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Abstract. A new approach to high-order accuracy for the numerical solution of conser-
vation laws introduced by Huynh and extended to simplexes by Wang and Gao is re-
named CPR (correction procedure or collocation penalty via reconstruction). The CPR
approach employs the differential form of the equation and accounts for the jumps
in flux values at the cell boundaries by a correction procedure. In addition to being
simple and economical, it unifies several existing methods including discontinuous
Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the dif-
fusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG),
and I-continuous approaches. The first three of these approaches, originally derived
using the integral formulation, were recast here in the CPR framework, whereas the
I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a
triangular mesh. Fourier stability and accuracy analyses for these schemes on quadri-
lateral and triangular meshes are carried out. Finally, results for the Navier-Stokes
equations are shown to compare the various schemes as well as to demonstrate the
capability of the CPR approach.

AMS subject classifications: 76N15

Key words: Discontinuous Galerkin, lifting collocation penalty, flux reconstruction, Navier-Stokes
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1 Introduction

Second-order methods are currently popular in fluid flow simulations. For many impor-
tant problems such as computational aeroacoustics, vortex-dominant flows, and large
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eddy and direct numerical simulation of turbulent flows, the number of grid points re-
quired by a second-order scheme is often beyond the capacity of current computers. For
these problems, high-order methods hold the promise of accurate solutions with a man-
ageable number of grid points. Numerous high-order methods have been developed in
the last two decades. Here, we focus only on those that employ a polynomial to ap-
proximate the solution in each cell or element, and the polynomials collectively form a
function which is discontinuous across cell boundaries. Commonly used methods of this
type include discontinuous Galerkin (DG) [2, 3, 5–7], staggered-grid (SG) [15], spectral
volume (SV) [24–27], and spectral difference (SD) [17–19]. Among these, DG and SV are
usually formulated via the integral form of the equation, whereas SG and SD, the differ-
ential one. From an algorithm perspective, the difference among these methods lies in
the definition of the degrees of freedom (DOFs), which determine the polynomial in each
cell, and how these DOFs are updated.

High-order methods for conservation laws discussed above deal with the first deriva-
tive. Diffusion problems (viscous flows) involve the second derivative. There are many
ways to extend a method of estimating the first derivative to the second; Arnold et al.
analyzed several of them in [1]. Here, we restrict ourselves to approaches of compact
stencil: the second derivative estimate in an element involves data of only that element
and the immediate face neighbors. Such approaches have several advantages: the asso-
ciated boundary conditions are simpler, the coding is easier, and the implicit systems are
smaller. The four schemes of compact stencil employed are BR2 (Bassi and Rebay) [4],
compact DG or CDG [20], interior penalty [9,12], and I-continuous (the value and deriva-
tive are continuous across the interface) [14]. The BR2 scheme, an improvement of the
non-compact BR1 [2], is the first successful approach of this type for the Navier-Stokes
equations. The CDG scheme is a modification of the local DG or LDG [8] to obtain com-
pactness for an unstructured mesh. The interior penalty scheme is employed here with
a penalty coefficient using correction function [14]. The I-continuous approach is highly
accurate for linear problems on a quadrilateral mesh. Nicknamed ”poor man’s recov-
ery”, it can be considered as an approximation to the recovery approach of Van Leer and
Nomura [23]. (The recovery approach is beyond the scope of this paper since, although it
is more accurate than the schemes discussed here based on Fourier analysis [14], is more
complex and costly.)

For conservation laws, Huynh (2007) [13] introduced an approach to high-order ac-
curacy called flux reconstruction (FR). The approach solves the equations in differential
form. It evaluates the first derivative of a discontinuous piecewise polynomial func-
tion by employing the straightforward derivative estimate together with a correction
which accounts for the jumps at the interfaces. The FR framework unifies several ex-
isting methods: with appropriate correction terms, it recovers DG, SG, SV, SD methods.
This framework was extended to diffusion problems using quadrilateral meshes in [14],
where several existing schemes for diffusion were recast and analyzed. Wang and Gao
(2009) [28] extended the FR idea to 2D triangular and mixed meshes with the lifting col-
location penalty (LCP) formulation. The LCP method was applied to solve the Euler and
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later Navier-Stokes equations in both two [10] and three dimensions [11]. Due to their
tight connection, the FR and LCP methods are renamed correction procedures via recon-
struction or CPR. The CPR formulation does not involve numerical integrations; the mass
matrix inversion is built-in and therefore not needed; as a consequence, the approach is
simpler and generally results in schemes more efficient than those by quadrature-based
formulations.

In the present study, we demonstrate the capability of the CPR formulation for the nu-
merical solutions of the Navier-Stokes equations as well as investigate the performance
of several discretization approaches for diffusion. To accomplish these objectives and to
prepare for complex geometries and viscous boundary layers, we first formulate the CPR
framework on hybrid meshes of quadrilaterals and triangles. Next, we recast the four ap-
proaches for diffusion discussed above in this framework. Fourier stability and accuracy
analyses of these schemes are then carried out on square and triangular meshes. Finally,
results for several benchmark problems are shown.

The paper is organized as follows. The CPR formulation for hybrid meshes is pre-
sented in Section 2. Section 3 describes the discretization of diffusion/viscous terms.
Fourier analyses of the schemes for diffusion on square and triangular meshes are car-
ried out in Section 4. Numerical tests are shown in Section 5 for the Poisson and the
Navier-Stokes equations. Conclusions are drawn in Section 6.

2 Governing equations and numerical formulations

2.1 Governing equations

For the scalar case, we consider the heat equation

ut−∇2u=− f (2.1)

with appropriate boundary conditions. Our goal is to obtain numerical solutions for the
Navier-Stokes equations in conservative form

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
=0, (2.2)

where Q is the vector of conserved variables, and F and G are the flux vectors formed by
the inviscid and viscous parts, F=Fi−Fv, G=Gi−Gv. More precisely,
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and
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In (2.3)-(2.4), ρ is density, u and v velocity components in x and y directions, p pressure, E
total energy, µ dynamic viscosity, Cp specific heat at constant pressure, Pr Prandtl num-
ber, and T temperature. For a perfect gas, pressure is related to total energy by

E=
p

γ−1
+

1

2
ρ
(

u2+v2
)

. (2.5)

The ratio of specific heats γ is assumed to be constant, and γ=1.4 for air. In addition, λ
is set to −2/3 according to the Stokes hypothesis.

From (2.4), the viscous fluxes can be written as functions of both the conservative
variables and their gradients,

Fv =Fv
(

Q,~∇Q
)

, Gv=Gv
(

Q,~∇Q
)

. (2.6)

Note that the flux in the heat equation is a special case of the above: Fv(Q,~∇Q)=Qx and

Gv(Q,~∇Q)=Qy. Therefore, from here on unless otherwise stated, we employ only (2.6).

2.2 CPR (Correction Procedure via Reconstruction) formulation

General CPR formulation

The CPR formulation can be derived from a weighted residual method by transform-
ing the integral formulation into a differential one. First, a hyperbolic conservation law
can be written as

∂Q

∂t
+~∇•~F(Q)=0, (2.7)

with proper initial and boundary conditions, where Q is the state vector and ~F=(F,G)
is the flux vector. The computational domain is discretized into N non-overlapping ele-
ments {Vi}. Let W be an arbitrary weighting function. The weighted residual of Eq. (2.7)
on element Vi can be written as

∫

Vi

(

∂Q

∂t
+~∇•~F(Q)

)

WdV=
∫

Vi

∂Q

∂t
WdV+

∫

∂Vi

W~F(Q)•~ndS−
∫

Vi

~∇W•~F(Q)dV=0. (2.8)
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Let Qi be an approximate solution to Q at element i. We assume that in each element, the
solution belongs to the space of polynomials of degree k or less, i.e., Qi ∈ Pk(Vi), (or Pk

if there is no confusion) with no continuity requirement across element interfaces. The
numerical solution Qi should satisfy Eq. (2.8), i.e.,

∫

Vi

∂Qi

∂t
WdV+

∫

∂Vi

W~F(Qi)•~ndS−
∫

Vi

~∇W•~F(Qi)dV=0. (2.9)

Since the solution is discontinuous across element interfaces, the above surface integral
is not well-defined. To remedy this problem, a common normal flux is employed:

~F(Qi)•~n≈Fn
com(Qi,Qi+,~n), (2.10)

where Qi+ is the solution onVi+, which is outside Vi. Instead of (2.9), the solution is
required to satisfy

∫

Vi

∂Qi

∂t
WdV+

∫

∂Vi

WFn
comdS−

∫

Vi

~∇W ·~F(Qi)dV=0. (2.11)

Applying integration by parts again to the last term of the above LHS, we obtain

∫

Vi

∂Qi

∂t
WdV+

∫

Vi

W~∇•~F(Qi)dV+
∫

∂Vi

W [Fn
com−Fn(Qi)]dS=0. (2.12)

Here, we require test space to have the same dimension as the solution space. The test
space is chosen in a manner to guarantee the existence and uniqueness of the numerical
solution.

Note that the quantity ~∇•~F(Qi) involves no influence from the data in the neighbor-
ing cells; the influence of these data is represented by the above boundary integral, which
is also called a ”penalty term”, penalizing the normal flux differences.

The next step is critical in the elimination of the test function. The boundary integral
above is cast as a volume integral via the introduction of a ”correction field” δi∈Pk,

∫

Vi

WδidV=
∫

∂Vi

W[Fn]dS, (2.13)

where [Fn]= Fn
com(Q,Q+,~n)−Fn(Q) is the normal flux difference. The above equation is

sometimes referred to as the ”lifting operator”, which has the normal flux differences on
the boundary as input and an element of Pk(Vi) as output. Substituting Eq. (2.13) into
Eq. (2.12), we obtain

∫

Vi

[

∂Qi

∂t
+~∇•~F(Qi)+δi

]

WdV=0. (2.14)
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If the flux vector is a linear function of the state variable, then ~∇•~F(Qi)∈ Pk−1. In this
case, the terms inside the square bracket are all elements of Pk. Because the test space is
selected to ensure a unique solution, Eq. (2.14) is equivalent to

∂Qi

∂t
+~∇•~F(Qi)+δi=0. (2.15)

For non-linear conservation laws, ~∇•~F(Qi) is usually not an element of Pk(Vi). As a

result, we approximate it by its projection onto Pk(Vi), denoted by Π(~∇•~F(Qi)),

∫

Vi

Π
(

~∇•~F(Qi)
)

WdV=
∫

Vi

~∇•~F(Qi)WdV. (2.16)

We will discuss how to approximate this projection later. Eq. (2.14) then reduces to

∂Qi

∂t
+Π

(

~∇•~F(Qi)
)

+δi=0. (2.17)

With the introduction of the correction field δi, and a projection of ~∇•~F(Qi) for non-linear
conservation laws, we have reduced the weighted residual formulation to a differential
formulation, which involves no integrals.

Note that for δi defined by (2.13), if W ∈ Pk, Eq. (2.17) is equivalent to the DG for-
mulation; if W varies on another space, the resulting δi is different, and we obtain a
formulation corresponding to a different method [28].

Let the solution points (SPs) be denoted by {~ri,j} (j varies from 1 to K), as shown in
Fig. 1. Let Qi,j be an approximation to the solution at these points. Then we require
Eq. (2.17) to hold at the SPs, i.e.,

∂Qi,j

∂t
+Π

(

~∇•~F(Qi,j)
)

+δi,j=0, (2.18)

where ~∇•~F(Qi,j)= [~∇•~F(Q)]
~ri,j

.

Figure 1: Solution points (squares) and flux points (circles) for k=2.
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Along each edge, we also need to define k+1 points where the common normal fluxes
are calculated; these points are called flux points (Fig. 1). Once the solution points and
flux points are chosen, the correction at the SPs can be written as

δi,j=
1

|Vi| ∑
f∈∂Vi

∑
l

αj, f ,l[F
n] f ,lS f , (2.19)

where αj, f ,l are constants independent of the solution. Here, again, j is the index for
solution points on each cell, i the cell index, f the face index, l the index of flux points on
face f , and S f the area.

Note that the correction for each solution point, namely, δi,j is a linear combination
of all the normal flux differences on all the faces of the cell. Conversely, a normal flux
difference at a flux point on a face, say ( f , l) results in a correction at all solution points j
of an amount αj, f ,l[F

n] f ,lS f /|Vi|.
Along each edge f , the flux difference values [Fn] f ,l at the flux points defines a 1-D

polynomial of degree k denoted by [Fn] f . Eq. (2.13) can then be written as

∫

Vi

Wk ∑
j

Ljδi,jdV=
f∈∂Vi

∑
f

∫

f

Wk[F
n] f dS. (2.20)

Here Lj is the Lagrange polynomials, and Wk the test functions. This equation yields a
linear system as k varies; the unknowns are δi,j; both k and j vary from 1 to K. By setting
Wk = Lk, the unknowns can be solved and the coefficients can be determined. Note that
after the approximation using the Lagrange polynomials (1D and 2D), the volume and
surface integrals are carried out exactly in (2.20) for the solution of the linear system.

To approximate the term Π(~∇•~F(Qi)), either the Lagrange polynomial (LP) or the
chain-rule (CR) approach can be used.

For the LP approach, the flux function is first approximated by a Lagrange polyno-
mial; then the divergence operator is applied (the following right hand side),

Π
(

~∇•~F(Qi)
)

=∇• ∑
j∈SP

Lj
~Fj. (2.21)

As for the CR approach, it was mentioned in [13] as an alternative. But numerical tests
later in [28] show that it in fact yields more accurate solutions for non-linear cases. The
CR approach can be written as

Π
(

~∇•~F(Qi)
)

=∇•
(

∑
j∈SP

Lj
∂F

∂Q
∇Qj

)

. (2.22)

The idea of the CR approach is to obtain a best divergence quantity of the fluxes at solu-
tion points in the following sense: if the exact solution is identical to a solution polyno-
mial (of degree k), then this approach yields the exact divergence values at the solution
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points. Note that the LP approach does not have this property. Comparisons of numerical
tests by the two approaches for the case of non-linear fluxes can be found in [28].

Substituting (2.19) into (2.18) we obtain the following correction procedure via recon-
struction (CPR) formulation

∂Qi,j

∂t
+Π

(

~∇•~F(Qi,j)
)

+
1

|Vi| ∑
f∈∂Vi

∑
l

αj, f ,l[F
n] f ,lS f =0. (2.23)

It was shown that the location of SPs does not affect the numerical scheme for linear
conservation laws [13,22]. For efficiency, therefore, the solution points and flux points are
always chosen to include corners of the cell; in addition, the solution points are chosen to
coincide with the flux points along cell faces. Furthermore, in a computation with hybrid
mesh, the flux points are always of the same distribution for different cell types for ease
of interface treatment (Fig. 2). For the 2D cases presented here, the Legendre Lobatto
points along the edges are used as the flux points and also (part of) the solution points
for both triangular and quadrilateral cells.

Figure 2: Solution points for the 3rd order LCP scheme on hybrid meshes.

CPR for 1D

For the one-dimensional (1D) case, consider the element Vi=[xi−1/2, xi+1/2]; here, the
flux ~F is F. Assuming a linear flux for derivation purpose, Eq. (2.22) takes the form

∂Qi,j

∂t
+

∂
[

F(Qi,j)
]

∂x
+αj,L[F

n]L+αj,R[F
n]R =0, (2.24)

where [Fn]L and [Fn]R are the flux differences on the left and right interfaces of the cell Vi.
The quantities αj,L and αj,R are the correction coefficients. Recall that for the 1D case, the
number of solution points is K= k+1; as a result, j varies from 1 to K, and αj,L define a
polynomial of degree k=K−1 as j varies. This polynomial is the derivative of a correction
function, which approximates the zero function as explained below.
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In 1D, the CPR method is equivalent to the flux reconstruction approach. The FR
approach is a more general and flexible framework, making it very easy to obtain various
sets of the coefficients αj,L. The FR approach for both convection and diffusion equations
is documented by Huynh in [13] and [14]. Therefore, we now discuss (2.24) via the FR
approach. Due to the discontinuity at the interfaces of the piecewise solution polynomial,
the flux is also a piecewise discontinuous function. The idea of the FR method is to
construct a new flux function F̂i(x), which satisfies the following three criteria:

1. F̂i(x) is a degree k+1 polynomial, i.e., one degree higher than the solution polyno-
mial Qi;

2. F̂i(x) approximates Fi(x) in some sense. In other words, some norm of the differ-
ence ‖F̂i(x)−Fi(x)‖ is minimized;

3. At both ends of the element, the flux takes on the value of the common fluxes, i.e.,

F̂i(xi−1/2)=Fcom(Qi−1(xi−1/2),Qi(xi−1/2))≡Fcom,i−1/2,

F̂i(xi+1/2)=Fcom(Qi(xi+1/2),Qi+1(xi+1/2))≡Fcom,i+1/2,

where, at each interface, Fcom(Q−,Q+) is a common interface flux obtained from
the two values Q− and Q+ to the left and right of that interface.

For the inviscid flux, the Riemann or upwind flux is employed. For the diffusion or
viscous flux, the common quantities will be discussed in Section 4. Once this flux function
F̂i(x) is found, the DOFs are updated using the following differential equation

∂Qi,j

∂t
+

∂F̂i(xi,j)

∂x
=0. (2.25)

Next, the reconstructed flux function is re-written as

F̂i(x)=Fi(x)+σi(x), (2.26)

where σi(x) approximates the zero function. The function σi(x) is further expressed as

σi(x)= [Fcom,i−1/2−Fi(xi−1/2)]gL(x)+[Fcom,i+1/2−Fi(xi+1/2)]gR(x), (2.27)

where gL(x) and gR(x) are called correction functions. They are of degree k+1, approxi-
mate the zero function, and satisfy

gL(xi−1/2)=1, gL(xi+1/2)=0 (2.28a)

gR(xi−1/2)=0, gR(xi+1/2)=1. (2.28b)

For gL, the condition gL(xi−1/2)=1 deals with the jump at the left interface, and the con-
dition gL(xi+1/2)=0 leaves the right interface value unchanged. Eq. (2.24) then becomes

∂Qi,j

∂t
+

∂Fi(xi,j)

∂x
+[Fcom,i−1/2−Fi(xi−1/2)]g

′
L(xi,j)

+[Fcom,i+1/2−Fi(xi+1/2)]g
′
R(xi,j)=0. (2.29)
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Due to symmetry, we only need to consider gL(x), or simply g(x). Using a linear trans-
formation, it suffices to consider the correction function g on the standard element [−1,1].
Since g is a polynomial of degree k+1 where k=K−1, it is defined by k+2 conditions.
Two conditions are given by the first half of (2.28), namely g(−1)=1 and g(1)=0. Thus,
k conditions remain. The requirement of approximating the zero function can be satisfied
by the condition that g is orthogonal to Pk−1, i.e.,

∫ 1

−1
g(ξ)ξm dξ =0, m=0,1,··· ,k−1. (2.30)

Such a correction function is the Radau polynomial, and (2.24) results in a differential
formulation of the DG method. For other correction functions, see [13, 14].

CPR for quadrilateral elements

The 1D CPR formulation can be extended to quadrilateral cells by tensor products.
First, the mapping from the standard square [−1,1]×[−1,1] to a quadrilateral element
(Fig. 3) is given by

(

x
y

)

=
Nn

∑
j=1

Mj(ξ,η)

(

xj

yj

)

, (2.31)

where x and y are the physical coordinates, ξ and η the local coordinates, (xj, yj) are the
control points of the mapping (the four corners for straight-edge elements). Nn is the
number of nodes used to define the physical element, Nn = 4 for elements with straight
edges, Nn>4 for elements with one or more curved edges. For each j, Mj(ξ,η) is the shape
function, which takes on the value 1 at node j and 0 at all other nodes. The Jacobian of
the formulation is

J=

∣

∣

∣

∣

∂(x,y)

∂(ξ,η)

∣

∣

∣

∣

=

∣

∣

∣

∣

xξ xη

yξ yη

∣

∣

∣

∣

. (2.32)

Assuming that the transformation is nonsingular, the metrics can be computed by

ξx =yη/J, ξy =−xη/J, ηx =−yξ /J, ηy = xξ/J. (2.33)

On the computational domain, the governing equation takes the form

∂Q̃

∂t
+

∂F̃

∂ξ
+

∂G̃

∂η
=0, (2.34)

Figure 3: Transformation of a quadrilateral element to a standard element.
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where

Q̃= J ·Q, (2.35a)

F̃= J(ξx F+ξyG), (2.35b)

G̃= J(ηx F+ηyG). (2.35c)

Next, set ~Sξ= J(ξx,ξy), ~Sη= J(ηx ,ηy). Then we have F̃=~F•~Sξ , G̃=~F•~Sη . In our implemen-

tation, J and ~Sξ , ~Sη are stored at the solution points. Within the i-th element, the solution
polynomial is a tensor product of 1D Lagrange polynomials, i.e.,

Qi(ξ,η)=
k+1

∑
m=1

k+1

∑
j=1

Qi;j,mLj(ξ)Lm(η). (2.36)

There are K=(k+1)2 solution points inside each element. Here Qi;j,m are the state vari-
ables at the solution point (j,m) of cell i, for clarity we use ”;” to separate the cell index
i from the two indices ”j,m” of the solution point, with j the index in ξ direction, and m,
η direction; Lj(ξ) and Lm(η) are 1D Lagrange polynomials in ξ and η directions, respec-

tively. The fluxes F̃i;j,m and G̃i;j,m can be calculated by using F̃(Qi;j,m), G̃(Qi;j,m). The fluxes
can be represented with Lagrange interpolation polynomials in the following form:

F̃i(ξ,η)=
k+1

∑
m=1

k+1

∑
j=1

F̃i;j,mLj(ξ)Lm(η), (2.37a)

G̃i(ξ,η)=
k+1

∑
m=1

k+1

∑
j=1

G̃i;j,mLj(ξ)Lm(η). (2.37b)

Common normal fluxes at the interfaces are computed at all four element edges as fol-
lows:

F̃com(−1,η)=−Fn
com(Qi(−1,η),Qi+(−1,η),~n)

∣

∣

∣

~Sξ

∣

∣

∣
, (2.38a)

F̃com(1,η)=Fn
com(Qi(1,η),Qi+(1,η),~n)

∣

∣

∣

~Sξ

∣

∣

∣
. (2.38b)

The equations for G̃ is similar. Finally the DOFs are updated using the following equation

∂Q̃i;j,m

∂t
+

∂F̃i(ξ j,m,ηj,m)

∂ξ
+

∂G̃i(ξ j,m,ηj,m)

∂η

+[F̃com(−1,ηj,m)− F̃i(−1,ηj,m)]g
′
L(ξ j,m)+[F̃com(1,ηj,m)− F̃i(1,ηj,m)]g

′
R(ξ j,m)

+[G̃com(ξ j,m,−1)−G̃i(ξ j,m,−1)]g′L(ηj,m)+[G̃com(ξ j,m,1)−G̃i(ξ j,m,1)]g′R(ηj,m)

=0. (2.39)

Note that the correction is done in a 1D manner.
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CPR for triangular elements

The CPR method for triangular elements is computationally efficient: the coefficients
αj, f ,l are not only independent of the solution, but also independent of the shape of the
element. This means once the distribution of the solution points is chosen, the coefficients
αj, f ,l can be computed analytically on a standard triangle by Eq. (2.20), and then applied
to an arbitrary triangular element. The same comment holds for tetrahedral elements in
3D. The value of coefficients αj, f ,l for specific sets of solution points can be found in [28].

For the case of elements with curved boundaries, they are first mapped to a standard
triangle, and then CPR coefficients are applied to the transformed governing equation in
conservative form, i.e., Eq. (2.34). Therefore, the same set of α coefficients can be used.

3 Compact schemes for discretization of the diffusion/viscous

term

3.1 Basic framework

We now use the CPR formulation discussed above to discretize the diffusion term. This
discretization includes two parts: calculate the divergence of flux ~∇•~F on the interior of
the element and evaluate the common flux at the interface.

First, following [2], we introduce a new variable ~R:

~R=~∇Q. (3.1)

Eq. (3.1) is solved using the weak formulation. In the CPR framework, the result is a
collocation formulation:

~Ri,j=
(

~∇Qi

)

j
+

1

|Vi| ∑
f∈∂Vi

∑
l

αj, f ,l[Q
com−Qi] f ,l~n f S f , (3.2)

where Qcom
f ,l is the common solution on interface f , and Qi; f ,l is the solution within cell i

on face f . The definition of Qcom =Qcom(Q−,Q+,~n) varies with different approaches to
discretize the diffusion terms. Here, with uniquely defined left and right side for each
interface, Q− and Q+are the left and right solutions, and ~n the unit normal from left to
right.

Next, the viscous fluxes at solution points are evaluated by

Fv
i,j=Fv(Qi,j,~Ri,j), Gv

i,j=Gv(Qi,j,~Ri,j). (3.3)

Then, ∂Fv/∂x and ∂Gv/∂y can be obtained (using Lagrange polynomial). The divergence

of the flux namely ~∇•~F on the interior of the element can be calculated.
Besides those interior derivatives, common diffusion/viscous fluxes at the interfaces

are also needed for the CPR formulation

Fcom
f ,l =Fv

(

Qcom
f ,l ,~∇Qcom

f ,l

)

, Gcom
f ,l =Gv

(

Qcom
f ,l ,~∇Qcom

f ,l

)

. (3.4)
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This means we also need to define a common gradient

~∇Qcom= ~∇Qcom
(

~∇Q−,~∇Q+,Q−,Q+,~n
)

(3.5)

at the cell interfaces.

In the following subsections, we define Qcom and ~∇Qcom by the BR2, I-continuous,
interior penalty and CDG schemes. Let the face f be fixed. We focus our attention on this
face and the cells on both sides.

3.2 BR2

The common solution in BR2 is simply the average of solutions at two sides of the face

Qcom
f ,l =

Q−
f ,l+Q+

f ,l

2
. (3.6)

For the common gradient,

~∇Qcom
f ,l =

1

2

(

~∇Q−
f ,l+~r

−
f ,l+

~∇Q+
f ,l+~r

+
f ,l

)

(3.7)

where ~∇Q−
f ,l and ~∇Q+

f ,l are the gradients of the solution of the left and right cells with no

correction, while~r−f ,l and~r+f ,l are the corrections to the gradients due to the common the

solution on only the face f . More precisely,

~r−f ,l =
1

|V−|

Nfp

∑
m=1

β−
l,m[Q

com−Q−] f ,m~n f S f , (3.8a)

~r+f ,l =
1

|V+|

Nfp

∑
m=1

β+
l,m[Q

com−Q+] f ,m

(

−~n f

)

S f , (3.8b)

where Nfp is the number of solution points on face f , βl,m is the coefficient of correction
due to face f . Note that the indices l and m vary on the face f and, for our choice of
solution points, βl,m =αj, f ,m, where the index j for the solution points corresponds to the
index l for the flux point on the face f . For triangular elements, βl,m are identical for any
face f with a fixed distribution of flux points.

For quadrilateral elements, because the tensor product is used, ~r−f ,l and ~r+f ,lare thus

computed in a 1D manner, which means the penalty matrix βl,m reduces to a diagonal
matrix. Therefore, for a quadrilateral element, we only need to consider the coefficient
γl = βl,lS f /V. Next, denote by γ̃l the quantity γl on the standard element [−1,1]×[1,1].
Then γ̃l =−g′(−1). This is also of the same form as the diffusion discretization of the FR
method [14]. However, for a general quadrilateral element, γ̃l needs to be transformed
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back to γl in the physical domain (x,y) before being inserted to Eq. (3.8). Depending on
the direction (ξ or η) we are dealing with, γ̃l and γl can be related by

γl =
√

ξ2
x+ξ2

yγ̃l =−
√

ξ2
x+ξ2

yg′ (−1) (3.9a)

or

γl =
√

η2
x+η2

y γ̃l =−
√

η2
x+η2

yg′ (−1). (3.9b)

According to the Fourier analysis by Huynh [14], the derivative of Legendre polynomial
gLE

′(−1) offers the best accuracy for the linear diffusion equation, and therefore gLE
′(−1)

(the value is −k(k+1)/2 for degree k polynomial) is used in all the linear diffusion nu-
merical tests presented later. For the N-S equations, however, a slightly larger coefficient
−(k+1)(k+2)/2 is used to stabilize the scheme. The same coefficient is also used in the
other 3 diffusion schemes.

3.3 I-continuous

The I-continuous approach in 1D was proposed by Huynh (2009) [14]. Its basic idea is:
instead of prescribing a common solution Qcom at the interfaces, Qcom is an unknown to
be solved by the condition that the corrected derivatives ∂QC/∂x is continuous across the
interface f . Once we obtain Qcom, the common derivative ∂Qcom/∂x is also defined, since
there is only one value at the interface.

In the 2D case, requiring the corrected gradient ~∇QC to be continuous at the interfaces
would give us two conditions-continuity in x and y directions. Since we are only solving
one variable Qcom, we require continuity only in the normal direction. The corrected
gradients on the left (−) and right (+) can be expressed as

~∇QC−
f ,l =

~∇Q−
f ,l+

S−
f

|V−|

Nfp

∑
m=1

[Qcom−Q−] f ,mβ−
l,m~n, (3.10a)

~∇QC+
f ,l =

~∇Q+
f ,l+

S+
f

|V+|

Nfp

∑
m=1

[Qcom−Q+] f ,mβ+
l,m (−~n). (3.10b)

Then we require the gradient to be continuous in the normal direction

∇QC− ·~n=∇QC+ ·~n. (3.11)

Substituting in (3.10), we have

Nfp

∑
m=1

(

β−
l,mS−

f

|V−| +
β+

l,mS+
f

|V+|

)

Qcom
f ,m

=~∇Q+
f ,l ·~n−~∇Q−

f ,l ·~n+
Nfp

∑
m=1

(

Q−
f ,mβ−

l,mS−
f

|V−| +
Q+

f ,mβ+
l,mS+

f

|V+|

)

. (3.12)
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Eq. (3.12) represents a linear system, from which Qcom
f ,l can be easily solved. Then, the

common viscous flux ~∇Qcom is obtained by

~∇Qcom
f ,l ·~n= ~∇QC− ·~n or ~∇Qcom

f ,l ·~n= ~∇QC+ ·~n, (3.13a)

~∇Qcom
f ,l ·~t=

~∇Q−
f ,l ·~t+~∇Q+

f ,r ·~t
2

. (3.13b)

Here ~t is the unit vector tangential to the face. The direction of ~t makes no difference
provided that same~t is used for both sides. In the case that one or both sides of the face
is a quadrilateral cell, we can use γl =βl,lS f /V in (3.12).

While the I-continuous approach is more involved than the other three schemes, it
was shown in [14] via Fourier analysis that if gLe is employed as the correction func-
tion, there is a significant gain in accuracy. Since such a Legendre-polynomial correction
function is not yet known on triangles, we use the equivalence of the Radau polynomial.

Note that we need to solve a k+1 linear system for each face. The cost of this step is
minimal since the matrices are independent of the solution. They only need to be inverted
once during initialization. Therefore, the I-continuous approach is only slightly costlier
than the BR2 approach.

3.4 Interior penalty

Interior penalty is a simplified version of BR2 for triangular meshes, and is identical to
BR2 for quadrilateral meshes. In BR2 the correction (or penalty)~r+f ,l and~r−f ,l at one face

flux point is a linear combination of the solution differences of all points on the face.
In interior penalty method, the penalty is only dependent on the solution difference at
that point, i.e. the penalty is computed in a 1-D manner. Therefore, Eqs. (3.6) and (3.7)
still holds for interior penalty method, the only difference lies in the computation of the
corrections due to the common solution,

~r−f ,l =−
[

Qcom−Q−]
f ,l

g′ (−1)

(

S f

V

)−
~n, (3.14a)

~r+f ,l =
[

Qcom−Q+
]

f ,l
g′ (−1)

(

S f

V

)+

~n, (3.14b)

S f

V~n here is in the place of terms like (ξx,ξy) for the quadrilateral mesh, which represents
the length scale factor.

3.5 CDG

The idea of CDG is to use one side of the face for the common solution and the other side
for the common gradient.
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For example, if we use the right (+) side for common solution and the left (−) side
for common gradient, we obtain,

Qcom
f ,l =Q+

f ,l, (3.15a)

~∇Qcom
f ,l = ~∇Q−

f ,l+~r
−
f ,l, (3.15b)

where

~r−f ,l =
1

|V−|

Nfp

∑
m=1

β−
l,m

[

Qcom−Q−]
f ,m

~n f S f . (3.16)

Alternatively, we can also use the opposite sides for common solution and common gra-
dient. Note that the difference between the CDG and LDG methods is in the definition of
the common gradient. At a fixed face, for CDG, the correction term~r−f ,l in (3.16) involves

only the jumps at that face, whereas, for LDG, it involves the jumps at all the faces of the
corresponding cell.

3.6 Boundary conditions

In this subsection, we discuss the boundary conditions for the compact diffusion/viscous
schemes. Let’s assume a face f is on the boundary of the computational domain and the
left side of f is the computational domain. Only the solutions and gradients on the left

(−) side are available, and the final objective is to obtain Qcom and ~∇Qcom for face f .
In the linear diffusion cases presented in Section 5, two types of boundary conditions

are used. For Dirichlet boundary condition, Q+ is set to the boundary value while the
gradient is extrapolated, i.e., ∇Q+=∇Q−. Then the common quantities can be computed
according to Sections 3.2-3.5. For Neumann boundary conditions, the common solution
is extrapolated Qcom=Q−, while ∇Qcom is set to the boundary value.

In the case of Navier-Stokes equations, the boundary condition is similar to the Dirich-
let boundary condition for the linear case. Q+ can be simply fixed to the exact boundary
values, or obtained through characteristic boundary conditions. For solid non-slipping
walls, Q+ is set to Q− with reversed velocity, resulting zero velocity for Qcom. The gra-
dients are always extrapolated from the interior domain, i.e., ∇Q+ =∇Q−. For adia-
batic walls, the normal temperature gradients are set to 0 when computing the fluxes by
Eq. (3.4).

4 Two-dimensional Fourier (Von Neumann) analysis

We now carry out the Fourier (Von Neumann) stability and accuracy analysis of the
schemes discussed above on a square and a triangular mesh. It turns out that, for the
diffusion equation (below), all discussed schemes have real and nonpositive eigenvalues.
This fact implies that these schemes are stable. In addition, the spectral radius is identical
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to the magnitude of the minimum eigenvalue. In this section, for convenience, we use
the term order of accuracy of a scheme to refer to its order of accuracy by Fourier analy-
sis. All schemes discussed have the property of super-accuracy or super-convergence for
k≥2, i.e., the order of accuracy of each scheme by Fourier analysis (but not in general) is
higher than the expected order of k+1 where k is the degree of the polynomials approxi-
mating the solution. In practice, when the mesh is nonuniform and/or the equations are
nonlinear, the super-accuracy property no longer holds.

On the domain (−∞,∞)×(−∞,∞), consider the diffusion equation

ut=uxx+uyy. (4.1)

With initial condition uinit(x)=eI(wxx+wyy), where I=
√
−1 (we use i for the cell index), and

the wave numbers wx and wy lie between −π and π. Low frequency data corresponds to
wave numbers of small magnitude; high frequency, to those near ±π. The exact solution

is uexact(x)= e−(wx
2+wy

2)teI(wxx+wyy). At (x,y,t)=(0,0,0),

(uexact)t(0,0,0)=−(w2
x+w2

y). (4.2)

Square-Mesh Case. The cells are Ei,j = [i,i+1]×[j, j+1]. Assume the solution is repre-
sented by degree k polynomial. The solution points on each square are formed by using

tensor product; thus, there are K=(k+1)2
of them. Denote by ui,j the column vector of K

solution values

ui,j=(ui,j,1,1,ui,j,1,2,··· ,ui,j,1,k+1,ui,j,2,1,··· ,ui,j,2,k+1,··· ,ui,j,k+1,1,··· ,ui,j,k+1,k+1)
T, (4.3)

where the superscript T denotes the transpose. The following property of the data plays
a key role in the calculation of eigenvalues,

ui−1,j= e−Iwx ui,j and ui,j−1= e−Iwy ui,j. (4.4)

For the schemes of compact stencil discussed here, the solution can be expressed as

dui,j

dt
=C0,0ui,j+C−1,0ui−1,j+C1,0ui+1,j+C0,−1ui,j−1+C0,1ui,j+1, (4.5)

where all Cα,β are K×K matrices. Using (4.4), we replace ui−1,j by e−Iwx ui,j, and similarly
for all terms of the right hand side above. The result is

dui,j

dt
=Sui,j, (4.6)

where

S=C0,0+e−IwxC−1,0+eIwx C1,0+e−IwyC0,−1+eIwy C0,1. (4.7)
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Here, S, which stands for ’space’ or ’semidiscrete’, is a K×K matrix with K eigenvalues.
The one approximating −(wx

2+wy
2) is called the principal eigenvalue and is denoted by

S(wx,wy):

S(wx,wy)≈−(wx
2+wy

2). (4.8)

All other eigenvalues are spurious. For stability, all eigenvalues must have nonpositive
real parts.

It turns out that for all methods discussed, via Fourier analysis, the scheme on a
square mesh and the corresponding 1D version have the same order of accuracy.

Concerning stability (time-stepping) limits, the method on a square mesh has a limit
of 1/2 that of the 1D version. That is, the largest magnitude of all eigenvalues in the case
of a square mesh is twice that of the corresponding 1D method. This reduction by a factor
of 2 in the stability limit for the 2D diffusion equation is consistent with the reduction by a
factor of

√
2 for advection equation in [13,14]: each derivative corresponds to a reduction

by
√

2.
The minimum eigenvalues, orders of accuracy, and errors of the schemes on a square

mesh are shown in Table 1. In the calculations of order of accuracy, the coarse mesh
corresponds to wx =π/8 and wy =π/10, and the fine mesh, wx =π/16 and wy =π/20.
Next, the principle eigenvalue S(wx,wy) is compared to the exact eigenvalue −(w2

x+w2
y)

to determine the error of the scheme. The errors E(w) and E(w/2) are then evaluated for
the wave numbers of the coarse and fine meshes respectively. The order of accuracy is
calculated by Log(E(w)/E(w/2))/Log(2)−2. See, e.g., [14].

Table 1: Minimum eigenvalues, orders of accuracy, and errors for schemes on a square mesh.

Square-mesh case Min. Ord. Coarse mesh error, Fine mesh error,
Polynomial degree k=1 Eigval. Acc. wx =π/8, wy=π/10 wx =π/16, wy=π/20
1. BR2 -26.7 1.96 -2.68e-03 1.73e-04
2. I-Continuous -24.0 2.00 1.39e-03 8.72e-05
3. IP = BR2
4. CDG -72. 4.01 8.64e-06 1.34e-07

Polynomial degree k=2
1. BR2 -120. 3.98 2.72e-06 4.29e-08
2. I-Continuous -84. 4.00 2.76e-06 4.31e-08
3. IP = BR2
4. CDG -297. 6.00 5.25e-09 2.06e-11

Polynomial degree k=3
1. BR2 -340. 5.89 -5.94e-09 -2.50e-11
2. I-Continuous -244. 6.00 2.62e-09 1.02e-11
3. IP = BR2
4. CDG -878. 8.00 2.17e-12 2.12e-15

Note that all schemes are of order at least 2k, i.e., they are super-convergent for k≥2.
The advantage of the CDG scheme is that its accuracy order is 2(k+1); its disadvan-
tage is that the minimum eigenvalues have rather large magnitudes (nearly three times)
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compared to those of the other schemes. Also note that for the square mesh case, the
interior penalty (IP) scheme reduces to the BR2 scheme. As for the I-continuous scheme,
the one employed here is the member whose triangular-mesh version is readily avail-
able, i.e., the member using the correction function gDG not the most accurate member,
which employs the Legendre polynomial as correction function. Compared to BR2, the
I-continuous scheme has a smaller error as well as a minimum eigenvalue with a smaller
magnitude.

Triangular-Mesh Case. Each square Ei,j=[i,i+1]×[j, j+1] is cut into two triangles by the
diagonal from the northwest to the southeast corners. To carry out the Fourier analysis for
the triangular-mesh case, we must pair up these two triangles so that the solution vector
on each square has a repeatable pattern explained below. Recall that if k is the degree of
polynomial representing the solution, then the corresponding number of solution points
on each triangle is K=(k+2)(k+1)/2. Combining the data on two triangles, denote the
vector of 2K entries on the square Ei, j by ui,j. The data ui,j is repeatable in the sense that
(4.4) holds. The semidiscrete equation is similar to (4.5) and, the corresponding (2K)2

matrix S, (4.7).

The minimum eigenvalues, orders of accuracy, and errors of the schemes on a tri-
angular mesh are shown in Table 2. In the order of accuracy calculations, again, the
coarse mesh corresponds to wx =π/8 and wy=π/10, and the fine mesh, wx =π/16 and
wy=π/20.

Table 2: Minimum eigenvalues, orders of accuracy, and errors for schemes on a triangular mesh.

Triangular-mesh case Min. Ord. Coarse mesh error, Fine mesh error,
Polynomial degree k=1 Eigval. Acc. wx =π/8, wy=π/10 wx =π/16, wy=π/20
1. BR2 -66.7 1.97 -5.83e-04 -3.72e-05
2. I-Continuous - 56.8 2.00 8.90e-04 5.55e-05
3. IP -60. 2.00 8.45e-04 5.27e-05
4. CDG -160. 1.84 -1.14e-04 -1.63e-05

Polynomial degree k=2
1. BR2 - 204. 3.99 1.00e-06 1.57e-08
2. I-Continuous - 203. 4.00 1.64e-06 2.57e-08
3. IP - 207. 4.01 3.42e-06 5.30e-08
4. CDG - 565. 3.96 -4.19e-08 -6.74e-10

Polynomial degree k=3
1. BR2 - 522. 5.95 -1.32e-09 -5.33e-12
2. I-Continuous - 508. 6.00 1.42e-09 5.54e-12
3. IP - 516. 5.82 -1.47e-09 -6.51e-12
4. CDG - 1458. 5.98 -4.10e-11 -1.62e-13

Note that all schemes are of order 2k. For a triangular mesh, the CDG scheme is no
longer of order 2(k+1). It has the same order of accuracy as the other schemes, but its er-
ror is considerably smaller than those of the others. The disadvantage of the CDG scheme
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is that the minimum eigenvalues have rather large magnitudes (roughly three times)
compared to those of the other schemes. Compared to BR2, the I-continuous scheme is
slightly less accurate in this case; however, it has the advantage that its minimum eigen-
value has a slightly smaller magnitude.

Comparing Table 2 to 1, i.e., the schemes on a triangular mesh versus those on a
square mesh, accuracy on a triangular mesh is better, but stability limit is worse. The
reason is perhaps that corresponding to each k, there are more solution points on (the
two triangles of) the square in the former case compared to the latter (i.e., (k+2)(k+1)
versus (k+1)2).

As noted earlier, in practice, when the mesh is non-uniform and/or the equations are
nonlinear, the super-accuracy (or super-convergence) property no longer holds. In fact,
even for the case of a uniform mesh and linear equations, since the data is approximated
by a polynomial of degree k in each cell, if we simply compare the numerical solution
with the exact one, the degree of accuracy is only k+1; to observe super-accuracy, we
may need to compare special quantities such as the average of the solutions on each
square (even when the mesh is triangular). In short, super accuracy results typically do
not hold in practice.

5 Numerical results

5.1 Poisson’s equation

The following Poisson’s equation

uxx+uyy=−π2

2
sin
(πx

2

)

sin
(πy

2

)

, (5.1)

with the exact solution u=sin(πx/2)sin(πy/2) is solved on the domain [0,1]×[0,1] with
both regular quadrilateral meshes and irregular triangular meshes (Fig. 4). The solution

Figure 4: Irregular triangular mesh for Poisson’s equation on [0,1]× [0,1].
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variable u is fixed to the exact solution at the boundary faces. The CPR solver starts with
the exact solution. The steady state is reached by solving the unsteady equation ut =
uxx+uyy+π2/2sin(πx/2)sin(πy/2). For time marching, we use the 1st order backward
Euler scheme with an LU-SGS algorithm [21].

The root mean square of the errors at the solution points (the term ”RMS error” is used
from here on) is evaluated and the order of accuracy is calculated via an h-refinement by

p=
ln(Er1/Er2)

ln
(√

N2/N1

) , (5.2)

where Er1 and Er2 are the RMS errors for mesh 1 and mesh 2, with number of cells N1 and
N2 respectively. (The error is always calculated in this manner in the rest of the paper).

Table 3 shows the accuracy results of the BR2, I-continuous and CDG approaches on
quadrilateral meshes. All schemes produce comparable errors and orders of accuracy,
with CDG bested the other two by a small margin.

Table 3: Accuracy results of Poisson’s equation with regular quadrilateral mesh (Interior Penalty is identical to
BR2).

Polynomial BR2 I-Continuous CDG
Degree Mesh RMS error order RMS error Order RMS error Order

k=2 5×5 1.949e-04 - 1.915e-04 - 1.329e-04 -
10×10 2.360e-05 3.05 2.337e-05 3.03 1.718e-05 2.95
20×20 2.891e-06 3.03 2.876e-06 3.02 2.176e-06 2.98
40×40 3.573e-07 3.02 3.564e-07 3.01 2.735e-07 2.99

k=3 5×5 4.396e-06 - 5.179e-06 - 2.738e-06 -
10×10 2.438e-07 4.17 3.298e-07 3.97 1.777e-07 3.95
20×20 1.409e-08 4.11 2.080e-08 3.99 1.132e-08 3.97
40×40 8.408e-10 4.07 1.306e-09 3.99 7.140e-10 3.99

k=4 5×5 6.501e-08 - 6.385e-08 - 4.398e-08 -
10×10 1.981e-09 5.04 1.961e-09 5.03 1.398e-09 4.98
20×20 6.108e-11 5.02 6.076e-11 5.01 4.398e-11 4.99

Table 4 shows accuracy results for irregular triangular meshes. Here the meshes
are generated independently, and for each refinement, the number of elements roughly
quadruples. Again, the errors by BR2, I-continuous and interior penalty schemes are
comparable, and the CDG error is the best by a small margin.

5.2 The potential flow over a cylinder

The potential for an incompressible, irrotational and inviscid flow satisfies the Laplace
equation (2.1). To test the CPR diffusion solver on curved boundaries, the potential flow
over a cylinder with radius r=1 is computed. The exact solution for this case is ϕexact=
x( 1

x2+y2 +1).
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Table 4: Accuracy results of Poisson’s equation with irregular triangular mesh.

Polynomial Mesh BR2 I-Continuous
Degree (No. of cells) RMS error order RMS error Order

k=2 58 2.993e-04 - 2.995e-04 -
230 4.188e-05 2.85 4.130e-05 2.88
936 4.590e-06 3.15 4.624e-06 3.12

k=3 58 1.196e-05 - 1.238e-05 -
230 5.887e-07 4.37 6.476e-07 4.28
936 3.382e-08 4.07 3.722e-08 4.07

Polynomial Mesh Interior Penalty CDG
Degree (No. of cells) RMS error order RMS error Order

k=2 58 4.026e-04 - 2.308e-04 -
230 5.590e-05 2.87 3.343e-05 2.80
936 6.226e-06 3.13 3.832e-06 3.09

k=3 58 1.509e-05 - 9.185e-06 -
230 7.428e-07 4.37 4.578e-07 4.35
936 4.225e-08 4.09 2.812e-08 3.98

The solution variable at the outer boundary faces is fixed to the exact solution. For

the inner boundary, the Neumann condition ~∇ϕ·~n = 0 is imposed. Each curved wall
segment is represented by a polynomial of the same degree as that of the solution poly-
nomials. This approximation also leads to a non-linear transformation of the correspond-
ing boundary element. The initial condition is set to the exact solution and an LU-SGS
algorithm is used with a convergence criteria of machine zero for all cases.

Fig. 5(a) shows the 10×10 structured quadrilateral O-mesh used in this test case.

(a) Quadrilateral mesh (b) Triangular mesh

Figure 5: Meshes for potential flow over a cylinder.
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Table 5: Accuracy results for a potential flow over a cylinder with quadrilateral meshes (Interior Penalty is
identical to BR2).

Polynomial BR2 I-Continuous CDG
Degree Mesh RMS error order RMS error Order RMS error Order

k=2 5×5 3.610e-03 - 3.759e-03 - 3.103e-03 -
10×10 4.653e-04 2.96 4.721e-04 2.99 4.125e-04 2.91
20×20 6.061e-05 2.94 6.013e-05 2.97 5.331e-05 2.95

k=3 5×5 1.166e-04 - 6.231e-04 - 4.459e-04 -
10×10 4.131e-06 4.82 3.750e-05 4.05 3.148e-05 3.82
20× 4.246e-07 3.28 2.394e-06 3.97 2.114e-06 3.90

k=4 5×5 8.845e-05 - 9.185e-05 - 7.535e-05 -
10×10 2.847e-06 4.96 2.873e-06 5.00 2.605e-06 4.85
20×20 9.264e-08 4.94 9.264e-08 4.95 8.627e-08 4.92

Table 6: Accuracy results of Poisson’s equation with irregular triangular mesh.

Polynomial BR2 I-Continuous
Degree Mesh RMS error order RMS error Order

k=2 10×10×2 9.485e-04 - 7.935e-04 -
20×20×2 9.779e-05 3.28 7.776e-05 3.35
40×40×2 1.179e-05 3.05 9.404e-06 3.05

k=3 10×10×2 6.881e-05 - 7.764e-05 -
20×20×2 3.944e-06 4.12 3.651e-06 4.41
40×40×2 2.440e-07 4.01 2.219e-07 4.04

Polynomial Interior Penalty CDG
Degree Mesh RMS error order RMS error Order

k=2 10×10×2 1.976e-03 - 7.564e-04 -
20×20×2 1.301e-04 3.92 7.863e-05 3.27
40×40×2 1.477e-05 3.14 9.229e-06 3.09

k=3 10×10×2 9.140e-05 - 5.199e-05 -
20×20×2 4.746e-06 4.27 3.022e-06 4.10
40×40×2 2.956e-07 4.00 1.918e-07 3.98

Fig. 5(b) shows the 10×10×2 triangular mesh, which is obtained by cutting each quadri-
lateral cell into two triangles.

Fig. 6 shows the solution ϕ by the BR2 method with k=2.

Tables 5 and 6 respectively show the numerical results for quadrilateral and triangular
meshes. The RMS errors produced by all the schemes seem comparable, and so is the
order of accuracy.

Fig. 7 shows the convergence history of the four schemes for k=3 on both quadrilat-
eral and triangular meshes. The residuals are plotted against the iterations. Since the cost
per iteration of the four approaches is about the same, these figures also represent the
CPU time used. For both quadrilateral and triangular meshes, BR2 and interior penalty
converge fastest and CDG, slowest.
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Figure 6: Solution contours for potential flow over a cylinder (BR2, 3rd order, 20×20 mesh).

(a) (b)

Figure 7: Convergence history of potential flow over a cylinder (4th order, 40×40 meshes) (a) quadrilateral
mesh (b) triangular mesh.

5.3 The Couette flow

Compressible Couette flow between two parallel walls is used to evaluate the accuracy
of the method on irregular mixed grids. The exact solution for this case is

u=
U

H
y, v=0, (5.3a)

p=Const, ρ=
p

RT
, (5.3b)

T=T0+
y

H
(T1−T0)+

µU2

2k

y

H

(

1− y

H

)

. (5.3c)

The following parameters are chosen: the speed of the upper wall U = 0.3, the temper-
ature of the lower wall T0 = 0.8, the temperature of the upper wall T1 = 0.85, viscosity
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µ= 0.01, domain height (in y direction) H = 2, and the computational domain is a 4×2
rectangle.

The flow variables at boundary faces are fixed to the exact solution. All the tests cases
presented below are obtained with an LU-SGS algorithm and implicit time integration
approach [21], and all cases converge to machine zero. Density errors are used for accu-
racy evaluation.

Fig. 8 shows the three meshes used in the mesh refinement study. The meshes are
generated independently, rather than in an h-refinement manner. The schemes employed
are 2nd-4th order accurate. The order of accuracy is also calculated by again Eq. (5.2).

Table 7 shows accuracy results for the four schemes. Again, all the schemes are of
comparable accuracy except for the case k= 2 for CDG, where the order of accuracy is
not quite as high as the others. The accuracy of CDG demonstrated in Fourier analysis
and linear diffusion case is not carried over to this Navier-Stokes case. The BR2 and I-
continuous approaches perform consistently well, whereas the interior penalty approach
produces slightly larger errors for the case k=1. Note that although the orders of accuracy
of all the schemes are slightly less than optimal, these results are obtained with highly
irregular and mixed meshes of poor quality.

Table 7: Accuracy results of Couette flow with hybrid mesh.

Polynomial Mesh BR2 I-Continuous
Degree (No. of cells) RMS error order RMS error Order

k=1 61 7.261e-05 - 7.112e-05 -
250 2.312e-05 1.62 2.306e-05 1.60
919 7.151e-06 1.80 7.162e-06 1.80

k=2 61 8.914e-07 - 8.795e-07 -
250 1.309e-07 2.72 1.400e-07 2.61
919 2.091e-08 2.82 2.456e-08 2.67

k=3 61 8.525e-09 - 8.190e-09 -
250 6.525e-10 3.64 6.157e-10 3.67
919 5.785e-11 3.72 5.186e-11 3.80

Polynomial Mesh Interior Penalty CDG
Degree (No. of cells) RMS error order RMS error Order

k=1 61 1.007e-04 - 1.019e-04 -
250 3.421e-05 1.53 3.363e-05 1.57
919 1.013e-05 1.87 9.714e-06 1.91

k=2 61 8.499e-07 - 8.766e-07 -
250 1.278e-07 2.69 1.696e-07 2.33
919 2.045e-08 2.82 3.641e-08 2.36

k=3 61 9.444e-09 - 8.834e-09 -
250 7.044e-10 3.68 7.555e-10 3.49
919 6.158e-11 3.74 7.228e-11 3.61
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(a) (b) (c)

Figure 8: Mixed mesh used for Couette flow (a) 10×5 with 61 cells (b) 20×10 with 250 cells (c) 40×20 with
919 cells.

5.4 Laminar flow around a NACA0012 airfoil

Viscous laminar flow around a NACA 0012 airfoil is simulated with the CPR method,
using the BR2, I-continuous, interior penalty and CDG schemes for the viscous flux. 2nd-
5th order schemes are tested.

The flow conditions are Mach = 0.5 and Re = 5000, with an angle of attack of 1 de-
gree. Under such conditions, steady laminar separations are expected for both upper
and lower surfaces of the airfoil. Adiabatic no-slip wall condition is prescribed at the
airfoil surface. Subsonic characteristic far field condition is used at the outer surface of
the computational domain. The curved wall boundary is represented by the same degree
polynomial as the solution. The computational domain extends 20 chord lengths away
from the center of the airfoil.

Fig. 9 shows the mesh of 2692 cells, which is composed of regular quadrilateral ele-
ments near the airfoil and irregular mixed elements elsewhere, with some refinement at
the trailing edge. An LU-SGS algorithm [21] is used for time implicit integration and all
cases converge to machine zero.

Figure 9: Mixed mesh around an NACA0012 airfoil.
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Figs. 10(a-c) shows the computed Mach number contours of 2nd-4th order schemes.
Only the BR2 results are shown, since the results of other schemes are very similar. Due
to the coarse mesh, the 2nd order results are not smooth, especially at the wake. Note that
for the 3rd and 4th order cases, the contour lines are smooth across the interfaces between
regular cells and irregular ones and also between triangular cells and quadrilateral ones.
Visually, 3rd and 4th order results are nearly identical.

The skin friction coefficient C f is defined as

C f =
τw

1
2 ρU2

∞

, (5.4)

where the shear stress at wall is computed by |τw|=µ∂V/∂n, with its sign chosen to be
the same as ∂u/∂n.

Fig. 11 shows the C f distribution near the separation point. For the four diffusion

schemes, the 3rd and 4th order results are very close; this fact indicates convergence with
p-refinement. Except for the 2nd order case, the four schemes produce almost identical
distributions of C f .

Tables 8-10 show the computed pressure drag coefficients CD,p, friction drag coef-
ficients CD, f , and the separation points on the upper wall. The data converge as the
polynomial degree increases and, again, there is no significant difference among the four
schemes considered.

Table 8: Flow over a NACA0012 airfoil — pressure drag coefficients CD,p.

BR2 I-Continuous Interior Penalty CDG
k=1 0.02252 0.02233 0.02252 0.02173
k=2 0.02275 0.02272 0.02276 0.02259
k=3 0.02295 0.02294 0.02295 0.02294
k=4 0.02296 0.02295 0.02296 0.02295

Table 9: Flow over a NACA0012 airfoil — friction drag coefficients CD, f .

BR2 I-Continuous Interior Penalty CDG
k=1 0.03248 0.03289 0.03248 0.03287
k=2 0.03271 0.03272 0.03271 0.03277
k=3 0.03250 0.03250 0.03251 0.03250
k=4 0.03248 0.03250 0.03249 0.03248

Table 10: Flow over a NACA0012 airfoil — separation point on the upper surface.

BR2 I-Continuous Interior Penalty CDG
k=1 79.84% 78.30% 79.84% 80.39%
k=2 68.67% 68.65% 68.67% 68.67%
k=3 67.84% 67.81% 67.84% 67.82%
k=4 67.91% 67.90% 67.91% 67.91%
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(a) 2nd Order (b) 3rd Order (c) 4th Order

Figure 10: Mach number contours of flow around an NACA 0012 airfoil.

Figure 11: C f on the upper surface of NACA0012 airfoil for BR2, I-continuous, interior penalty and CDG.

(a) (b)

Figure 12: 4th order convergence history of laminar flow over NACA0012 airfoil in terms of (a) iterations (b)
CPU time.
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Figs. 12(a, b) show the convergence history of the 4th order case, which provides an
estimate of the efficiency of the four diffusion schemes. The same time step, which is also
the largest allowable by stability, is used for all schemes. In terms of both iteration and
CPU time, CDG is least efficient, while the other three approaches show no significant
difference.

5.5 Unsteady flow around a circular cylinder

The unsteady laminar flow around a cylinder is simulated with the 2nd-4th order CPR
methods using the BR2 diffusion scheme. For time integration, the 2nd order trapezoidal
rule is used with an LU-SGS algorithm [21]. The Reynolds number Re = 75, the free
stream Mach number M = 0.2. A vortex street is expected to form in the wake of the
cylinder. The frequency of the vortex shedding is often called the Strouhal number de-
fined by

St=
fsLc

U∞

. (5.5)

The length scale Lc here is the diameter of the cylinder. In an experimental study by
Williamson [29], St was found to be 0.148.

Subsonic far field boundary condition is used at the outer boundary of the domain.
Adiabatic wall condition is used for the cylinder surface.

Fig. 13 shows the mesh, which contains 2,028 cells, with regular quadrilateral cells
near the cylinder and in the wake region, and irregular mixed cells elsewhere. The effects
of domain size, time step and convergence criteria of inner iterations are carefully studied
to make sure the correct numerical solution is obtained.

(a) The whole domain (b) Near the cylinder

Figure 13: Mixed mesh for unsteady flow around a cylinder.

Figs. 14(a-c) shows the instantaneous Mach number contours. Note that the 2nd order
contours in (a) are not smooth. The 3rd and 4th order results are smooth and similar, with
4th order contours smoother at 20 diameters downstream.
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(a) 2nd Order (b) 3rd Order

(c) 4th Order

Figure 14: Mach number contours for unsteady flow around a cylinder.

Table 11 shows the average drag coefficient CD and computed St for k= 1,2,3. Both
converge as p increases, and the computed St is comparable to the experimental data.

Table 11: P-refinement study for unsteady flow around a cylinder.

Viscous Method –

Polynomial Degree CD St
BR2–1 1.4299 0.153
BR2–2 1.4365 0.153
BR2–3 1.4364 0.153

6 Conclusion

The CPR formulation, which has the advantage of simplicity and economy, is extended
to the diffusion and Navier-stokes equations on hybrid meshes of triangles and quadri-
laterals. The four schemes of compact stencil employed to discretize the diffusion terms
are BR2, interior penalty, compact DG (CDG), and I-continuous. The first three of these
schemes, originally derived using the integral formulation, were recast here in the CPR
framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh,
was extended to a triangular mesh. Fourier stability and accuracy analyses on quadrilat-
eral and triangular meshes were carried out. Numerical tests varying from linear diffu-
sion to steady and unsteady laminar flows were conducted.
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The results show that the CPR approach produces highly accurate schemes of ex-
pected order of accuracy, i.e., schemes using polynomial of degree k is accurate to order
k+1. Concerning methods for diffusion, the four compact schemes are comparable in
terms of accuracy. In terms of convergence rate, however, the CDG scheme is slowest:
this finding by numerical experiments is consistent with the finding via Fourier anal-
ysis. Among the four schemes, due to its simplicity, BR2 is an optimal choice; while
I-continuous approach is promising, a more accurate triangular-mesh version must be
found for the scheme to be competitive; the interior penalty approach is the simplest,
but is also slightly less accurate. Finally, the CPR formulation presented here can be ex-
tended to 3D and, due to its hybrid-mesh capability, the resulting methods can be applied
to practical problems involving complex geometries.
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