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Abstract. As the numerical resolution is increased and the discretisation error de-
creases, the lattice Boltzmann method tends towards the discrete-velocity Boltzmann
equation (DVBE). An expression for the propagation properties of plane sound waves
is found for this equation. This expression is compared to similar ones from the Navier-
Stokes and Burnett models, and is found to be closest to the latter. The anisotropy of
sound propagation with the DVBE is examined using a two-dimensional velocity set.
It is found that both the anisotropy and the deviation between the models is negligible
if the Knudsen number is less than 1 by at least an order of magnitude.
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1 Introduction

The lattice Boltzmann method (LBM) is a fairly recent development in computational
fluid dynamics (CFD). While traditional CFD methods are based on discretising the con-
servation equations of the continuum model, the LBM is based on discretising the Boltz-
mann equation from the kinetic theory of gases. The Boltzmann equation describes how
distributions of particles in a gas propagate and collide, thus giving a more detailed pic-
ture than the continuum model. It can be shown that the total behaviour of these particle
distributions at long time scales corresponds with the conservation equations of the con-
tinuum model [1].

Although the lattice Boltzmann method can be used to simulate weakly compressible
flow [2], current research has largely been confined to incompressible flow. However, in
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the last few years several articles have been published on applying the LBM for com-
putational aeroacoustics (CAA) [3, 4], i.e. for simulating generation of sound waves in
unsteady flow. This subject is based on the theory of aeroacoustics first developed by
Lighthill [5].

In some cases the generated sound has a strong feedback interaction with the fluid
flow, as in the problem of tone generation in corrugated pipes [6]. These cases must be
studied using a compressible flow simulation. As the LBM is more straightforward to
implement and more parallelisable than traditional compressible CFD methods, it could
be a useful supplement to traditional CAA methods.

However, the propagation of sound waves for the LBM has not yet been sufficiently
studied. A previous article by this author looked at the case of plane sound waves in
the LBM [7], and showed disagreement between the LBM and Navier-Stokes even in the
limit of no discretisation error. The goal of the present article is twofold: To explain this
disagreement, and to further examine the behaviour of the LBM in this limit. The focus
here will be narrower than in the previous article; this article will only look at absorption
and dispersion of spatially damped plane sound waves.

The limit of no discretisation error is an important one; if a numerical method does
not behave correctly in this limit it is inconsistent, and its behaviour can not necessarily
be improved by improving the numerical resolution.

In Section 2, the basics of damped plane sound waves are explained. Section 3 de-
rives an analytic expression for the propagation of these sound waves from the discrete-
velocity Boltzmann equation (DVBE), which corresponds to the aforementioned limit of
the LBM. This is compared in Section 4 with similar expressions from other models.
Section 5 extends the derivation from Section 3 to two dimensions, and examines the
isotropy properties of the DVBE.

2 Damped sound waves

In a sound wave, the density ρ, particle velocity u, and pressure p oscillate around an
equilibrium state. We assume here that the oscillations are infinitesimal monofrequency
plane waves propagating in the +x-direction, and write them in phasor form,





ρ̂(x,t)
û(x,t)
p̂(x,t)



=





ρ0

0
p0



+





ρ̂′

û′

p̂′



 ei(ω̂t−k̂x). (2.1)

Throughout this article, hats indicate complex numbers and primes are used for infinites-
imally small oscillation amplitudes.

If we split the angular frequency ω̂ and wavenumber k̂ into real and imaginary parts,

ω̂=ωr+iαt, k̂= kr−iαx, (2.2)
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we find that the real parts govern the wave’s propagation, while the imaginary parts
govern its absorption,

ei(ω̂t−k̂x)= ei(ωrt−krx) e−αtt e−αxx.

We call αt and αx the temporal and spatial absorption coefficients. The real parts determine
the wave’s phase speed,

c=ωr/kr. (2.3)

In the low-frequency limit or in an ideal medium with no absorption, ω̂ and k̂ are real,
and the speed of sound is

c0=ω/k. (2.4)

In general, ω̂ and k̂ are determined by initial and boundary conditions. Most com-
monly, a sound wave is emitted by an oscillating source. In this case, the boundary
conditions dictate that ω̂ is real, and thus the degree of absorption only depends on the
medium and the distance to the source. The opposite case, where k̂ is real and the absorp-
tion occurs in time, has recently been examined numerically with both basic isothermal
and multispeed thermal LB models [8].

Away from boundaries, there are three causes of sound wave absorption and dis-
persion: Viscosity, thermal conduction, and relaxation between translational energy and
other forms of internal energy [9]. In the basic LBM, the simulated fluid is isothermal. It
only has translational internal energy, and is thus comparable to a monatomic gas, where
there is no rotational or vibrational molecular energy. Therefore we are left with only the
influence of viscosity.

As shown in previous literature [10], the influence of viscosity on a sound wave can
be described using the dimensionless viscosity number,

ωτν=
ω

c2
0

(

4

3
ν+νB

)

. (2.5)

where ν and νB are the kinematic shear and bulk viscosities. While monatomic gases
normally have νB=0, the isothermal nature of the simulated fluid causes a nonzero νB [2].

To find the sound wave absorption and dispersion, it is sufficient to find the nor-
malised wavenumber k̂/k= k̂/(ω/c0). The real part gives the dispersion, and the imagi-
nary part gives the absorption. We will see that k̂/k will be a function only of ωτν for the
fluid described above.

When comparing different expressions for k̂/k, it will be useful to write them as series
expansions around ωτν=0,

k̂

k
=1+a1(ωτν)+a2(ωτν)

2+a3(ωτν)
3+a4(ωτν)

4+··· .

It was previously shown that the LBM disagrees with the continuum model, which we
will be calling the Navier-Stokes model, above order O(ωτν) [7].
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3 Wavenumbers from the discrete-velocity Boltzmann equation

The Boltzmann equation describes the evolution of the distribution function f (x,ξ,t),
which represents the density of particles with position x and velocity ξ at time t. The first
step in discretising the Boltzmann equation is to restrict f to a discrete set of velocities ξ i.
We can then rewrite f (x,ξ i,t) as fi(x,t).

Macroscopic physical quantities can be found as moments of the distribution func-
tion. Density is found as ρ = ∑i fi, momentum as ρu=∑i ξ i fi, and the momentum flux
tensor as Π=∑i ξ iξ i fi.

Having discretised the velocities, the Boltzmann equation becomes the discrete-velocity
Boltzmann equation (DVBE),

∂ fi

∂t
+ξ i ·∇ fi =− 1

τ

(

fi− f
(0)
i

)

. (3.1)

Here we have the common BGK collision operator on the right-hand side, which de-
scribes particle collisions as a relaxation, with characteristic time τ, to an equilibrium.
The equilibrium distribution is

f
(0)
i =ρwi

(

1+
ξ i ·u
c2

0

+
(ξ i ·u)2

2c4
0

− u2

2c2
0

)

. (3.2)

The weighting coefficients wi are chosen to satisfy certain symmetry conditions of the
velocity set [11], so that physically correct collision behaviour, such as conservation of
mass and momentum, is ensured.

The DVBE is discrete in velocity, but still continuous in time and space. To go from
it to the fully discrete lattice Boltzmann equation which can be implemented on a com-
puter, (3.1) can be integrated along its characteristics. As shown in e.g. [2], a second-order
lattice Boltzmann scheme which is consistent with the DVBE is given by

f̄i(x+ξ i∆t,t+∆t)− f̄i(x,t)=− ∆t

τ+∆t/2

[

f̄i(x,t)− f (0)(x,t)
]

, (3.3)

where

f̄i(x,t)= fi(x,t)+
∆t

2τ

[

fi(x,t)− f
(0)
i (x,t)

]

.

In the simpler and more common scheme used in e.g. [1], τ is defined differently, so that
the fluid becomes inviscid as τ→ 1

2 instead of as τ→0.
Going from the DVBE in (3.1) to the fully discrete lattice Boltzmann equation in (3.3)

introduces a discretisation error, which goes to zero as we increase the numerical resolu-
tion. Thus, when studying what the LBM tends towards with increased resolution, we
may simply study the DVBE directly.

As the case specified in (2.1) is essentially one-dimensional, we can simulate it with
the D1Q3 velocity set, which is the one-dimensional projection of many other common
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velocity sets such as D2Q9, D3Q15, D3Q19, and D3Q27. Its velocities are [ξ−,ξ0,ξ+] =
[−1,0,1]∆x

∆t , the corresponding weighting coefficients are [w−,w0,w+] = [ 1
6 , 4

6 , 1
6 ], and the

low-frequency limit of the speed of sound is c0=(∆x
∆t )/

√
3.

Analogously to (2.1), we assume that the distribution function f̂i is on phasor form,

with an infinitesimal oscillation of amplitude f̂ ′i around an equilibrium rest state F
(0)
i ,

f̂i(x,t)=F
(0)
i + f̂ ′i ei(ωt−k̂x). (3.4)

As the velocity û′ in this case is infinitesimal, (3.2) can be linearised, giving

F
(0)
i =ρ0wi, (3.5a)

f̂
′(0)
i =wi

(

ρ̂′+ρ0
ξiû

′

c2
0

)

. (3.5b)

By taking the moments of (3.4), we see that this case corresponds to (2.1),
[

∑i (3.4)

∑i ξi (3.4)

]

⇒
[

ρ̂(x,t)
ρ0û(x,t)

]

=

[

ρ0

0

]

+

[

ρ̂′

ρ0û′

]

ei(ωt−k̂x). (3.6)

The pressure can be found from the isothermal equation of state, p= c2
0ρ.

The pressure can also be found in the equilibrium momentum flux tensor [2],

∑
i

ξ iξ i (3.2) ⇒ Π
(0)= c2

0ρI+ρuu.

Analogously, the equilibrium momentum flux of the oscillation in this linearised one-
dimensional case becomes

∑
i

ξiξi (3.5b) ⇒ Π̂
′(0)
xx = c2

0ρ̂′. (3.7)

Inserting (3.4) into (3.1), applying the derivatives, and rearranging, we find the har-
monic linearised DVBE,

[1+iτ(ω−ξi k̂)] f̂
′
i = f̂

′(0)
i . (3.8)

Because of the ξi present in one term, taking any moment of this equation will relate
that moment of f̂ ′i with its next higher moment. As we shall see, the number of unique

moments of f̂ ′i is still finite because of the finite number of velocities.
Taking the zeroth, first and second moments of (3.8), we find

ρ0û′

ρ̂′
=

ω

k̂
, (3.9a)

Π̂′
xx

ρ0û′ =
ω

k̂
, (3.9b)

Π̂′
xx =

c2
0ρ̂′+ik̂τΠ̂′

xxx

1+iωτ
. (3.9c)
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With this set of velocities the third moment of f̂ ′i is dependent on the first,

Π̂′
xxx=∑

i

ξiξiξi f̂ ′i =
∆x2

∆t2 ∑
i

ξi f̂ ′i =
∆x2

∆t2
ρ0û′, (3.10)

and the system of moments is closed. Combining Eqs. (3.9) and (3.10), we can find an
equation for k̂ which is independent of the moments,

(

ω

k̂

)2

=
Π̂′

xx

ρ̂′
=

1

1+iωτ

(

c2
0ρ̂′+ik̂τ ∆x2

∆t2 ρ0û′

ρ̂′

)

=
c2

0+iωτ ∆x2

∆t2

1+iωτ
. (3.11)

To get this on the form of k̂/k as function of ωτν, we first need to express the viscosity
number through the shear and bulk viscosities found from the DVBE [2],

ν=τc2
0

νB =2ν/3

}

(2.5)⇒ ωτν=2ωτ. (3.12)

Replacing ∆x2

∆t2 in (3.11) by 3c2
0, we can finally rearrange it and find

k̂

k
=±

√

1+iωτ

1+3iωτ
=±

√

1+iωτν/2

1+3iωτν/2
. (3.13)

The propagation direction is ±x with the respective choice of sign in (3.13).
Eq. (3.13) was checked against numerical values for the fully discrete LBM. The nu-

merical method previously described in [7] was used to find values in the limit of no
discretisation error. The relative difference with (3.13) was on the order of 10−11, un-
doubtedly caused by the numerical shortcomings of the previous method. Thus it is
clear that sound wave propagation in the LBM tends to (3.13) as we increase the numeri-
cal resolution.

It is also possible to find the amplitude ratio and phase shift between the density and
momentum waves, as in [7]. This can be done by inserting (3.13) into (3.9a), but this is
beyond the focus of this article.

4 Comparison with other models

We can now compare the propagation of sound waves as predicted by the DVBE with
predictions from other models.

First we should take a closer look at the viscosity number ωτν. If λ is the wavelength
and lmfp is the mean free path, it can be shown that [12]

ω∼ c0/λ
νB ∼ν∼ c0lmfp

}

(2.5)⇒ ωτν∼
lmfp

λ
=Kn. (4.1)
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In words, the viscosity number is essentially the Knudsen number.
The macroscopic behaviour of the Boltzmann equation can be analysed by a multi-

scale expansion in Kn, known as the Chapman-Enskog expansion. Truncating to O(Kn)
results in the Navier-Stokes model of the fluid, while truncating to O(Kn2) results in a
correction to this, known as the Burnett model [13].

The propagation of sound waves in +x direction in an isothermal monatomic fluid,
as given by these models, is

Navier-Stokes:
k̂

k
=

1√
1+iωτν

, (4.2a)

Burnett:
k̂

k
=

√
2

ωτν

√
3

√

−1−iωτν+
√

1+2iωτν+2(ωτν)2, (4.2b)

DVBE:
k̂

k
=

√

1+iωτν/2

1+3iωτν/2
. (4.2c)

The expressions for Navier-Stokes and Burnett sound propagation are adapted from
Greenspan [14], under the isothermal assumption that γ= 1. With this value for γ, the
value of the thermal conductivity can be shown not to affect these acoustic modes. The
Burnett expression was found using a binary collision operator with Maxwell molecules,
instead of the BGK operator on the RHS of (3.1).

Eqs. (4.2) can be written as series expansions around ωτν=0,

Navier-Stokes:
k̂

k
=1−i

1

2
(ωτν)−

3

8
(ωτν)

2+i
5

16
(ωτν)

3+
35

128
(ωτν)

4+··· , (4.3a)

Burnett:
k̂

k
=1−i

1

2
(ωτν)−

6

8
(ωτν)

2+i
20

16
(ωτν)

3+
308

128
(ωτν)

4+··· , (4.3b)

DVBE:
k̂

k
=1−i

1

2
(ωτν)−

5

8
(ωτν)

2+i
13

16
(ωτν)

3+
139

128
(ωτν)

4+··· . (4.3c)

Their terms always alternate between real and imaginary, which means that odd terms
in ωτν affect absorption while even terms affect dispersion. The expansions agree to the
first order in ωτν, but they all disagree at higher orders. Thus, to the lowest order they
predict the same absorption but different dispersion.

As the Navier-Stokes model can be found by truncating the Chapman-Enskog expan-
sion to O(Kn), the model cannot be trusted above this order [12], and it is not surprising
that it does not agree with the others at higher orders. That the Burnett and DVBE models
disagree at O(Kn2) could also be expected, as the models’ transport coefficients depend
on the collision mechanism [14]. In this case, where we have two models with two dif-
ferent collision operators, we compare the models by setting their viscosity equal. Any
transport coefficients of higher order would be different.

The Navier-Stokes expansion, (4.3a), is a typical binomial series, which converges for
ωτν ≤ 1 and diverges for higher values, even though (4.2a) is valid for any physical (i.e.
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10−2 10−1 100 101 102
10−1

100

ωτν

R
e{

k̂/
k}

=
c 0

/
c

Navier-Stokes
Burnett
DVBEFigure 1: Inverse normalised phase speed in the Navier-Stokes, Burnett, and DVBE models of spatially dampedsound waves, against the vis
osity number ωτν.

10−2 10−1 100 101 102

10−2

10−1

ωτν

−
Im

{k̂
/

k}
=

α
x
/

k

Navier-Stokes
Burnett
DVBEFigure 2: Normalised absorption 
oe�
ient in the Navier-Stokes, Burnett, and DVBE models of spatially dampedsound waves, against the vis
osity number ωτν.

real and non-negative) value of ωτν. The coefficients in the Burnett and DVBE expansions
are never smaller than in the Navier-Stokes expansion for any order, so it is clear by
comparison that the convergence ranges of these expansions cannot be larger.

Early approaches to deriving sound propagation from the full Boltzmann equation
attacked it by methods of successive approximation [15, 16]. They found series like (4.3),
which are only useful for small values of ωτν. Other approaches have succeeded in find-
ing analytic expressions for dispersion and absorption through different approximations
of the Boltzmann equation [13].

We can also use Eqs. (4.2) to graphically compare sound wave propagation in the
three models. The dispersion and absorption are shown in Fig. 1 and 2, respectively.

Fig. 1 shows that the DVBE behaves differently to the others at high viscosity num-
bers, with c0/c converging towards 1/

√
3. This means that c goes to ∆x

∆t , the maximum
propagation velocity of particles in the D1Q3 velocity set; thus also the information prop-
agation velocity in the model. From this we can expect that extended velocity sets would
have different high-frequency behaviour. For the two other models, c goes to infinity with
the frequency number, which is clearly unphysical. From high-frequency measurements
in argon and air, it has been seen that c plateaus in a similar way to the DVBE [17].

Fig. 2 shows that the absorption has the same kind of behaviour for all three models,
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with a peak at ωτν ∼ 1. The differences lie in the position of the peak and the rate of
decline afterwards. The three models have nearly equal behaviour up to ωτν ∼0.1. This
indicates that up until this point only the O(ωτν) term is felt, as the other imaginary
terms in the series expansions differ between the models.

In both cases, we see that the three models behave almost identically up to ωτν ∼0.1,
and that the DVBE’s behaviour is very close to the Burnett model up until about ωτν∼1,
particularly the dispersion. As the Burnett model has been seen to match measurements
better than the Navier-Stokes model [14, 17], it seems that the DVBE model captures the
viscous effect on sound wave propagation better than the Navier-Stokes model.

5 Isotropy in two dimensions

In reality, all simple fluids are isotropic; the behaviour of sound waves is independent of
propagation direction. However, any finite discrete set of velocities for the DVBE cannot
be isotropic. We will now examine the angular dependence of plane wave propagation
with the two-dimensional D2Q9 velocity set. This velocity set is a two-dimensional pro-
jection of many three-dimensional velocity sets such as D3Q15, D3Q19, and D3Q27. For
one-dimensional behaviour along a main axis, the D2Q9 set itself can be projected down
to the D1Q3 set.

Instead of having the wave propagate along the x axis, we now let it propagate at an
angle ϕ to this axis. The distribution function is thus generalised from (3.4) to

f̂i(x,y,t)=F
(0)
i + f̂ ′i ei(ωt−k̂xx−k̂yy), where k̂x = k̂cos(ϕ) and k̂y = k̂sin(ϕ). (5.1)

The oscillation’s equilibrium distribution is also generalised from (3.5b) to

f̂
′(0)
i =wi

[

ρ̂′+
ρ0

c2
0

(

ξi,xû′
x+ξi,yû′

y

)

]

. (5.2)

The D2Q9 velocity set consists of nine velocities and weighting coefficients,

ξ i=











[

0, 0
]

, for i=0,
[

sin(π
2 [i−1]), cos(π

2 [i−1])
]

, for i=1,··· ,4,
[
√

2sin(π
4 [2i−1]),

√
2cos(π

4 [2i−1])
]

, for i=5,··· ,8,

(5.3a)

wi=











4
9 , for i=0,
1
9 , for i=1,··· ,4,
1

36 , for i=5,··· ,8.

(5.3b)

Here we have set ∆x=∆t=1 for notational simplicity. As in (3.13), the final answer will
not depend on them. As with the D1Q3 velocity set, the speed of sound is c0=1/

√
3.

We introduce a consistent notation for the moments,

Π̂′
xmyn =∑

i

(ξi,x)
m(ξi,y)

n f̂ ′i . (5.4)
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A special notation is used for the case Π̂′
0=∑i f̂ ′i = ρ̂′. We have seen earlier that Π̂′

x=ρ0û′
x,

and Π̂′
y=ρ0û′

y.
With nine velocities there are nine independent moments. Higher moments are de-

pendent on these nine. Similarly to (3.10), we have

Π̂′
xxx = Π̂′

x, Π̂′
yyy= Π̂′

y, Π̂′
xxxy= Π̂′

xy,

Π̂′
xyyy= Π̂′

xy, Π̂′
xxxyy= Π̂′

xyy, Π̂′
xxyyy= Π̂′

xxy.
(5.5)

From the symmetry properties of the D2Q9 velocity set [11] and (5.2), the moments of
the oscillation’s equilibrium distribution can be shown to be

Π̂
′(0)
αβ = c2

0Π̂′
0δαβ, (5.6a)

Π̂
′(0)
αβγ= c2

0

(

Π̂′
αδβγ+Π̂′

βδαγ+Π̂′
γδαβ

)

, (5.6b)

Π̂
′(0)
αβγδ= c4

0Π̂′
0

(

δαβδγδ+δαγδβδ+δαδδβγ

)

. (5.6c)

Here we use Greek letters for arbitrary choices of x or y. δαβ is the Kronecker delta.
Putting all of this together, we can find the following system of equations for the nine

moments,





























1+iωτ −ik̂xτ −ik̂yτ 0 0 0 0 0 −c4
0

−ik̂xτ 1+iωτ 0 0 −ik̂yτ 0 0 −c2
0 0

−ik̂yτ 0 1+iωτ 0 −ik̂xτ 0 −c2
0 0 0

0 −ik̂xτ 0 1+iωτ 0 0 −ik̂yτ 0 −c2
0

0 −ik̂yτ −ik̂xτ 0 1+iωτ 0 0 0 0

0 0 −ik̂yτ 0 0 1+iωτ 0 −ik̂xτ −c2
0

0 0 0 −k̂y −k̂x 0 ω 0 0

0 0 0 0 −k̂y −k̂x 0 ω 0

0 0 0 0 0 0 −k̂y −k̂x ω

























































Π̂′
xxyy

Π̂′
xyy

Π̂′
xxy

Π̂′
yy

Π̂′
xy

Π̂′
xx

Π̂′
y

Π̂′
x

Π̂′
0





























=0. (5.7)

As this system becomes too complicated to handle unaided, a computer algebra system
was used for the following.

Performing Gaussian elimination on the matrix in (5.7), the last row becomes an equa-
tion g(k̂/k,ωτ,ϕ) Π̂′

0 =0, where the function g is too detailed to fit here. As Π̂′
0 6=0 in all

cases, we know that g(k̂/k,ωτ,ϕ)= 0. Solving this for k̂/k results in a long, implicit ex-
pression which will not fit here either.

However, it is possible to express k̂/k as a series expansion. To the same order as in
Eq. (4.3) we find

k̂

k
=1−i

1

2
(ωτν)−

5

8
(ωτν)

2+i
13

16

[

1+
18

13
sin2(ϕ)cos2(ϕ)

]

(ωτν)
3

+
139

128

[

1+
576

139
sin2(ϕ)cos2(ϕ)

]

(ωτν)
4+··· . (5.8)
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We see that the angular dependence starts at O(ωτν)3. Thus, both dispersion and ab-
sorption in the DVBE are isotropic to the lowest order. Also, we can see that (5.8) reduces
to (4.3c) at ϕ=0, π/2, π, 3π/2; i.e. whenever the propagation direction coincides with a
main axis.

It is also possible to find numerical values for k̂/k from given values of ωτ and ϕ.
Figs. 3 and 4 show dispersion and absorption, respectively, against ωτν for several angles
0≤ ϕ≤π/4. This angular interval tells us everything about the propagation anisotropy;
from (5.8) and the arguments above, it is clearly the angular distance to any main axis that
affects the propagation. Thus, k̂/k for 0≤ ϕ≤π/2 will be mirrored around π/4. Above
π/2 it will be periodic.

The figures show that there are significant angular variations at ωτν ∼1 and beyond.
In particular, we see that the ωτν →∞ limit of c is cos(ϕ) for 0≤ ϕ≤π/4. At π/4, when
the sound propagates parallel to the diagonal particle velocities, the speed of sound is
half of the diagonal particle speed. The absorption still behaves qualitatively the same
for any angle, although for propagation not along the main axis the peak is positioned
elsewhere and is somewhat uneven.

Even so, we see that the sound wave propagation in the DVBE model, using the D2Q9
velocity set, is practically isotropic up to about ωτν∼0.1. Thus, anisotropy of the viscous
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effects in LBM simulations can be made negligible at audible frequencies by improving
the numerical resolution.

6 Conclusion

The discrete-velocity Boltzmann equation is a limiting case of the lattice Boltzmann meth-
od. As the numerical resolution is improved, the LBM tends towards the DVBE. From
the DVBE we found Eq. (3.13) which describes the absorption and dispersion of sound
waves propagating along a main axis, for any velocity set that can be projected down to
D1Q3.

The DVBE model is reminiscent of the approach taken by Grad to find the 13-moment
model [18]. Since taking any moment of the Boltzmann equation results in an equation
coupling a particular moment of f with its next higher moment, the Boltzmann equation
is equivalent to an infinite system of equations coupling an infinite number of moments.
Grad solved this problem by keeping the moments needed for the system to contain
the Navier-Stokes model as an approximation, and simply setting the rest to zero. For
sound propagation, the Grad-13 model agrees with the Burnett model to O(Kn2) when
the models are based on the same collision operator [14]. In the DVBE model, the sys-
tem of moments is also closed, as sufficiently high moments are given by lower ones.
However, this happens as a consequence of the finite velocity set; only the choice of the
velocity set determines how the system of equations is closed.

The sound wave propagation found for the DVBE with the D1Q3 velocity set was
compared to similar expressions from the Navier-Stokes and Burnett models. The agree-
ment is good up to ωτν ∼ 0.1. Above this, all three models increasingly disagree. How-
ever, all three models can be seen as different approximations to the Boltzmann equation.
Of the Navier-Stokes and Burnett models, the latter gives the best match with both the
DVBE and measurements [14, 17]. (It is not possible to compare this DVBE model di-
rectly to measurements, as it simulates an unphysical isothermal gas.) Additionally, the
DVBE alone qualitatively captures the phase speed plateau seen in high-frequency ex-
periments [17]. In the other models, the phase speed goes unphysically to infinity with
the frequency.

The D2Q9 velocity set was used to examine the isotropy of the DVBE for a plane
sound wave propagating at an angle to the x axis. We saw that absorption and dispersion
were angle-independent to the lowest order in the expansion. There was no significant
dependence on angle up to ωτν ∼ 0.1. At high frequencies, the phase speed plateaus at
different values, whereas the absorption goes towards zero for all angles.

To summarise these results, the behaviour of the DVBE is sufficiently correct up to
ωτν∼0.1. By extension, the LBM can be made to be as correct by improving the numerical
resolution. In gases, the quantity τν tends to be on the order of 10−10 s [19]. This indicates
that the DVBE gives a very good description of an isothermal gas up to frequencies of the
order 108Hz. For comparison, the upper limit of human hearing is commonly specified as
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2×104 Hz. Thus, any errors in the DVBE are negligible when simulating audible sound.

Even though we have seen that the DVBE model agrees with the others up to very
high frequencies, the isothermal gas which it simulates is quite artificial. Thermal con-
duction does have a significant effect on sound wave absorption in gases.

Still, in cases where conduction does not affect the flow significantly, the contribution
from thermal conduction to absorption can be simulated to the lowest order by increasing
the bulk viscosity artificially [9]. There exist extensions to the LBM that allow setting the
bulk viscosity arbitrarily [2, 20]. This would also affect the other sound wave properties:
The amplitude ratio and phase shift between the density and momentum wave fields,
and the dispersion. However, these properties may usually be considered less physically
significant than the absorption, and the dispersion and amplitude ratio already disagree
with theory to the lowest order in ωτν [7].

In the audible range in air, relaxation between translational energy and vibrational
energy in N2 and O2 is very important. It gives a contribution to the absorption of sound
waves which can be several magnitudes stronger than the combined effect of viscosity
and conduction [9, 19]. How this mechanism may be implemented in the lattice Boltz-
mann method remains to be seen.
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