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Abstract. A lattice Boltzmann model for the study of advection-diffusion-reaction
(ADR) problems is proposed. Via multiscale expansion analysis, we derive from the
LB model the resulting macroscopic equations. It is shown that a linear equilibrium
distribution is sufficient to produce ADR equations within error terms of the order of
the Mach number squared. Furthermore, we study spatially varying structures arising
from the interaction of advective transport with a cubic autocatalytic reaction-diffusion
process under an imposed uniform flow. While advecting all the present species leads
to trivial translation of the Turing patterns, differential advection leads to flow induced
instability characterized with traveling stripes with a velocity dependent wave vector
parallel to the flow direction. Predictions from a linear stability analysis of the model
equations are found to be in line with these observations.
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1 Introduction

Spatially and/or temporally varying structures have been observed in a variety of phys-
ical [1, 2], chemical [3–5] and biological [6–11] systems operating far from equilibrium.
In chemical and biological systems for instance, the macroscopic reaction-diffusion (RD)
equations have been proposed as models for morphogenesis [12], pattern formation [6,7]
and self-organization [13, 14]. This class of equations usually includes the following two
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features: (i) a nonlinear reaction between chemical species describing local production
or consumption of the species and (ii) the diffusive transport of these species due to
density gradients. The properties of structures that arise from this class of systems are
determined by the intrinsic transport parameters of the system such as the diffusion co-
efficient and reaction constants. However, the presence of an external influence such as
advection may lead to qualitative changes in the system’s behavior and to the emergence
of new non-equilibrium structures. This is very important in the experimental investi-
gations of the diffusive chemical instability in gel reactors where the perturbative effect
of the feeding flows is not fully suppressed or in tubular reactors where spatiotemporal
behaviors might also be of interest. Attempts to understand the role played by advection
in spatio-temporal organization of RD systems have led to the discovery of the flow dis-
tributed structures (FDS) or flow distributed oscillations (FDO). In this case excitable RD
systems with fixed or periodically forced inflow boundary, are known to develop station-
ary [15, 16] and traveling waves [17, 18] depending on the boundary-forcing frequency.
Patterns of these type are known to occur even when the Turing instability condition of
unequal diffusion coefficient is not satisfied.

A closely related problem to the boundary forced structures which have received less
study in 2D is the interactions between advective fields and a pre-existing sharp chem-
ical gradients produced by reaction-diffusion processes. This means the interaction of
already existing instabilities with the instability caused by advection. This interaction
can give rise to complex patterns in both chemical and biological systems [19, 20]. In
this work we consider the interaction of a uniform flow field with the Turing instability.
As a prominent example of an autocatalytic reaction-diffusion pattern forming system
we choose the Gray-Scott model [23]. This model has some generic features which can
make it adaptable to study some realistic situations such as vegetative patterns, combus-
tion and cell division [21, 22]. We propose a Lattice Boltzmann (LB) method for solving
the ADR equations arising from the interaction of the advective fields with the Turing
patterns. The LB simulation of the ADR equations shows that while advecting all the
species leads to trivial translation of the Turing patterns, differential advection of the
species leads to an additional flow induced instability characterized by traveling stripes
with a velocity dependent wave vector parallel to the flow direction. These observations
are in line with the predictions from linear stability analysis carried out on the model
equations. The article is organized as follows. In the next section, we present the model
equations. In Section 3 we address the framework adopted for the Lattice Boltzmann
modeling of the model equations. The results obtained from the linear stability analysis
and numerical simulations are discussed in Section 4. At the end of the same section, we
conclude the discussion with a summary of our results.

2 The model equations

In this section we present the governing equations for the Gray-Scott advection-diffusion-
reaction (ADR) model. The original Gray-Scott reaction-diffusion model describes the ki-
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netics of a simple autocatalytic reaction in an un-stirred homogeneous flow reactor [23].
The reactor is confined in a narrow space between two porous walls in contact with a
reservoir. Substance A whose density is kept fixed at Ao in the reservoir outside of the
reactor is supplied through the walls into the reactor with the volumetric flow rate per
unit volume k f . Inside the reactor, A undergoes an autocatalytic reaction with an inter-
mediate species B at a rate k1. The species B then undergoes a decay reaction to an inert
product C at a rate k2. The product C and excess reactants A and B are then removed
from the reactor at the same flow rate per unit volume k f . The basic reaction steps are
summarized as follows

A+2B
k1−→3B, (2.1a)

B
k2−→C. (2.1b)

The reaction in Eq. (2.1a) is the cubic autocatalytic reaction in which two molecules of
species B produce three molecules of B through interaction with the species A. The pres-
ence of B stimulates further production of itself, while the presence of A controls the
production of B. Substance A is sometimes called the inhibitor and B the activator. By
constantly feeding the reactor with a uniform flow of species A while at the same time
removing the product and excess reactants, far from equilibrium conditions can be main-
tained. Note that inside the reactor the two species A and B are assumed to interact only
through the non-linear autocatalytic reaction in Eq. (2.1a). In particular, interaction terms
due to cross diffusion between the species are neglected. This assumption is physically
justified as pattern forming systems often occur in the form of dilute solutions. Following
this assumption, the equations of chemical kinetics which describe the above situations
and include the spatio-temporal variations of the concentrations of A and B in the reactor
take the following form:

∂A

∂t
= k f (A0−A)−k1B2A+DA∇

2 A, (2.2a)

∂B

∂t
=−

(

k f +k2

)

B+k1B2A+DB∇
2B, (2.2b)

where A and B are the density of species A and B respectively, A0 is the density of A
in the reservoir, while DA and DB are the diffusion coefficients of species A and B re-
spectively. To account for the effect of an imposed flow, one simply adds a term due to
advection to the Gray-Scott reaction-diffusion Eqs. (2.2a) and (2.2b). However, note that
the two dimensional reaction-diffusion model described above contains a constant feed
flow term (k f A0) perpendicular to the reaction surface. This feed flow term constantly
replenishes species A on the reaction surface and thus species A is therefore sometimes
referred to as the substrate. But in a variety of technical settings or Tubular flow reactors
the external field that drives the system enters from one end and the idea of modeling
advection by driving species A and B with flow velocity u parallel to the surface is phys-
ically justified. In the case of the velocity field considered here, an incompressible flow
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with divergence free velocity field, the advection-diffusion-reaction (ADR) describing the
transport of species A and B can then be written as:

∂A

∂t
= k f (A0−A)−k1B2A+DA∇

2 A−u·∇A, (2.3a)

∂B

∂t
=−

(

k f +k2

)

B+k1B2A+DB∇
2B−δu·∇B, (2.3b)

where the parameter δ is the ratio of the advective rates of the two species or the differen-
tial advection parameter. The absence and presence of differential advection is modeled
with the parameter δ=1 and δ 6=1 respectively. Here we focus on the situations with δ=1
and δ=0.

In order to proceed with the analysis of Eq. (2.3), it is important to reduce the number
of parameters and introduce variables in the form of time and length scales that repre-
sent the physical processes acting in the system. We therefore introduce concentration
scales (A0,B0), time scales (τA = 1/k f , τB = 1/(k f +k2)), length scales (lA = (DAτA)

1/2,

lB =(DBτB)
1/2) and velocity scale uA = lA/τA such that:

t̃=
t

τA
, Ã=

A

A0
, B̃=

B

B0
, (x̃,ỹ)=

1

lA
(x,y), ũ=

u

uA
, B0=(k f /k1)

1/2. (2.4)

Using the above relations in Eq. (2.3) we arrive at the non-dimensional equations as:

∂Ã

∂t̃
=
(

1− Ã
)

− B̃2Ã+∇̃2 Ã−ũ·∇̃Ã, (2.5a)

1

τ

∂B̃

∂t̃
=−B̃+ηB̃2Ã+

1

ε2
∇̃2B̃−

δ

τ
ũ·∇B̃, (2.5b)

where the parameter

η=
A0(k1k f )

1/2

(k f +k2)
, τ=τA/τB, ε= lA/lB=

√

τADA/τBDB. (2.6)

Eqs. (2.5a) and (2.5b) have three simple equilibrium solutions which correspond to a
spatially homogeneous situation with no fluid flow (u=0). The first solution is the trivial
homogeneous solution B̃e=0, Ãe=1. This state exist for all system parameters. The other
two solutions exist provided that η>2. These are given by:

Ã±
e =

η±
√

η2−4

2η
, B̃±

e =
η∓

√

η2−4

2
. (2.7)

In equilibrium, the system can be found in any of these states and any external activation
or perturbation added to these states would either grow far from the equilibrium state
to a patterned state or decays back towards the equilibrium. The nature of the time
evolution from equilibrium depends on the systems transport parameters.
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3 Lattice Boltzmann modeling

Lattice Boltzmann schemes have been used to study the advection, diffusion and reaction
of a scalar field in reactive chemical transport processes [24–26]. In this work we intro-
duce the framework adopted for modeling advection-diffusion-reaction in domains with
no-flux boundary condition. In general, the lattice Boltzmann method [27–30] can be
regarded as a mesoscopic particle based numerical approach allowing to solve fluid dy-
namical equations in a certain approximation, which (within, e.g. the so called diffusive
scaling, i.e. by choosing ∆t=∆x2) becomes exact as the grid resolution is progressively
increased. The density of the fluid at each lattice site is accounted for by a one particle
probability distribution fi(x,t), where x is the lattice site, t is the time and the subscript
i represents one of the finite velocity vectors ei at each lattice node. The number and
direction of the velocities are chosen such that the resulting lattice is symmetric so as to
easily reproduce the isotropy of the fluid [31]. During each time step, particles stream
along each velocity vector ei to a neighboring lattice site and collide locally, conserving
mass and momentum in the process.

In order to use this method to simulate the ADR equations, we introduce a multi-
species distribution function fi,j where the subscript j runs over the number of species
j= 1,··· ,ns. As stated above, here, we assume that the diffusion of a given species does
not depend on the concentration of other species. In other words, the species in our
model do not interact among each other, except through the chemical reaction term. This
assumption is physically justified since many pattern forming systems are studied in the
form of dilute solutions. At higher concentrations, however, the mutual interactions of
different species shall be taken into account [32, 33]. The species field fi,j is advected
with the imposed flow velocity u and does not have any effect on the velocity field (pas-
sive tracer limit). The chemical reaction is modeled by including a source term, Rj, in
the collision step. The LB-BGK equation governing propagation, collision of the density
(concentration) distribution of the passive tracers is given as:

fi,j(x+ei,t+1)− fi,j(x,t)=
f

eq
i,j (x,t)− fi,j(x,t)

τj
+wiRj, (3.1)

where τs is the relaxation time for species s and f
eq
i,j is the equilibrium distribution func-

tion expanded up to the linear order in velocity as f
eq
i,j (x,t)=wiρj

[

1+(ei ·u)/c2
s

]

. As will

be shown below, the expansion to linear order is sufficient to recover the ADR equation
considered in this study. In the expression for the equilibrium distribution, cs is the sound
speed on the lattice and wi is a set of weights normalized to unity. The weights wi in the
equilibrium distribution depend on the number of velocities used for the lattice. In this
work, we have used the two dimensional nine velocity (D2Q9) model, with the sound
speed cs given as c2

s = c2/3, where c=∆x/∆t is the lattice speeds. The lattice weights and
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number of velocities for the D2Q9 is given as

wi=











4/9, ei =(0, 0), i=0;

1/9, ei =(±1, 0), (0,±1), i=1,··· ,4;

1/36, ei =(±1,±1), i=5,··· ,8.

(3.2)

The source term Rj represents the rate of change of density of the species, j, with re-
gard to reaction kinetics. The exact form of the relation between the reaction rate Rj and
the density (concentration) of each species depends on the type of reaction being mod-
eled. In this work, for species A, the reaction term is taken as R1 = k f (A0−A)−k1B2A

and for species B, R2=−
(

k f +k2

)

B+k1B2A. The density of the species j, is computed by

taking the zeroth moment of the distribution function, i.e. A=∑
N
i=0 fi,1 and B=∑

N
i=0 fi,2,

where N=8 in the present D2Q9 model. The corresponding macroscopic ADR equation
can be recovered from the LB Eq. (3.1) by performing a multiscale Chapman-Enskog ex-
pansion. We present a brief outline of the derivation and discuss the contribution of the
error terms to the ADR equations in the following section.

3.1 Chapman-Enskog procedure for the derivation of ADR equation

In this section, we derive the macroscopic ADR equation from the lattice Boltzmann equa-
tion;

fi,j(x+ei∆t,∆t+t)− fi,j(x,t)=
f

eq
i,j (x,t)− fi,j(x,t)

τj
+∆twiRj. (3.3)

By performing a Taylor series expansion of the left hand side of Eq. (3.3), a partial differ-
ential term can be written in place of the finite difference term as

∞

∑
n=1

∆tn

n!
(∂t+eiα∂xα)

n fi,j(x,t)=
f

eq
i,j (x,t)− fi,j(x,t)

τj
+∆twiRj. (3.4)

The distribution functions, time derivative, spatial derivative and the reaction term Rj

are expanded in terms of a smallness parameter, ǫ, as [34, 35]

fi,j = f
(0)
i,j +ǫ f

(1)
i,j +ǫ2 f

(2)
i,j +ǫ3 f

(3)
i,j +O(ǫ4), (3.5a)

∂t =ǫ∂
(1)
t +ǫ2∂

(2)
t , (3.5b)

∂xα =ǫ∂
(1)
xα , (3.5c)

Rj =ǫ2R
(2)
j +ǫ3R

(3)
j +O(ǫ4). (3.5d)

A natural interpretation of the parameter ǫ is the so called Knudsen number, the ratio of
the fluids mean free path to a characteristic dimension for variations of the macroscopic
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velocity field. Inserting Eqs. (3.5a), (3.5b), (3.5c) and (3.5d) in Eq. (3.4), one obtains

[

∆t(ǫ∂
(1)
t +ǫ2∂

(2)
t +ǫeiα∂

(1)
xα )+

∆t2

2
(ǫ2∂

(1)
t ∂

(1)
t +2ǫ2eiα∂

(1)
t ∂

(1)
xα +ǫ2eiαeiβ∂

(1)
xα ∂

(1)
xβ

+2ǫ3eiα∂
(2)
t ∂

(1)
xα

+ 2ǫ3∂
(2)
t ∂

(1)
t +2ǫ4∂

(2)
t ∂

(2)
t

]

( f
(0)
i,j +ǫ f

(1)
i,j +ǫ2 f

(2)
i,j +O(ǫ3))

=
1

τj

(

f
eq
i,j (x,t)−( f

(0)
i,j +ǫ f

(1)
i,j +ǫ2 f

(2)
i,j +ǫ3 f

(3)
i,j +O(ǫ4))

)

+∆twi(ǫR
(1)
j +ǫ2R

(2)
j +ǫ3R

(3)
j +O(ǫ4)). (3.6)

Grouping terms of the same order in ǫ yields the following successive approximations

O(ǫ0) : f
(0)
i,j = f

eq
i,j , (3.7)

O(ǫ1) : ∆t
(

∂
(1)
t +eiα∂

(1)
xα

)

f
(0)
i,j =−

1

τj
f
(1)
i,j , (3.8)

O(ǫ2) : ∆t
(

∂
(2)
t f

(0)
i,j +

(

∂
(1)
t +eiα∂

(1)
xα

)

f
(1)
i,j

)

+
∆t2

2

(

∂
(1)2

t +2eiα∂
(1)
t ∂

(1)
xα +eiαeiβ∂

(1)
xα ∂

(1)
xβ

)

f
(0)
i,j

=−
1

τj
f
(2)
i,j +∆twiR

(2)
j , (3.9)

O(ǫ3) : ∆t
(

∂
(3)
t f

(0)
i,j +∂

(2)
t f

(1)
i,j +

(

∂
(1)
t +eiα∂

(1)
xα

)

f
(2)
i,j

)

d+
∆t2

2

(

∂
(1)1

t +2eiα∂
(1)
t ∂

(1)
xα

+eiαeiβ∂
(1)
xα ∂

(1)
xβ

)

f
(1)
i,j +∆t2∂

(2)
t

(

∂
(1)
t +eiα∂

(1)
xα

)

f
(0)
i,j +

∆t3

6

(

∂
(1)
t +eiα∂

(1)
xα

)3
f
(0)
i,j

=−
1

τj
f
(3)
i,j +∆twiR

(3)
j . (3.10)

Putting the expression for f
(1)
i,j from Eq. (3.8) into Eq. (3.9) yields

1

τj
f
(2)
i =−∆t∂

(2)
t f

(0)
i,j +∆t2

(

τj−
1

2

)

(

∂
(1)
t +eiα∂

(1)
xα

)2
f
(0)
i,j +∆twiR

(2)
j . (3.11)

In Eq. (3.10), we insert the expression for f
(1)
i,j and f

(2)
i,j from Eqs. (3.8) and (3.9) and obtain

1

τj
f
(3)
i,j =−∆t∂

(3)
t f

(0)
i,j +∆t2(2τj−1)

(

∂
(1)
t +eiα∂

(1)
xα

)

∂
(2)
t f

(0)
i,j −∆t3

(

τ2
j −τj+

1

6

)

(

∂
(1)
t

+eiα∂
(1)
xα

)3
f
(0)
i,j −τs∆t2

(

∂
(1)
t +eiα∂

(1)
xα

)

wiR
(2)
j +∆twiR

(3)
j . (3.12)

Next, we take the moments of the distribution functions in Eqs. (3.8), (3.11) and (3.12).
Note that, since mass is conserved upon collision, only the equilibrium distribution func-

tion contributes to the local values of the mass. In other words, ∑
N
i=0 f

(k)
i,j =0, for all higher
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order corrections, k> 0, and all species, j. For the purpose of comparison, we consider
here two different equilibrium distribution, the linearized form

f
(0)
i,j =ρjwi

(

1+eiαuα/c2
s

)

, (3.13)

and the quadratic form

f
(0)
i,j =ρjwi

(

1+
1

c2
s

eiαuα+
uαuβ

2c2
s

(

eiαeiβ

c2
s

−δαβ

))

. (3.14)

Starting with the linear equilibrium distribution, the zeroth, first and second moments
are given as:

∑
i

f
(0)
i,j =ρj, ∑

i

f
(0)
i,j eiα=ρjuα, ∑

i

f
(0)
i,j eiαeiβ=ρjc

2
s . (3.15)

Taking ∑i of Eq. (3.8) and using Eq. (3.15), yields

∂
(1)
t ρj+∂

(1)
xα (ρjuα)=0. (3.16)

Again, taking ∑i of Eq. (3.11) and using Eqs. (3.15) and (3.16) yields

∂
(2)
t ρj =∆t

(

τj−
1

2

)

(

∂
(1)
t ∂

(1)
xα ρjuα+c2

s ∂
(1)
xα ∂

(1)
xα ρj

)

+∆tR
(2)
j . (3.17)

Adding together Eq. (3.16) ×ǫ and Eq. (3.17) ×ǫ2 leads to

∂tρj+∂xα(ρjuα)=∆t

(

τj−
1

2

)

(

c2
s ∂2

xα
ρj+Rj+∂t∂xα ρjuα

)

. (3.18)

Comparing Eq. (3.17) with the ADR equations, the diffusion coefficient can be taken as
Ds= c2

s ∆t
(

τj−1/2
)

and we can rewrite Eq. (3.18) as

∂tρj+∂xα(ρjuα)=Dj∂
2
xα

ρj+Rj+
Dj

c2
s

∂t∂xα ρjuα, (3.19)

with an error term E1=Dj/c2
s ∂t∂xα ρjuα.

Alternatively, using the quadratic equilibrium distribution in Eq. (3.17) and following
the above procedure, one obtains

∂tρj+∂xα(ρjuα)=Dj∂
2
xα

ρj+Rj+
Dj

c2
s

(

∂t∂xα(ρjuα)+∂xα ∂xβ
(ρjuαuβ)

)

, (3.20)

where the error term is now identified to be E2=Dj/c2
s

(

∂t∂xα(ρjuα)+∂xα ∂xβ
(ρjuαuβ)

)

.
We remark that, in the both cases of the equilibrium distributions considered, the

ADR equations are recovered at O(ǫ2). The contribution to the error term from the reac-
tion rate kinetics only enters the equations at O(ǫ3). Indeed, after a little bit of algebra,
one finds that a term of O(u2/c2

s ), due to spurious diffusion, is always present whether
or not terms of O(u2) are included in the local equilibrium distribution [36,37]. This term
can however be neglected provided that u2/c2

s ≪1 [37]. This condition is easily satisfied
in our simulations.
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4 Results and discussion

In this section, we discuss the results obtained from the numerical simulation of the Tur-
ing patterns under the imposed flow. We first begin with the linear stability analysis of
the ADR equations, and then test some of the predictions of the linear stability analysis
by performing numerical simulations.

4.1 Linear stability of the advection-diffusion-reaction equations

The dimensionless ADR equation is written as

∂Ã

∂t̃
=
(

1− Ã
)

− B̃2Ã+∇̃2Ã−ũ·∇̃Ã, (4.1a)

1

τ

∂B̃

∂t̃
=−B̃+ηB̃2Ã+

1

ε2
∇̃2B̃−

δ

τ
ũ·∇̃B̃. (4.1b)

To determine the conditions for pattern formation, we add to the equilibrium states in
Eq. (2.7), spatially inhomogeneous perturbations of the form (δA, δB)=(ΦA, ΦB)e

αt+iq·r,
where the perturbations have a growth rate α, amplitudes (ΦA, ΦB) and wave vector
q̃=(q̃cosθ, q̃sinθ). The wave vector is assumed to make an angle θ with the direction of
the flow in the (x,y) plane. The concentration of species A and B can then be written as

Ã= Ãe+ΦAeαteiq̃·r, B̃= B̃e+ΦBeαteiq̃·r . (4.2)

Inserting this ansatz in the kinetic Eqs.(4.1a) and (4.1b) we obtain

α

[

ΦA

ΦB

]

=







τ

(

2ηÃ±
e B̃±

e −1−
q̃2

ε2
−

iq̃δũcosθ

τ

)

τηB̃±2

e

−2Ã±
e B̃±

e −(q̃2+ B̃±2

e +1+iq̃ũcosθ)







[

ΦA

ΦB

]

. (4.3)

We consider the non-trivial states (Ã±
e , B̃±

e ). From Eq. (2.7) the equilibrium states can be

written as Ã±
e =1/ηB̃±

e and B̃±2

e +1=ηB̃±
e . Substituting these relations in matrix equation

(4.3) we arrive at the eigenvalue equation

|M−αI|Φ=0, (4.4)

where I is the unit matrix and the matrix M in this case is given as:

M=











τ

(

1−
q̃2

ε2
−

iq̃δũcosθ

τ

)

τηB̃±
e

−
2

η
−(q̃2+ηB̃±

e +iq̃ũcosθ)











. (4.5)
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The trace and determinant of matrix M can be written as

trM=−q̃2
(

1+
τ

ε2

)

−iq̃ũ(1+δ)cosθ+(τ−ηB̃±
e ), (4.6a)

|M|=
τq̃4

ε2
+iq̃3

(

τũ

ε2
+ũ

)

+ q̃2

(

τηB̃±
e

ε2
−τ−ũ2

)

+iq̃ũ(ηB̃±
e −τ)+τ(ηB̃±

e −2). (4.6b)

This can be re-written in a more shorthand notation as

trM= a+ib, |M|= c+id (4.7)

where the parameters a, b, c and d are given as

a=−q̃2
(

1+
τ

ε2

)

+(τ−ηB̃±
e ), b=−q̃ũ(1+δ)cosθ, (4.8a)

c=
τq̃4

ε2
+ q̃2

(

τηB̃±
e

ε2
−τ−δũ2cos2 θ

)

+τ(ηB̃±
e −2), (4.8b)

d= ũcosθ
(

q̃3(τ/ε2+δ)+ q̃(δηB̃±
e −τ)

)

. (4.8c)

The dispersion relation obtained from the solution of Eq. (4.4) is written as:

α2−αtrM+|M|=0. (4.9)

The eigenvalues α are the characteristic solution of the polynomial equation (4.9). This
can be written in terms of shorthand notation as:

α1,2=
1

2

(

(a+ib)±
√

(a2−b2−4c)+i(2ab−4d)

)

. (4.10)

Evaluating the complex term in the square root by separating the solution into the
real and imaginary part one obtains the eigenvalue solutions as

Re[α]=
a

2
±

1

2

√

r+(a2−b2−4c)

2
, Im[α]=

b

2
±

1

2

√

r−(a2−b2−4c)

2
, (4.11)

where r=
√

(a2−b2−4c)2+(2ab−4d)2.
Instability in the system sets in when Re[α(q̃)]> 0 for some wave numbers q̃. The

type of instability depends on whether this occurs for q̃=0 (Hopf instability) or for q̃ 6=0
(corresponding to a Turing instability if, in addition, Im[α(q̃)]=0). In this work, we focus
only on the effect of advection by a uniform flow on the Turing instability. In the absence
of flow, the Turing instability in this system sets in when ǫ> ηB̃±

e . In the following, we
restrict the discussion to two cases of uniform advection, associated with two values of
the parameter δ in Eq. (2.3). First, we consider the trivial – but for test purposes still
interesting – case of δ=1, i.e., the advection of all concentration fields with the flow. Due
to Galilean invariance, we expect here a trivial transport of existing patterns with the flow
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Figure 1: Dispersion relations showing the effect of advection on the real part of the growth rate. (a) δ=1.0,
(τ> ηB±

e ); (b) δ= 0, (τ > ηB±
e ). The graph shows the interaction between Turing instability and differential

flow induced instability.

without any modification of the stability phase diagram. In the second, less trivial case
of δ=0, only the concentration field A is advected with the flow (differential advection).

Case I (δ= 0): In this case, species A and B are advected differentially and the real part
of the growth rate Re[α(q̃)] depends on the magnitude and orientation of the advective
velocity ũ. Therefore, the instability is influenced by the flow. An important feature of
differential advection is shown by comparing Fig. 1 (a) and (b). In Fig. 1 (a), the growth
rate corresponding to ε2 = 9 is negative for all wave vectors q̃, meaning that the equilib-
rium state is stable with respect to any infinitesimal spatially inhomogeneous perturba-
tion. However, in the presence of differential advection, (δ=1), the growth rate becomes
positive for a range of q̃ values, meaning that differential advection can induce instability
even if the condition for Turing instability is not fulfilled. Note that, the patterns obtained
under this condition are not Turing patterns but are known as differential flow induced
patterns. Apart from the differential advection parameter δ, the magnitude and orienta-
tion of the advective velocity plays an important role in the range of unstable wave num-
bers. By increasing the magnitude of the advective velocity, for a constant differential
advection parameter δ, the real part of the growth rate takes up more positive values and
the maximum is shifted to the long-wavelength limit. In other words, the fastest growing
mode and the final selected length scale depend on the advective velocity. Assuming that
(a2−b2−4c)≫ (2ab−4d), a simple relation between the fastest growing mode qc and the
imposed velocity u can be derived from Eq. (4.11) by setting Re[α]=0. One thus obtains:

q2
c ≈

ε2(2−1/τ(1−δ)2u2cos2 θ)−2ηB−
e

2l2
A

. (4.12)

Case II (δ= 1): The expression for the growth rates in Eq. (4.11) shows that, in the case
of δ= 1, as expected,Re[α(q̃)] is independent of the advection velocity and the onset of
the Turing instability is unaffected by the flow. This means that the linearly unstable
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modes are the same as that in the absence of the flow. This fact is confirmed by our
numerical simulation as shown in the following discussions. The fastest growing mode
q̃c or the mode with the maximum linear growth rate α can be obtained from Eq. (4.11)
by differentiating α with respect to q̃2. In this case, this is written as:

q̃2
c =

1

l2
A

ε2−ηB̃−
e

2
. (4.13)

As expected, the wave length of the patterns is also independent of the velocity. The
imaginary part of α for δ= 1 obtained from Eq. (4.11) is given as Im[α]=−q̃ũcosθ. This
means that the unstable modes moves with the imposed velocity ũ. Thus, in a constant
uniform velocity field ũ the result is just a translational motion of the original Turing
patterns.

4.2 Numerical simulation

In this section, we perform numerical simulation of the model equations using the above
described LB approach. In order to isolate the effects due to boundary conditions and
flow velocity, we start with the situation corresponding to no fluid flow (u=0) and per-
formed simulations for various values of the parameter η on a domain with periodic
boundary condition (PBC) in all directions (upper row in Fig. 2) and a domain with PBC
along the x-direction and no-flux boundary condition at the top and bottom (lower row
in Fig. 2).

Using the patterns obtained in the absence of flow as initial conditions, we impose a
uniform flow in a channel of dimension 100×400 (l.u.) with periodic boundary condition
(PBC) in all directions.
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�
������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�

Figure 2: Patterns obtained in the absence of advective flow fields. The upper row shows solutions with periodic
boundary conditions and the lower row depicts solutions with no-flux wall boundary condition. The values of η
from left to right are: 2.1052, 2.1988, 2.2388, 2.2531, 2.2798, 2.4530. In all the cases investigated here, we
take τ=2.744 and ε=4.62.
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Figure 3: Patterns obtained under a constant uniform flow in the x-direction with differential advection parameter
δ= 0 (species B is immobile). (a) u= 0.01; (b) u= 0.03; (c) u= 0.05; (d) u= 0.07. The patterns consist of
traveling stripes along the flow direction.

We first consider the case δ=0. In this case, species A is advected and spatially disen-
gaged from species B, thus allowing B to grow locally. In this case, the general solution
consists of traveling stripes with wave vector parallel with the flow direction (θ=00). The
snapshots of the solutions taken in the frame of reference moving at a constant velocity u

along the x-direction are shown in Fig. 3. Note that the transition to the traveling stripe
structure is not sharp but rather smooth. It takes time of order t> lx/u in order to have a
fully developed structure from the initial Turing structure in Fig. 2a to the final traveling
stripe structures in Fig. 3. As predicted by the linear stability analysis in Eq. (4.12), the
wave length of these stripes is found to vary with the magnitude of the flow velocity.
In addition to this, note the gradual increase in the density of species B with increasing
velocity, this results from the tendency of species B to grow more locally as species A
is being advected faster away. This observation is interesting and has a close similarity
to vegetative pattern formation along sloppy hill side, where plant growths depends on
sufficient water run-off downhill [39]. Fig. 3a-d show the solutions obtained by varying
the magnitude of the flow velocity in the x-direction from 0.01 to 0.07. The computed
wave length of the patterns shown in Fig. 3 are found to be close to the predictions of
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Figure 4: Plot of change in the maximum growth mode ∆qc with velocity increase in steps of 0.01. The solid

line is the theory computed from Eq. (4.12) by setting τ=2.744, η=2.1988 and ε2=22.61. The dashed line is
the simulation data obtained with the same values of parameters.

Eq. (4.12). We made a comparison of the theory and simulation in Fig. 4 by ploting the
change in the fastest growth mode ∆qc=qc(ui)−qc(u f ) as the velocity is increased in steps
of 0.01 where ui is the velocity at the initial step and u f is the velocity at the final step.
The theoretical data are calculated from Eq. (4.12) using the parameter values τ= 2.744,
η=2.1988 and ε2=22.61. The simulation data are obtained by computing the wavevector
of the patterns in Fig. 3 using the relation q=2πnx/Lx, where nx is the wave number and
Lx is lattice dimension along the x-axis. The simulation and theory are found to agree
within about 5% error in the worst case. As a further verification of the above results, we
look at situations where the velocity field of magnitude |u| is oriented at an angle ψ to the
x-axis. Fig. 5 shows the results obtained for different values of the angle ψ and velocity
|u| of the flow field. It is interesting to observe that under this condition the stripes are
also perpendicular to the flow direction or in other words the wave vector is parallel to
the flow direction. This is in line with a study of the angle dependence of the growth rate,
which reveals that the fastest growing mode corresponds to θ=0◦.

For δ =1, corresponding to the absence of differential advection, both species are ad-
vected equally with the same velocity. Under a constant uniform flow, the solution is
spatial translation of the original Turing pattern in Fig. 2. However, under Poiseuille
flow, the non-uniformity of the velocity field along the y-direction may break the sym-
metry and the solution may bifurcate into Turing structures with stripes aligned along the
streamlines and wave vector perpendicular to the flow direction (not shown). A detailed
discussion of this issue will be presented elsewhere.

In summary, we present a LB model for simulating pattern formation in ADR equa-
tions. We found that pattern formation under a uniform flow with differential advection
mechanism, leads to traveling stripes with a velocity dependent wave vector parallel to
the flow direction. This holds regardless of the flow direction with respect to the lattice
orientation, thus underlining the physical relevance of the observation. These observa-
tions from the Lattice Boltzmann simulations of the ADR equations are shown to be in
line with the theoretical predictions from linear stability analysis.
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Figure 5: Patterns obtained under a constant uniform flow with the velocity magnitude |u| at an angle ψ with
the x-direction. (a) |u|= 0.05, ψ= 36.89◦; (b) |u|= 0.05, ψ= 53.13◦; (c) |u|= 0.02, ψ= 45◦; (d) |u|= 0.044,
ψ=26.56◦.
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