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Abstract. We consider the finite element based computation of topological quantities
of implicitly represented surfaces within a diffuse interface framework. Utilizing an
adaptive finite element implementation with effective gradient recovery techniques,
we discuss how the Euler number can be accurately computed directly from the nu-
merically solved phase field functions or order parameters. Numerical examples and
applications to the topological analysis of point clouds are also presented.
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1 Introduction

Efficient and robust numerical simulations of various interfaces have been subject to
much research in many applications. Indeed, the geometric and topological properties of
interfaces play important roles in many physical and biological processes. For example,
in biological science, the geometric shapes of bilayer vesicle membranes have significant
roles in cell functions and the signal transduction pathway [11, 30, 32, 34]. Similarly, in
materials science, it is well known that material thermomechanical properties depend on
the underlying micro-structures characterized by interfaces.
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In recent years, diffuse interface methods have become popular approaches to sim-
ulate and model complex interfaces appearing in various applications. A well known
example is the diffuse interface description of material interfaces developed by Cahn
and Hilliard [6] for phase transition problems. They are also often called phase field
models in the materials science community [7]. A distinct feature of the diffuse interface
or phase field approach to the modeling of interfaces is that the interfaces are implicitly
represented by phase field functions or order parameters so that a single set of equa-
tions may be used as the mathematical models on and across the interfaces. There is
no explicit tracking of interfaces so that the numerical simulations are also insensitive
to the underlying changes of interfacial topology. In the last fifty years, there have been
many works related to the various extensions of diffuse interface theory and their appli-
cations in diverse fields. Until today, researches remain active on the development of the
diffuse interface models for new application problems and their effective numerical im-
plementations, see a number of reviews on the subject [1,7,35,36]. The mathematical and
numerical analysis of diffuse interface models have also received much attention, see for
instance [3–5, 8, 16, 17, 19–21, 25, 29].

The topological changes of the interfaces can be an important issue in many applica-
tions such as the study of fusion and fission of membrane vesicles as well as the study
of the microstructure evolution during material phase transitions. In recent years, it has
becoming an increasingly interesting topic of research to not only perform the diffuse
interface simulations but also to extract useful features of the interfaces from the sim-
ulation results, including the crucial topological properties of the interfaces. The latter
often involved careful studies of the geometric images obtained from the simulations,
see [27] and the references cited therein. Since the diffuse interface approach is insensi-
tive to topological events, it is natural to ask if it is possible to directly extract topological
information of the underlying interface from the diffuse interface simulations without re-
sorting to the image reconstruction. In [14], a formula for capturing the Euler number of
vesicles within the diffuse interface framework was proposed. Further simplification and
analysis were carried out in [15]. The key idea behind such works is based on being able
to first formulate and compute the curvatures of the interfaces within the diffuse inter-
face framework, and to then estimate the Euler number through a post-processing of the
order parameter (phase field functions) by utilizing the relation between the Euler num-
ber and the Gauss curvature given by the Gauss-Bonnet theorem. In the studies reported
so far, the numerical simulations were based on Fourier spectral approximations with the
spatial derivatives being evaluated via the FFT. Yet, in many engineering and scientific
applications of phase field methods, other discretization methods such as finite differ-
ence and finite element method have also been widely used. This motivates our current
study. We demonstrate here how the Euler number of the implicitly represented inter-
faces may be effectively computed within an adaptive finite element discretization. We
begin with a brief description of some examples of diffuse interface models and its adap-
tive finite element approximations in Section 2. The diffuse interface Euler formula to be
implemented is then presented, following the derivation in [14]. It has a special feature
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to allow the integration over domains around the interfaces, thus adaptive discretization
methods are particularly attractive as they can provide better resolution to solution in the
interfacial region. The detailed algorithmic procedures to compute the Euler number via
the post-processing of the finite element approximations are discussed in Section 3. Sev-
eral important practical issues are addressed in Section 4 through a series of numerical
examples, which include the examination on the effect of the interfacial width parameter
and the resolution level of the finite element approximations. The examples demonstrate
effectiveness of the diffuse interface Euler number in providing robust and accurate topo-
logical information on the interface under consideration. Furthermore, we also present
some examples of using the Euler number formula to explore the topological structures
in data sets to show the potential of our works in other interesting applications.

2 Diffuse Interface, adaptive FEM and the Euler number

formula

We now briefly introduce the diffuse interface models. Of particular relevance to the
Euler number calculation is that of the elastic bending energy of a vesicle membrane. We
then discuss the adaptive finite element solution and meshes of such diffuse interface
models and the formula to calculate the Euler number of the vesicle described by the
phase field function.

For illustration, let us use a real-valued order parameter ψ (the phase field function)
to characterize the two different phases of the material, and take ψ =±1 as the ideal
values of ψ in the two phases. Then, within the diffuse-interface framework, the total
free energy (including the bulk and the interfacial energies) of an inhomogeneous system
may be given by [6]:

E(ψ)=
∫

Ω

(

W(ψ)+
ǫ

2
|∇ψ|2

)

dx, (2.1)

with W often being a double well potential of the form W(x) = (x2−1)2/4ǫ with wells
±1 and Ω being the computational domain that encloses the interface which is implic-
itly determined by the zero level set of the order parameter ψ which is smoothly de-
fined. The small parameter ǫ typically depicts the width of the interfacial layer, that is,
regions where the phase field function has large spatial gradient and changes its value
from nearly −1 to nearly 1. In the sharp interface limit as ǫ→0, the variational problems
associated with the particular form of the energy (2.1) leads to that associated with the
interface area [20]. In some applications, the dominant interfacial energy may be of forms
other than ones related to the interface area. For instance, for a bilayer lipid vesicle mem-
brane, the most relevant energetic contribution to the equilibrium membrane geometry
is usually the elastic bending energy of the form [32]:

Eelastic= k
∫

Γ

H2

2
ds, (2.2)
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where H is the mean curvature of the membrane surface Γ. The parameter k is the bend-
ing rigidity, which can depend on the local heterogeneous concentration of the species
(such as protein and cholesterol molecules), but it is mostly assumed to be a constant.
As proposed in [13], the following phase field elastic energy can be used to approximate
Eelastic,

E(φ)=
∫

Ω

kǫ

2

(

△φ− 1

ǫ2
(φ2−1)φ

)2

dx. (2.3)

The equilibrium vesicle shape, subject to given volume and surface area constraints are
determined from the variational problem:











































argmin
φ

E(φ)=
∫

Ω

kǫ

2

[

△φ− 1

ǫ2
(φ2−1)φ

]2

dx,

A(φ)=
∫

Ω
φdx=α,

B(φ)=
∫

Ω

[

ǫ

2
|∇φ|2+ 1

4ǫ
(φ2−1)2

]

dx=β,

φ|∂Ω =1,

(2.4)

where α and β are given constants corresponds to the volume and surface area constraints
respectively. We refer to [12] for more discussions on works related to (2.2) and (2.4).

In our previous work [17], we presented an adaptive finite element method for the nu-
merical simulation of vesicle membrane deformation based on the phase field bending
elasticity model (2.2). Adaptive methods often lead to efficient discretization to prob-
lems with solutions that are singular or have large variations in small scales. In diffuse
interface/phase field models, the sharp interface of physical quantities are replaced by
regularized phase field functions. However, for small interfacial width constant ǫ, the
phase field solutions may display large gradients within the diffusive interfacial region.
Thus, adaptivity in the form of mesh refinement and coarsening as well as mesh trans-
formation can greatly improve the efficiency of the numerical approximations of phase
field models [4,9,22,25,33]. In [17], a mixed finite element method (FEM) is developed to
discretize the phase field bending elasticity model. We used a robust penalty formulation
for the volume and surface area constraints. The total energy is

J(φ)=E(φ)+M1[A(φ)−α]2+M2[B(φ)−β]2,

where M1 and M2 are penalty constants. Let

λ=2M1[A(φ)−α], µ=2M2[B(φ)−β]; and H0=H1(Ω)×H1
0(Ω).

The mixed formulation is given by


















−
√

kǫ

[

<∇ f ,∇v>Ω +
1

ǫ2

(

f (3φ2−1),v
)

Ω

]

+λ(1,v)Ω−µ

√

ǫ

k
( f ,v)Ω =0,

√
kǫ

[

<∇φ,∇w>Ω+
1

ǫ2

(

(φ2−1)φ,w
)

Ω

]

+( f ,w)Ω=0 ,

(2.5)
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where the solution ( f ,φ−1) ∈H0 the test function (v,w) ∈H0 and λ,µ converge to the
Lagrange multipliers for volume and surface area constraints as M1 and M2 go to infinity.
Piecewise linear conforming elements are used for both f and φ.

Vh=Wh =
{

v∈C0(Ω)∩H1(Ω)
∣

∣ v|K ∈P1(K), ∀K∈ Jh

}

,

where Jh is a triangulation of Ω consisting of tetrahedra K whose diameters hK are bounded
above by h=maxK∈Jh

hK , and P1(K) denotes the linear function space on element K. A
residual type a posteriori error estimator is derived for the development of the adaptive
FEM algorithm. It has the particular form:

ηK =







[

C1

√
kǫ ∑

e⊂Ω∩K

h
1
2
e |e|

1
2

∣

∣

∣

∣

[

∂ fh

∂n

]

e

∣

∣

∣

∣

+hK‖λ−
√

k

ǫ3/2
fh(3φ2

h−1)−µ

√

ǫ

k
fh‖K

]2

+W2

[

C2

√
kǫ ∑

e⊂Ω∩K

h
1
2
e |e|

1
2

∣

∣

∣

∣

[

∂φh

∂n

]

e

∣

∣

∣

∣

+C3hK‖ fh+

√
k

ǫ3/2
(φ2

h−1)φh‖K

]2






1
2

. (2.6)

When marking the elements to be refined or coarsened, we use an equal distribution
strategy. For a detailed discussion on the derivation and implementation of adaptive
FEM solver, we refer to [17]. Effectively, the nodes of the adaptive mesh are concentrated
near the interface (the membrane surface) so that the number of nodes is significantly
reduced, comparing with the number of nodes in the uniform mesh cases, while the
resolution of the numerical solution of the adaptive FEM remains at the same level. In the
implementation of the adaptive FEM, conforming linear elements on tetrahedral meshes
are used for the approximation of the phase function. A typical phase field solution with
the adaptive mesh is shown in Fig. 1. The profiles of φ on cross sections z= 0 and y= 0
are shown in the upper row. The phase function φ is nearly 1 outside the surface and −1
inside. The transition from 1 to −1 takes place in an narrow region around the surface
(which is the zero level set of φ and is plotted in the picture second to the left lower
row). The mesh density is plotted in the other 3 pictures in the lower row. The adaptive
mesh has high resolution in the transition region where φ has large gradients and low
resolution where φ is flat. A diffuse interface formula for the Euler number of the surface
Γ given by the zero level set of a phase function φ is provided in [14]. Let us denote the
level set of such a phase function by Γµ = {φ(x) = µ} and define Ωc = {−c < φ(x)< c}
which forms a banded neighborhood around the surface Γ=Γ0 for c>0. For c close to 0,
Γµ is close to Γ and has the same topology as Γ for all |µ|< c. Now, define

M(x)ij =
1

2
√

2πc|∇φ|

(

∇i∇jφ−
∇|∇φ|2 ·∇φ

2|∇φ|4 ∇iφ∇jφ

)

, (2.7)

and let

G :=
∫

Ωc

Λ(M(x))dx, (2.8)
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Figure 1: Profile of phase function (upper), mesh density and surface (lower).

where Λ(M) is the trace of (Adj(M)) which is the adjoint matrix of M. In other words,
Λ(M) is the sum of the 2×2 principal minors of M. Then for small ǫ, as the phase field
function converges to its sharp interface limit, we have

lim
ǫ→0

G=
χ

2
=

1

4π

∫

Γ
Kds, (2.9)

with χ being the Euler number and K being the Gaussian curvature of the surface Γ.
The genus (roughly, the number of holes) of the surface Γ can then be approximately
determined by

genus=1−G.

We note that more careful interpretation of the formulae (2.8) and (2.9) for self-intersecting
or singular surfaces has been given in [14].

3 The AFEM implementation of the diffuse interface Euler

number formula

Let Φh denote the finite element approximation of the phase function φ with h denoting
the mesh parameter. For given interfacial width parameter, there have been much studies
on the convergence and error estimates of the finite element approximations of various
phase field models as h→0 [9,19,21]. For the phase field bending elasticity model, an error
analysis has been provided in [18]. In particular, for the mixed formulation with linear
elements (used here), it is shown that with given ǫ, one expects that for some constant c,
we have

‖φ−Φh‖H1(Ω)≤ ch , (3.1)
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for any h small enough. Moreover, by extending the Aubin-Nitsche trick to nonlinear
problems, it is also expected that

‖φ−Φh‖L2(Ω)≤ c̃h2

for a generic constant c̃. Notice that no precise characterization of the dependence of c
or c̃ on the parameter ǫ is presently available. Thus, these error analysis are meaningful
only in the regime that the interfacial layer has been sufficiently resolved.

Our goal is to calculate the Euler number G using the numerical computed Φh. In
order to calculate the matrix M in (2.7) associated with Φh, we need the first and second
order derivatives ∇iφ and ∇i∇jφ. Suppose approximations (∇iφ)

h and (∇i∇jφ)
h are

constructed from Φh. In general, suppose V and W are some function spaces related to
the discretization. We use

(∇iφ)
h∈V and (∇i∇jφ)

h∈W

to approximate the first and second derivatives. We can then choose some integral pa-
rameter c and calculate the integral in the right hand side of (2.8) for all the elements in
Ωc. In the case that part of an element K is inside ΩC while another part of it is outside,
we calculate the average Φ̄h on K and the element is counted if |Φ̄h|< c.

Since the solution Φh is piecewise linear, it is natural to use a piecewise constant func-
tion ∇iΦ

h to approximate ∇iφ, that is

(∇iφ)
h =∇iΦ

h ∈Vc, (3.2)

where Vc denotes the piecewise constant function space related to the space discretiza-
tion. For the second order derivatives, they usually can be approximated using the L2

projection on the piecewise linear finite element space Vh. That is,

∫

Ω
(∇i∇jφ)

hψdx=−
∫

Ω
(∇iφ)

h∇jψdx for all ψ∈Vh. (3.3)

If the piecewise constant approximation (3.2) of ∇iφ is used, the error is of order O(h)
which follows from the error analysis (3.1).

For a nodal basis function ψ, ∇iψ may become of order O(1/h), then, there could be
an O(1) error in the integrand on the right hand side of (3.3), causing an O(1) error in the
approximation of the second order derivatives. Hence the calculated G may not be con-
vergent when the mesh size h goes to 0. In order to improve the accuracy of (∇i∇jφ)

h, we
need a better way to represent ∇iφ, that is, to recover the gradients of the finite element
solutions with higher accuracy.

Gradient recovery methods with superconvergence property for FEM have been in-
vestigated in many existing works, for example [2, 24, 26, 28, 37–40]. In general, better
approximations of the gradient can be constructed from the finite element solution Φh

using various techniques. For an overview of this issue we refer to [2, 28].
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In this work, we focus on demonstrating that post-processed (or, recovered) deriva-
tives can be used to calculate G accurately. Thus, we choose to work with the global L2

projection which allows efficient implementation. For detailed discussions on the rig-
orous error estimations and analytical background, we refer to [24]. The L2 projection
of the piecewise constant approximation ∇iΦ

h onto the piecewise linear finite element
space Vh can be solved from

∫

Ω
(∇iφ)

hψdx=
∫

Ω
(∇iΦ

h)ψdx for all ψ∈Vh. (3.4)

The solution (∇iφ)
h is expected to have at lease o(h) accuracy when approximating ∇iφ

[24]. Hence we expect to see at least o(1) convergence in G when (3.4), instead of (3.2), is
used with (3.3).

In the examples given in next section, we compare the results of using (3.2)-(3.3) with
that using (3.3)-(3.4) for the approximations of the derivatives. The results indicate that,
as discussed in the above, no convergence in the numerically computed G is observed
when (3.2) and (3.3) are used. On the other hand, when (3.3) and (3.4) are used, the error
in G becomes significantly smaller and convergence is observed.

4 Numerical results

Here, we present numerical examples to illustrate how various implementation issues in
computing the diffuse interface Euler formula can be resolved within the AFEM. We also
provide some possible applications to topological data analysis.

4.1 Evaluation of accuracy for simple surfaces

The first series of tests is conducted for a unit sphere. This is a trivial case where we
can carefully examine some issues on the accuracy of the numerically computed Euler
numbers. For all the examples, the computational domain is taken as [−1.5,1.5]3.

An initial adaptive mesh may be obtained by adaptively updating a coarse uni-
form mesh several times using a tanh profile of the phase field function φ(x) =
tanh((1−|x|)/(

√
2ǫ)) where the interfacial width parameter ǫ is taken to be 0.1. Eq. (2.4)

is then solved using adaptive FEM subject to the constraints that the volume is equal to
4π
3 and the area is 4π. We run three simulations with different level of resolution. For

the finest resolution level, the initial tanh profile, surface and initial adaptive meshes are
shown in Fig. 2 while the profile and surface of the solution and the final adaptive mesh
of the simulation is shown in Fig. 3.

We first test the mesh quality by calculating G using exact first and second order
derivatives of the tanh profile. The integral limits parameter c takes various values be-
tween 0.2 and 0.8. We tested the formula on both initial and final adaptive meshes, the
results are shown in Table 1.
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Table 1: Computed values of G of a sphere using exact derivatives of a tanh profile.

c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
Results for tanh profiles on initial meshes

N=29,949 1.021 1.031 1.026 1.019 1.018 1.010 1.015
N=180,525 1.012 1.006 1.007 1.006 1.006 1.002 1.005
N=552,977 1.004 1.002 1.003 1.002 1.002 1.001 1.000

Results for tanh profiles on final meshes
N=37,639 1.039 1.011 1.013 1.012 1.004 0.998 0.997

N=223,435 1.031 1.007 1.006 1.006 1.004 1.004 1.004
N=645,915 1.013 1.003 1.002 1.002 1.001 1.001 1.003

Table 2: Computed values of G of a sphere using piecewise constant first order derivatives to construct second
order derivatives.

c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
Results for tanh profiles on initial meshes

N=29,449 2.409 2.621 2.753 2.890 2.752 2.230 0.316
N=180,525 1.874 2.142 2.481 3.074 3.601 2.690 -0.060
N=552,977 1.670 1.903 2.201 2.632 3.017 2.486 0.902

Results for numerical solutions on final meshes
N=37,639 0.176 -0.230 -0.749 -1.469 -2.447 -3.786 -5.509
N=223,435 0.471 -0.063 -0.836 -1.736 -2.783 -4.188 -5.578
N=645,915 0.153 -0.652 -1.812 -3.247 -5.098 -7.357 -9.652

Table 3: Computed values of G of a sphere using piecewise linear first order derivatives to construct second
order derivatives.

c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
Results for tanh profiles on initial meshes

N=29,449 0.976 0.983 0.970 0.946 0.913 0.865 0.835
N=180,525 1.003 0.998 0.999 0.994 0.967 0.901 0.864
N=552,977 1.001 0.999 0.999 0.999 0.992 0.958 0.878

Results for numerical solutions on final meshes
N=37,639 0.957 0.937 0.943 0.947 0.945 0.940 0.930

N=223,435 1.009 0.982 0.982 0.983 0.980 0.975 0.955
N=645,915 1.004 0.994 0.995 0.995 0.993 0.990 0.985

The error of G is less than 3.1% in all cases which indicates the adaptive meshes are
good enough to get an accurate G. Here, the integral limit parameter c has little effect
on the calculated G. The test results of using such a piecewise constant (∇iφ)

h via (3.2)
in (3.3) are shown in Table 2. We can see the calculated G lacks accuracy and shows no
convergence. The results of using piecewise linear (∇iφ)

h via (3.2) in (3.3) are shown in
Table 3. The calculated values of G are reasonably accurate and the convergence of the
calculation is evident.

We then conduct numerical tests for a toroidal surface whose Euler number is 0. The
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Figure 2: Profile of phase function (upper), mesh density and surface (lower) on initial adaptive mesh. Number
of nodes N=552,977.

Figure 3: Profile of phase function (upper), mesh density and surface (lower) on final adaptive mesh. Number
of nodes N=645,915.

Figure 4: Profile of phase function (upper), mesh density and surface (lower) on final adaptive mesh. Number
of nodes N=554,005.
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Table 4: Computed values of G of a torus using piecewise constant first order derivatives to construct second
order derivatives.

c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
Results for tanh profiles on initial meshes

N=26,907 0.809 0.714 1.089 1.302 1.302 1.237 -0.597
N=152,093 0.331 0.803 1.555 2.171 2.728 2.511 0.012
N=457,697 -1.162 0.715 1.597 3.172 4.220 4.038 1.301

Results for numerical solutions on final meshes
N=33,261 -2.493 -3.368 -3.998 -5.011 -6.152 -7.846 -10.60

N=187,529 -2.029 -2.679 -3.889 -5.282 -6.645 -8.804 -11.12
N=554,005 -3.010 -4.068 -5.592 -7.584 -10.04 -13.23 -16.45

Table 5: Computed values of G of a torus using piecewise linear first order derivatives to construct second order
derivatives.

c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
Results for tanh profiles on initial meshes

N=26,907 -0.075 -0.075 -0.075 -0.124 -0.164 -0.220 -0.293
N=152,093 -0.017 -0.009 -0.011 -0.023 -0.072 -0.157 -0.211
N=457,697 -0.008 -0.001 -0.002 -0.006 -0.020 -0.061 -0.157

Results for numerical solutions on final meshes
c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8

N=33,261 -0.023 -0.057 -0.069 -0.063 -0.079 -0.093 -0.123
N=187,529 -0.046 -0.042 -0.039 -0.040 -0.040 -0.054 -0.079
N=554,005 -0.013 -0.013 -0.010 -0.010 -0.011 -0.014 -0.023

tanh profile of the phase function is

φ(x1,x2,x3)= tanh

( r−
√

(
√

x2
1+x2

2−R)2+x2
3

√
2ǫ

)

,

with R= 0.8, r= 0.4 and ǫ= 0.08. The volume and surface area are set to be 2π2Rr2 and
4π2Rr respectively. Again we present results corresponding to three different levels of
resolution. For simplicity, we only plotted the profile, surface and finial adaptive mesh of
the simulation for the finest resolution in Fig. 4. The results of using piecewise constant
(∇iφ)

h in (3.3) are shown in Table 4. Again, the calculated values of G are far off and
show no convergence. The results of using piecewise linear (∇iφ)

h in (3.3) are shown in
Table 5 which yield accurate and convergent results.

The numerical tests on the sphere and the torus demonstrate that we can get accurate
results using the post-processed (∇iφ)

h and (∇i∇jφ)
h. Since the nodes of an adaptive

mesh are concentrated near the interface, as shown in [17], if the curvatures of the sur-
face do not have significant variation, then it is reasonable to assume that the number
of nodes is proportional to the surface area if the level of resolution is kept the same. In
our simulations the number of nodes used for the sphere is a little more than those for
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Table 6: Computed values of G of a sphere for numerical solutions on final meshes with various ǫ.

ǫ N c=0.2 c=0.3 c=0.4 c=0.5 c=0.6 c=0.7 c=0.8
0.1 37,639 0.957 0.937 0.943 0.947 0.945 0.940 0.930

0.071 32,347 0.922 0.915 0.895 0.887 0.884 0.859 0.827
0.071 73,181 0.944 0.922 0.924 0.907 0.898 0.882 0.873
0.071 176,427 0.976 0.942 0.939 0.940 0.940 0.932 0.903
0.05 38,545 0.752 0.732 0.701 0.660 0.605 0.547 0.475
0.05 62,271 0.784 0.773 0.738 0.698 0.641 0.575 0.513
0.05 146,797 0.800 0.789 0.787 0.789 0.793 0.785 0.746
0.05 222,255 0.925 0.911 0.897 0.884 0.871 0.859 0.845

the torus. Notice the surface areas of the sphere and the torus are very close (12.56 and
12.63), but the curvatures of the torus are something larger in magnitude. Moreover the
transition width parameter ǫ is 0.1 for the sphere and 0.08 for the torus. Thus, relatively
speaking, the meshes used for the sphere are finer than those for the torus so that smaller
errors in G can be expected for the sphere than for the torus.

To further illustrate the effect of mesh resolution on the accuracy of G, we run a se-
quence of simulations for the unit sphere used earlier for various ǫ with a carefully con-
trolled number of nodes N. The results are shown in Table 6 which clearly show that,
when ǫ decreases and N is kept at the same level, the accuracy degrades. For the same ǫ,
the accuracy improve when N increase.

4.2 Surfaces with more complex topology

We then test the formula on some surfaces with more interesting topology. In these ex-
amples, the integral parameter c is taken to be 0.3. The first example is a genus 3 surface
with Euler number −2. It corresponds to a minimum bending energy surface subject
to suitable volume and surface area constraints. The adaptive finite element solutions
of the phase field function are obtained by minimizing the phase field bending energy
functional subject to the constraints. The surface is shown in Fig. 5. The calculated G is
−2.086 which is obtained from the numerical solution with N=229,399 and ǫ=0.06.

The solution used for this example is from our previous work with computational
domain [−1,1]3. The interfacial width parameter ǫ should be scaled by a factor of 1.5 if
one is to compare this example with others.

Next, we test the formula on vesicles with various cavities/inclusions, ranging from
small spherical particles to a toroidal shaped cavity to a cavity having a high genus num-
ber. The vesicles are shown in Figs. 6, 7 and 8. Some of these cavities are highlighted
to be shown individually along with the transparent display of the vesicles. Both the
exact Euler number and the calculated diffuse interface Euler number G are stated for
comparison purposes, with the latter being obtained from the numerical solutions of the
phase field models, respectively with parameters N=285,303 and ǫ=0.06 for Fig. 6 (left),
N=356,041 and ǫ=0.05 for Fig. 6 (right), N=432,615 and ǫ=0.05 for Fig. 7, N=519,391
and ǫ=0.05 for Fig. 8.
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Figure 5: A genus 3 surface viewed from two different angles. Euler number −2, G=−2.086.

Figure 6: A vesicle containing a single spherical cavity with Euler number 2 and the computed G=1.960 (left)
and a vesicle having two spherical cavities with Euler number 3 and the computed G=2.931 (right).

Figure 7: A vesicle containing a toroidal-shaped cavity with the inner surface shown on the right. Euler number
1, G=0.956.

Figure 8: A vesicle containing a high genus cavity with the cavity surface being viewed from two different angles
(middle and right). Euler number −1, G=−1.037.
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4.3 Topological analysis of discrete data sets

The last two examples are related to an interesting application of the phase field model.
The objective is to find a surface passing through a set of given points (or point cloud)
with minimum energy which consists of both the elastic bending energy and the surface
tension as well as a least square fidelity term. The topology of the reconstructed surface
can reflect, in some sense, the topological information embedded in the point clouds.
For in-depth discussions on the latter, we refer to [10, 23], though the diffuse interface
approach differs from those through direct discrete topological constructions.

More specifically, for the phase field model, the total energy consists of three terms,
the elastic bending energy E(φ), the surface tension γB(φ) and a fidelity (penalty) term:

P(φ)=C
∫

Ω
φ2∑

i

e
− |x−xi|2

δ2 dx,

where xi’s are the given points and δ=ǫ/5. The summation in the integrand is an approx-
imation of the characteristic of the set of given points {xi}. The penalty term is inactive
when xi falls on the surface because the phase function is close to 0 near the surface, it
becomes active otherwise because the phase function is close to either −1 or 1 inside or
outside. The total energy J(φ)=E(φ)+γB(φ)+P(φ) is minimized using adaptive FEM
to get a solution φ and the zero level-set of φ gives the desired surface. The constants γ
and C can be adjusted to balance the need of a smooth reconstruction with that of high
fidelity to the data set. The weak form (2.5) and the error indicator (2.6) are modified
according to the new energy J(φ).

In the first example, we artificially took 96 points on a torus and randomly made
small perturbations to their coordinates to get the set of points xi’s. For the simulations,
tee take the interface width parameter ǫ=0.05, the surface tension coefficient γ=10 and
the penalty constant C=1.0×104. The resulting surface is plotted in Fig. 9.

Obviously, different values of the interfacial width parameter as well as different
numerical resolution levels may lead to reconstructed surfaces with different topology,
which, in some sense, may also reflect the topological information in the data set on dif-
ferent scales. We further illustrate this by taking the initial surface being a toroidal surface
shown in Fig. 10 and choosing 96 points on the outer ring subject to small random per-
turbations. When the interface width parameter is big (ǫ=0.1), the inner ring cannot be
resolved by the diffuse interface because its radius is too small. Thus, in the reconstructed
surface, the hole disappears and the resulting surface has genus 0. The surface defined
by the numerical solution and its cross sections are shown in Fig. 11. When the interface
width parameter becomes small enough (ǫ=0.025), small features of the data sets can be
better identified in the reconstructed surface. In this case, the hole becomes clearly visible
so that the computed surface keeps the torus shape and has genus 1. The surface defined
by the numerical solution and its cross sections are shown in Fig. 12.

By changing the parameters in the diffuse interface model but maintaining sufficient
numerical resolution level, we expect that the topological information extracted from the
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Figure 9: A perturbed torus viewed from two angles. Euler number 0, calculated Euler number G=−0.098.

Figure 10: A toroidal surface and its cross section.

diffuse interface can provide descriptions of the topological structure in the data sets on
different scales.

5 Conclusion

In this paper we illustrated how the diffuse interface Euler number of a vesicle can be
implemented with piecewise linear adaptive finite element discretization. Following the
analysis given in [14], it is known that as ǫ gets smaller, the diffuse interface Euler num-
ber formula approximates well the exact Euler number of the sharp interface associated
with the phase field function. The results given here further demonstrated that, for a
given ǫ, when the mesh resolution is good, suitably post-processed first and second or-
der derivatives of the phase field function can be developed to obtain an accurate Euler
number. From the presented examples, we also can see that the formula can be used to
retrieve topological information for both image and data analysis.

This work is an example of algorithmic development to meet the emerging need for
information extraction from numerical simulations. We note that there are many other in-
teresting questions to be studied further, in particular, the Euler number only provides a
single topological quantity. It remains to be studied how other topological quantities can
also be effectively extracted for implicitly defined surfaces. Developing methodologies
that allow the implicit control of the topological features will also be important directions
for the future research.
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x=0 y=0 z=0

Figure 11: Solution with ǫ=0.1 viewed from two different angles (top row). Solution with ǫ=0.1 viewed from
two different angles, where blue dots indicate the location of the 96 perturbed points (second row), and some
of its cross sections. Euler number 1, calculated G=0.883.

x=0 y=0 z=0

Figure 12: Solution with ǫ= 0.025 viewed from two different angles (top row) Solution with ǫ= 0.025 viewed
from two different angles, where blue dots indicate the location of the 96 perturbed points (second row), and
some of its cross sections. Euler number is 0 and the calculated G=−0.122.
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