filter.

Set ξ0 :=ξn+1;
DO j=1,··· ,N

−α2∇2ξ j−α2
TV∇·

( 1

‖ξ j−1‖TV
∇ξ j

)
+ξ j=ξ0,

ξ j

∣∣
∂Ω1

=0 and
(

α2
∂ξ j

∂x
+α2

TV

1

‖ξ j−1‖TV

∂ξ j

∂x

)∣∣∣
∂Ω2

=0 or
(

α2
∂ξ j

∂n
+α2

TV

1

‖ξ j−1‖TV

∂ξ j

∂n

)∣∣∣
∂Ω

=0;

END DO
Update ξn+1← ξN .

Algorithm 3.4: Solution of the algorithm for the iterative TV Stokes differential filter.

Set ξ0 :=un+1

DO j=1,··· ,N
Set λk−1 :=0
DO k=1,··· ,K

−α2∇2ξ j−α2
TV∇·

( 1

‖ξ j−1‖TV
∇ξ j

)
+ξ j+∇λk−1=ξ0,

ξ j

∣∣
∂Ω

=0,

(∇ψk,∇q)=
(
ξ0−ξ j,∇q

)
, ∀q∈H1(Ω),

λk =ψk+λk−1−α2∇·ξ j;

END DO
END DO
Update un+1← ξN .

4.1 Mixed FE solver

The governing PDEs in the PV formulation are approximated using the mixed FE ap-
proach. The space of square integrable functions on Ω:

L2(Ω) :=
{

q
∣∣∣
∫

Ω
|q|2dΩ<∞

}

and the subspace

H1(Ω) :=
{

φ
∣∣∣φ∈L2(Ω), grad∈ (L2(Ω))nd

}

of L2(Ω) are defined, where nd is the space dimension of the problem. Let us introduce
a regular triangulation of Ω, with a finite number of triangles Kl , l = 1,··· ,Eh, where Eh
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stands for the total number of triangles.
The spatial discretization of systems (cf. Eqs. (3.5), (3.10), (3.15), Algorithms 3.1-

3.4) replaces the (infinite-dimensional) solution function spaces X, Q and M by finite-
dimensional subspaces Xh, Qh and Mh. We define Xh by

Xh=
{

φh∈C0(Ω) : φh

∣∣
Kl
∈P2, ∀l=1,··· ,Eh

}
,

and then define Qh by

Qh =
{

qh∈C0(Ω) : qh

∣∣
Kl
∈P1, ∀l=1,··· ,Eh

}

and finally define Mh by

Mh=
{

mh∈C0(Ω) : mh

∣∣
Kl
∈P1, ∀l=1,··· ,Eh

}
.

The space Pr denotes the set of polynomials of degree r in each Kl, i.e., for r≥0 :

Pr =

{
w :Kl→R, w(x,y)= ∑

0≤i+j≤r

αijx
iyj

}
.

The Hood-Taylor P2/P1 FE pair is used for velocity/auxiliary pressure-pressure, while
the P2 FE is used for the temperature.

The FE discretisation of the Leray-alpha scheme follows a classical approach: a weak
form of Eqs. (3.5), (3.10), (3.15), Algorithms 3.1-3.4 is written and FE approximation sub-

space X0,h⊂X=
(

H1(Ω)
)2

,Qh⊂Q=H1(Ω), Mh⊂M=L2(Ω) and X̂0,n·∇T=0,h⊂X̂=H1(Ω)
are introduced for the velocities, auxiliary pressure, and temperature, respectively. The
discrete NC problem then reduces to obtain (uh,φh,ph,Th)∈X0,h×Qh×Mh×X̂0,n·∇T=0,h,
as described in Algorithm 4.1. We remark that there are other efficient solvers for the
above filters, see for example [5, 27, 28] and [32].

4.2 Features of Algorithm 4.1 as a discrete Leray-alpha scheme

At each time-step, the main features of Algorithm 4.1 can be described as follows:

• Steps 2, 4 and 7 are simply the formulation of CSS.

• Step 3 adopts the weak form of the iterative Stokes differential filter (Algorithm 4.2)
for making smoother velocity solutions, while Steps 6 and 8 operate the weak form
of the iterative differential filter (Algorithm 4.3) for smoothing the temperature and
the pressure solutions.

• In Algorithms 4.2 and 4.3, the relaxation step is added into the DO-loop, as well
as a linear interpolation of filtered solutions at the Nth iteration and the (N+1)th

iteration.

• Algorithms 4.2 and 4.3 are the finite element discretizations of Algorithms 3.1 and
3.2.
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Algorithm 4.1: Discrete Leray-alpha scheme.

1. Given un
h , un−1

h , pn
h , pn−1

h , Tn
h and Tn−1

h .

2. Solve for un+1
h ∈X0,h such that for all φh∈Xh:

3

2∆t

(
un+1

h ,φh

)
+
([(

un,∗
h ·∇

)
un+1

h +
1

2

(
∇·un,∗

h

)
un+1

h

]
,φh

)
+Pr

(
∇un+1

h ,∇φh

)

=
2

∆t

(
un

h ,φh

)
+

1

2∆t

(
un−1

h ,φh

)
+
(

pn,∗
h ,∇φh

)
+PrRa

(
Tn,∗

h ,φh j
)
. (4.1)

3. Use Algorithm 4.2 or Algorithm 4.4 to get un+1
h from un+1

h .

4. Solve for ϕn+1
h ∈Qh such that for all qh∈Qh:

(
∇ϕn+1

h ,∇qh

)
=
(3un+1

h −4un
h+un−1

h

2∆t
,∇qh

)
. (4.2)

5. Solve for pn+1
h ∈Mh such that for all mh∈Mh:

(
pn+1

h ,mh

)
=
([

ϕn+1
h +pn,∗

h −
1

Re
∇·un+1

h

]
,mh

)
. (4.3)

6. Use Algorithm 4.3 or Algorithm 4.5 to get pn+1
h from pn+1

h .

7. Solve for Tn+1
h ∈ X̂0,n·∇T=0,h such that for all φh∈Xh:

3

2∆t

(
Tn+1

h ,φh

)
+
(
∇Tn+1

h ,∇φh

)
=

2

∆t
(Tn

h ,φh)−
1

2∆t
(Tn−1

h ,φh). (4.4)

8. Use Algorithm 4.3 or Algorithm 4.5 to get Tn+1
h from Tn+1

h .

4.3 The TV regularization method

In Step 3 and Step 6/8 of Algorithm 4.1, we can replace the differential filters (Algorithms
4.2-4.3) by the TV-based filters (described in the form of differential equations in Algo-
rithms 3.3-3.4) in order to capture the sharp gradients in the solutions, which is the main
reason for this paper. In the following, we will describe the numerical implementation of
these filters.

• By making use of the anisotropic filter (cf. Eq. (1.4)), in Algorithm 4.2, Eqs. (4.5) and
(4.6) change to

α2
(
∇ξ j,h,∇φh

)
+α2

TV

( 1

‖ξ j−1,h|‖TV
∇ξ j,h,∇φh

)
+
(
ξ j,h,φh

)

=
(
λk−1,h,∇·φh

)
+
(
ξ0,h,φh

)
,
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Algorithm 4.2: Iterative Stokes differential filter.

1. Given ξ0,h=un+1
h ∈X0,h

2. DO j=1,··· ,N,
Given λ0,h=0∈Qh

i. DO k=1,··· ,K

a. Solve for ξ j,h∈X0,h such that for all φh∈Xh:

α2
(
∇ξ j,h,∇φh

)
+
(
ξ j,h,φh

)
=
(
λk−1,h,∇·φh

)
+
(
ξ j−1,h,φh

)
. (4.5)

b. Solve for ψk,h∈Qh such that for all qh∈Qh:

(
∇ψk,h,∇qh

)
=
(
ξ j−1,h−ξ j,h,∇qh

)
. (4.6)

c. Solve for λk,h∈Mh such that for all mh∈Mh:

(
λk,h,mh

)
=
(
ψk,h+λk−1,h−α2∇·ξ j,h,mh

)
. (4.7)

END
ii. Update

ξ j,h=(1−χ)ξ j−1,h+χξ j,h. (4.8)

END
3. Update

un+1
h ← ξN,h. (4.9)

and (
∇ψk,h,∇qh

)
=
(
ξ0,h−ξ j,h,∇qh

)
.

We refer to these modifications as Algorithm 4.4.

• Likewise, in Algorithm 4.3, for instance, Eq. (4.10) changes to

α2
(
∇ξ j,h,∇φh

)
+α2

TV

( 1

‖ξ j−1,h‖TV
∇ξ j,h,∇φh

)
+
(
ξ j,h,φh

)
=
(
ξ0,h,φh

)

with

ξ j

∣∣
∂Ω1

=0 and
(

α2 ∂ξ j

∂x
+α2

TV

1

‖ξ j−1,h‖TV

∂ξ j

∂x

)∣∣∣
∂Ω2

=0

or (
α2 ∂ξ j

∂n
+α2

TV

1

‖ξ j−1,h‖TV

∂ξ j

∂n

)∣∣∣
∂Ω

=0.
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Algorithm 4.3: Iterative differential filter.

1. Given ξ0,h=Tn+1
h ∈ X̂0,n or ξ0,h= pn+1

h ∈Mh

2. DO j=1,··· ,N,

• Solve for ξ j,h∈ X̂0,n·∇ξ=0,h such that for all φh∈Xh:

α2
(
∇ξ j,h,∇φh

)
+
(
ξ j,h,φh

)
=
(
ξ j−1,h,φh

)
. (4.10)

Or
• Solve for ξ j+1,h∈Mh such that for all mh∈Mh:

α2
(
∇ξ j,h,∇φh

)
+
(
ξ j,h,mh

)
=
(
ξ j−1,h,mh

)
. (4.11)

• Update

ξ j,h=(1−χ)ξ j−1,h+χξ j,h. (4.12)

END
3. Update

Tn+1
h ← ξN,h (4.13)

or update

pn+1
h ← ξN,h. (4.14)

We refer to this modification as Algorithm 4.5. To compute the TV-norm, let us
define

ξx,h =
∂ξ j−1,h

∂x
and ξy,h=

∂ξ j−1,h

∂y
.

Now, at each iteration, depending on the choice of interpolation spaces for each PV,
for instance, we solve for ξx,h,ξy,h∈Xh such that for all φh∈Xh:





(
ξx,h,φh

)
=
(∂ξ j−1,h

∂x
,φh

)
,

(
ξy,h,φh

)
=
(∂ξ j−1,h

∂y
,φh

)
.

(4.15)

5 Computational results

In this section, noise-removal for NC and MC problems are studied using iterative regu-
larization and TV based algorithms. The motivation for studying this problem is that it
acts as a model problem for some important applications arising in atmospheric sciences.
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Atmospheric images are obtained by experiments and they inevitably contain noise due
to experimental errors. An important step is removing the noise from these images, see
for example [16]. By using our proposed algorithms, we are able to removing the noise
from the images and at the same time systematically incorporate the underlying physical
principles into considerations.

5.1 Natural-convection problems

Suppose the approximate PV solutions at each time-step are added by the noise data. In
other words, the random errors are added to the approximate solution. It can be shown
in the following equation:

ξnoise
i,j = ξ

approx
i,j +ωi,jσ̂max

∣∣ξapprox
i,j

∣∣, (5.1)

where ξ
approx
i,j ={uh,vh,ph,Th} and the subscripts i and j are the grid number of the spatial-

coordinate and temporal-coordinate, respectively. The variables ξnoise
i,j and ξ

approx
i,j in

Eq. (5.1) are the corrupted and approximate PV solutions, respectively. Furthermore,
σ̂= {σ̂u,σ̂p,σ̂h} and ωi,j are the standard deviation of random (measurement) errors and
the random number, respectively; these values are fixed at each time-step. In what fol-
lows, we drop the i and j superscripts. It is worth mentioning that the errors are accumu-
lated at each time-step computation even though the filtering process is applied.

Here we consider a case where Pr = 0.71 and Ra= 1000 at t f = 1. The uniform grid

used for the present calculation is 1292 for the velocities and the temperature, and 652 for
the pressure and the auxiliary pressure, with the time-step size ∆t=0.025. The relaxation
parameter is fixed to χ=∆t and the regularized parameter is fixed to ǫ=10−6. The fluid
flows are triggered by the following choices of source functions that are used as follows:

Problem Set 1: A heat source is located at (0.75,0.75):

• a sinusoidal curve-like function;

G(t)=−
750

4
t
(

t−
1

3

)2
(t−1)+1.0, t∈ [0,1].

Problem Set 2: Two heat sources are located at (0.75,0.75) and (−0.75,−0.75):

• a triangular ramping function;

G1(t)=





4

0.3
t+1.0, 0≤ t≤0.3,

−
2

0.3
t+7.0, 0.3≤ t≤0.6,

3.0, 0.6≤ t≤1.

(5.2)
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• a single step function;

G2(t)=





2.0, 0≤ t≤0.3,
5.0, 0.3≤ t≤0.7,
2.0, 0.7≤ t≤1.

(5.3)

Numerical results are summarized as follows:

• Problem set 1: Three random noise levels σ̂=0.1, σ̂=0.05 and σ̂=0.01 are adopted.
We fixed the values of N =K= 10 and α= 0.75. Fig. 2 illustrates the noise free so-
lutions of the approximate velocities, pressure and temperature. Comparison of
one-step iterative (N = K = 1) and nested iterative algorithms is shown in Figs. 3
and 4. In these figures, filtered solutions are shown on the left and the un-filtered
solutions are shown on the right. We immediately noticed that noise reduction over
the approximate velocities was accomplished very well by Algorithms 4.2-4.3. We
also reported the results of the filtered pressure and temperature solutions since
these solutions were driven by the filtered velocities. Figs. 5 and 6 showed the nu-
merical performances of the NI methods on the filtered pressure and temperature
solutions. As σ̂ decreases, the profiles of these solutions are close to the exact one
although weak zig-zag-like patterns exist at its four boundaries. It can be seen that
when filtered pressure solutions are subjected to Neumann’s boundary conditions,
the pressure profiles are well reconstructed.
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Figure 2: Noise-free solutions for approximate velocity, pressure and temperature solutions at t f =1.
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Figure 3: Reconstructed velocity solutions when the field is corrupted by σ̂ = 0.1 at t f = 1 using a one-step
iteration. The reconstructions are obtained by Algorithms 4.2-4.3, and N=K=1.
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Figure 4: Reconstructed velocity solutions when the field is corrupted by σ̂=0.1 at t f =1. The reconstructions
are obtained by Algorithms 4.2-4.3, and N=K=10.
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Figure 5: Reconstructed pressure solutions when the field is corrupted by different levels of σ̂ at t f = 1. The
reconstructions are obtained by Algorithms 4.2-4.3, and N=K=10.

• Problem set 2: We fixed the values of N = K = 17 and α = 0.75. We compare the
performance of Algorithms 4.2-4.3 and Algorithms 4.4-4.5 when the solutions are
corrupted by σ̂u = 0.005, σ̂p = 0.005, and σ̂h = 0.05. For illustrative purposes, the
results of the filtered temperature solutions are reported. Fig. 7 illustrates the noise
free solutions of approximate temperature involved with two heat sources. In order
to measure the effectiveness of these algorithms, the following relative error is used:

ξ∗,h :=
‖ξapprox,h−ξ∗,h‖

‖ξapprox,h‖
,

where ‖⋆‖=
√

∑
DOF
i=1 ⋆

2
i (DOF = 1292 or 652), ξ∗,h is a filtered solution and the sub-
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Figure 6: Reconstructed temperature solutions when the field is corrupted by different levels of σ̂ at t f =1. The
reconstructions are obtained by Algorithms 4.2-4.3, and N=K=10.
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Figure 7: Noise-free solution for the approximate temperature solution at t f =1.
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Figure 8: Reconstructed temperature solutions when the field is corrupted by σ̂h =0.05 at t f =1. (a) Solution

obtained by Algorithms 4.2-4.3. (b) Solution obtained by the TV-based algorithms (Algorithm 4.4-4.5). (c)
Absolute error for the solution obtained by Algorithms 4.2-4.3. (d) Absolute error for the solution obtained by
the TV-based algorithms.

script ∗={NI,TV} represents the choice of Algorithms 4.2-4.3 and Algorithms 4.4-
4.5 with Algorithm 4.1, respectively. It can be seen that

– Use of the TV norm algorithm results in the capture of two peaks of filtered
temperature profiles, while the use of the iterative regularization algorithm
slightly smooths out the filtered temperature solution, as illustrated by the
comparison of Fig. 8(a) with Fig. 8(b),

– In Figs. 8(c) and (d), the magnitude of the error difference between the approx-
imate and filtered temperature solutions when compared with that of the iter-
ative regularization algorithm is smaller. The relative error TNI,h is 8.4457E−2,
while the relative error TTV,h is 8.0223E−2.

– Hence, the TV algorithm performs well.

5.2 Mixed convection problems

A system of non-dimensional MC equations in the PV formulation is used as follows [19]:
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∂u

∂t
+(u·∇)u=−∇p+

1

Re
∇2u+

Gr

Re2
Tj, in Ω×(0,t f ],

∇·u=0, in Ω×(0,t f ],

∂T

∂t
+(u·∇)T=

1

PrRe
∇2T, in Ω×(0,t f ],

(5.4)

with the initial conditions

u(x,t=0)=0 and T(x,t=0)=0, in Ω, (5.5)

and the left- and right-hand walls are insulated (or adiabatic) and the boundary condi-
tions for velocity and temperature on Ω×(0,t f ] are





T=Thot, u=0, v=U0, for x=0, 0≤y≤1,

T=Tcold, u=0, v=0, for x=1, 0≤y≤1,

∂T

∂y
=0, u=0, v=0, for y=0, 0≤ x≤1,

∂T

∂y
=0, u=0, v=0, for y=1, 0≤ x≤1.

(5.6)

We select Tcold = 0, Thot = 1 and U0 = 1. For an adiabatic wall no heat transfer is permitted
through the lower and upper boundaries.

In [19], we investigated the steady state of MC flows for the following choices of
parameters: the Prandtl number Pr=0.71, the Grashof number Gr=106 and the Reynolds
number Re=3000 with t f =400 and ∆t=0.0025. We use these values as an initial condition
of the fluid flows.

Due to the space limitation, the approximate pressure is only reported in Fig. 9,
where two sharp pressure profiles appear at the top of right- and left-corners due to
the boundary conditions for the constant velocity value U0. We compare the perfor-
mance of Algorithms 4.2-4.3 and Algorithms 4.4-4.5 when the solutions are corrupted
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Figure 9: Noise-free solution for the approximate pressure solution at t f =400.
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Figure 10: Reconstructed pressure solutions when the field is corrupted by σ̂p=0.01 at t f =400+∆t. (a) Solution

obtained by Algorithms 4.2-4.3. (b) Solution obtained by the TV-based algorithms (Algorithms 4.4-4.5). (c)
Absolute error for the solution obtained by Algorithms 4.2-4.3. (d) Absolute error for the solution obtained by
the TV-based algorithms.

by σ̂u = σ̂p = σ̂T =0.01. We fixed the values of N=K=10 with ∆t=0.025. In Fig. 10, two
sets of regularization length scales are used:

• αu =αp=αT =0.2 and αu,TV=αp,TV=αT,TV=0 in the left panel;

• αu =αp=αT =0.2 and αu,TV=1.3, αp,TV=3.95, αT,TV=1.5 in the right panel.

We conclude that

• In Figs. 10(a) and (b), it can be seen that both pressure profiles filtered out the noise.

• In Figs. 10(c) and (d), the range of the difference values in the left panel is 0.2820,
and in the right panel it is 0.1312; the magnitude of the error difference between
the approximate and filtered pressure solutions is smaller when Algorithms 4.4-
4.5 are used. The relative error pTV,h is 1.4262E−1, while the relative error pNI,h is
3.9450E−1.

• Hence, using the TV based algorithm with the diffusion term gives the most
promising result.
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6 Conclusions

We have proposed two iterative regularization algorithms for smoothing out the approx-
imate solutions when the data are corrupted by noise. Our findings are:

• Iterative differential and Stokes-differential filters may be advantageous for the
noise removal when the profiles of the approximate solutions do not exhibit abrupt
changes. When the solutions contain discontinuities or sharp gradients, these filters
produce too much smoothing and hence some important features of the solutions
are also removed. As a result, the solutions obtained are inaccurate.

• The TV based model with iterative differential and Stokes-differential filters has
a remarkable effect on the stability of the solutions. This iterative model is very
promising for noise removal when the solution profiles have sharp corners and a
steep gradient. However, the addition of the global TV term affects the accuracy
of the solution in smooth regions. A remedy for this is to apply a local version of
this TV regularization, namely, we only regularize the solution at locations where a
sharp gradient is detected. A related work can be found in [2].

There are a number of possible future works which stem from this work:

• The choice of suitable regularization parameters versus each time-step size in a
more realistic/physical situation should further explored. See, for example, [23].

• There are no restrictions that prevent the present study from being extended
to other regularization models. See, for example, Clark-alpha model [24],
Lagrangian-averaged Navier-Stokes-alpha model [25] and Navier-Stokes-alpha-
beta model [26].

• A comparative study of different TV-based models should be further studied. See,
for example, split Bregman method [29], TV-Stokes model [30] and Alternating di-
rection method [31].

• The use of a local TV based filter to enhance the accuracy of the solution. It was
shown to be successful in a related problem, see [2].
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