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Abstract. In this paper, we develop an efficient numerical method based on the bound-
ary integral equation formulation and new version of fast multipole method to solve
the boundary value problem for the stress field associated with dislocations in a finite
medium. Numerical examples are presented to examine the influence from material
boundaries on dislocations.
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1 Introduction

The collective motion and interaction of large numbers of dislocations (line defects) play
central roles in the plastic deformation of crystals [1]. The direct numerical simulation
of interaction and motion of dislocations, known as dislocation dynamics, is becoming a
more and more important tool for the investigation of the plastic properties of crystalline
materials [2–26]. However, in order for dislocation dynamics to be a practical engineer-
ing tool, large ensembles of dislocations are required in the simulations, which are still
beyond the capability of currently available dislocation dynamics methods.
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One of the major limitations of the current dislocation dynamics methods lies in the
computational cost for the complex, long-range elastic interactions of dislocations that
depend on the relative positions of dislocations, their orientations as well as their Burg-
ers vectors. When a direct method is applied to find the summation of interactions be-
tween dislocation segments in numerical discretization of dislocations, the calculation is
inherently time consuming and requires O(N2) operations, where N is the total num-
ber of dislocation segments. Employing cut-off distance is known to produce spurious
results [2, 4]. Several fast numerical algorithms for the long-range interaction of disloca-
tions in dislocation dynamics simulations have been introduced to reduce the computa-
tional cost to achieve the asymptotically optimal O(N) efficiency [4, 6, 11, 17, 21, 23, 26].
Previously in [26], we have applied the new version of fast multipole method (FMM) [27]
to compute the stress field of dislocation ensembles in an infinite medium. Numerical
experiments showed that for a dislocation ensemble discretized into N dislocation seg-
ments, the new version FMM based method is asymptotically O(N) with an optimized
prefactor and is very efficient for prescribed accuracy requirements.

For materials with boundaries such as thin film materials, there are interactions be-
tween dislocations and material boundaries, resulting in image forces on dislocations.
Analytical formulas for the image forces are only available for some special cases, e.g.,
some straight dislocations in half space with a planar free surface [1]. Generally, a com-
plementary stress field should be obtained to satisfy the given boundary conditions, e.g.,
the traction free boundary conditions [28]. The superposition of the (a) stress field associ-
ated with the dislocations in an infinite elastic medium and (b) stress field obtained from
solving the boundary value problem without dislocations gives the correct stress field in
the finite medium containing dislocations. In most existing simulations, the complemen-
tary problem is solved by the finite element method (FEM) [10, 12, 14, 22]. For the special
cases of a half space with a planar free surface, Green’s function method or FFT are used
to solve the boundary value problem [5,7,18,19]; and there are also techniques to include
the image forces based on prismatic loops [13, 16].

The boundary integral equation method (BIEM) [29] (also called the boundary ele-
ment method) was developed shortly after the introduction of the finite element methods
(FEM) in the 1950s. Compared with the volume discretization in the FEM, BIEM only re-
quires the discretization of the surface and the number of unknowns and required mem-
ory are therefore much less than those in the FEM. When applied to dislocation dynamics,
once the information on the surface is solved, BIEM is able to evaluate the driving force
on dislocations accurately at any point inside the medium, whereas in the FEM, interpo-
lation is needed from the values on the prescribed numerical grid points in the volume
discretization. However, as the matrix of the resulting linear system in BIEM is dense,
for a problem with N unknowns, when Gauss elimination is applied, O(N3) operations
and O(N2) memory are required. The huge computational cost and storage requirement
quickly exhaust the computer resources when N>104 and the BIEM was less competitive
compared with the multigrid and/or domain decomposition accelerated FEM. In the last
twenty years or so, to break this bottleneck, by observing the special structure of the ma-
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trices, the FMM was coupled with the Krylov subspace type methods to efficiently solve
the BIEM formulations [30–36]. When a well-conditioned boundary integral equation
is used, the fast BIEM only requires O(N) or O(N logN) operations and memory stor-
age. Although BIEM has been employed in dislocation dynamics problems [24], these
advanced numerical techniques were not used.

In this paper, we develop an efficient numerical method based on the boundary inte-
gral equation formulation accelerated by FMM to solve for the image stress field associ-
ated with dislocations in a finite medium. The resulting discretized linear system is then
solved efficiently by the Krylov subspace methods and each matrix vector multiplication
is accelerated by the new version of fast multipole method. This fast BIEM can be cou-
pled with the efficient numerical method for the stress field of dislocation ensembles in
an infinite medium presented in [26]. Numerical examples are presented to examine the
influence from material boundaries on dislocations.

2 Continuum theory of dislocations

In this section, we briefly review the continuum theory of dislocations [1].
In the continuum theory, within the medium containing the dislocations, the elastic

displacement vector u=(u1,u2,u3) is increased by the amount of its Burgers vector b=
(b1,b2,b3) along any loop enclosing the dislocation:

∮

L

∂u

∂l
dl=b, (2.1)

where L is any contour enclosing the dislocation line and ∂u/∂l is the elastic displacement
gradient along the contour.

In the linear elasticity theory, the strain tensor is defined as

ε ij =
1

2

(∂ui

∂xj
+

∂uj

∂xi

)
, (2.2)

for i, j=1,2,3. the stress tensor σ is determined from the strain tensor by the linear elastic
constitutive equations (Hooke’s law):

σij = ∑
k,l=1,2,3

Cijklεkl , (2.3)

for i, j = 1,2,3, where {Cijkl} is the elastic constant tensor. In an isotropic medium, the
constitutive equations are

σ11 =
2µ

1−2ν
[(1−ν)ε11+νε22+νε33], σ12 =σ21=2µε12, (2.4a)

σ22 =
2µ

1−2ν
[νε11+(1−ν)ε22+νε33], σ23 =σ32=2µε23, (2.4b)

σ33 =
2µ

1−2ν
[νε11+νε22+(1−ν)ε33], σ31 =σ13=2µε31, (2.4c)
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where µ is the shear modulus and ν is the Poisson’s ratio. The stress tensor satisfies
equilibrium equations. In the absence of body forces, the equilibrium equations are

∇·σ=0. (2.5)

In an infinite isotropic medium, the analytical expression of the stress tensor due to a
dislocation loop is a line integral along the dislocation given by [1]

σij(X)= ∑
m,n,k,p=1,2,3

µbn

8π

∮

c

[
R,mpp(ε jmndli+ε imndlj)+

2

1−ν
εkmn(R,ijm−δijR,ppm)dlk

]
, (2.6)

where c is the dislocation loop, (dl1,dl2,dl3) is the line element along the dislocation,
X=(x1,x2,x3) is the target point, Y=(y1,y2,y3) is a source point on the dislocation loop,

R=
√
(x1−y1)2+(x2−y2)2+(x3−y3)2

is the distance between X and Y, R,ijk is the third order partial derivative of R with respect

to spatial variables defined as R,ijk = ∂3R/∂xi∂xj∂xk, δij is the Kronecker tensor, which is
1 when i = j and 0 otherwise, ε ijk is the permutation tensor, which is 1 when ijk = 123,
231, 312, −1 when ijk=132, 213, 321, and 0 otherwise, and the summations are taken for
repeated indices.

The elastic strain energy stored in the medium is

W=
∫

∑
i,j=1,2,3

1

2
σijε ijdV. (2.7)

The force acting on the dislocation, referred to as the Peach-Koehler force [37], can be
obtained by taking variation of this energy with respect to the position of the dislocation

F=σ·b×ξ, (2.8)

where ξ is the unit tangent vector of the dislocation. At low velocities, the motion of
dislocations can be thought of as purely dissipative and the dislocation velocity can be
written as

v=M·F, (2.9)

where M is the dislocation mobility tensor. This velocity formula is commonly used in
dislocation dynamics simulations [2–26].

For the boundary conditions of an elasticity problem in a finite medium, displacement
vector u is given on part of the boundary and the traction T=σ·n is specified on the other
part of the boundary. In this paper, we focus on the calculation of the stress field in a
finite medium. In dislocation dynamics simulations in a finite medium, a widely used
boundary condition is the traction-free boundary condition, i.e., the traction

T=0, on the material boundary, (2.10)

where n is the unit outer normal vector of the material boundary.
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3 Boundary integral equation method

In this section, we briefly review the boundary integral equation method (BIEM) for the
elasticity system of Eqs. (2.2), (2.3) and (2.5) (without dislocations) [29].

3.1 BIEM for elasticity system

For an elasticity system without body force, the boundary integral equations for the elas-
ticity system of Eqs. (2.2), (2.3) and (2.5) are

1

2
ui(x)+

∫

S

3

∑
j=1

Tij(x,y)uj(y)dSy =
∫

S

3

∑
j=1

Uij(x,y)tj(y)dSy, (3.1)

for i = 1,2,3, where S is the boundary of the medium, x = (x1,x2,x3), y= (y1,y2,y3) are
the spatial coordinates of the boundary, T= (t1,t2,t3) is the traction on the surface and
functions Uij(x,y) and Tij(x,y) are the Green’s functions. In an isotropic medium, the
constitutive equations are given by Eq. (2.4) and the Green’s functions are

Uij(x,y)=
1

16πµ(1−ν)R

[
(3−4ν)δij+

(xi−yi)(xj−yj)

R2

]
, (3.2a)

Tij(x,y)=
1

8π(1−ν)R2

[
(1−2ν)

( (xj−yj)ni(y)

R
− (xi−yi)nj(y)

R

)

− ∂R

∂n

(
(1−2ν)δij+3

(xi−yi)(xj−yj)

R2

)]
, (3.2b)

where R = |x−y| is the distance between two points x and y, δij equals 1 when i = j
and 0 otherwise, n= (n1,n2,n3) is the outer normal vector of the surface and ∂R/∂n is
the partial derivative of R in the outer normal direction. Recall that in the boundary
conditions, displacement vector u=(u1,u2,u3) is given on part of the boundary S and the
traction T=(t1,t2,t3) is given on the other part of S. The displacement and traction on
the boundary that are not specified in the boundary conditions can be solved from these
boundary integral equations in Eq. (3.1). Once these integral equations are solved, the
displacement at any point x′ inside the medium can be obtained by

ui(x
′)=

∫

S

3

∑
j=1

Uij(x
′,y)tj(y)dSy−

∫

S

3

∑
j=1

Tij(x
′,y)uj(y)dSy, (3.3)

for i=1,2,3.
Numerically, by standard finite element discretization techniques, the integral equa-

tions in Eq. (3.1) can be converted into algebraic equations. For the discretization types,
there are constant elements, linear elements, quadratic elements and higher order ele-
ments. In the numerical implementation in this paper, we adopt the constant element
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approximation except in the element containing the target point over which the inte-
grals in Eq. (3.1) are singular and linear approximations are used, see Appendix. More
precisely, we divide the boundary S into N elements and for each element, the spatial
coordinates of its center is defined as its location. Then we can obtain at each boundary
element location yk0

the discrete boundary integral equations

1

2
ui(yk0

)+
3

∑
j=1

N

∑
k 6=k0

Tij(yk0
,yk)Skuj(yk)+Lui

(
u(yk0

),△u(yk0
)
)

=
3

∑
j=1

N

∑
k 6=k0

Uij(yk0
,yk)Sktj(yk)+Lti

(
T(yk0

),△T(yk0
)
)
, (3.4)

for i = 1,2,3, where Sk is the area of the k-th boundary element, Lui
(u(yk0

),△u(yk0
))

(Lti
(T(yk0

),△T(yk0
))) are linear functions of u(yk0

) (T(yk0
)) and its first partial deriva-

tives approximated by some finite difference expressions denoted by △u(yk0
) (△T(yk0

)).
The terms of Lui

(u(yk0
),△u(yk0

)) and Lti
(T(yk0

),△T(yk0
)) come from the singular inte-

grals over the boundary element containing the target point yk0
itself and the detailed

expressions of them are calculated in Appendix. The solution method for this algebraic
system will be discussed in the next subsection.

After solving the above algebraic system for the unspecified u=(u1,u2,u3) and T=
(t1,t2,t3) on S in the boundary conditions, the displacement at any point x′ inside the
medium can be obtained using the displacement and traction on the boundary from a
discretized form of Eq. (3.3):

ui(x
′)=

3

∑
j=1

N

∑
k=1

Uij(x
′,yk)tj(yk)Sk−

3

∑
j=1

N

∑
k=1

Tij(x
′,yk)uj(yk)Sk, (3.5)

for i=1,2,3.
Note that in Eq. (3.4), the physical parameters (u1,u2,u3) and (t1,t2,t3) are used in the

Green’s second identity based formulation (sometimes referred to as the natural bound-
ary integral equation formulation). An alternative approach is to represent the solution
as combinations of different layer potentials with non-physical unknown density func-
tions, and develop a well-conditioned Fredholm second kind boundary integral equation
formulation. When the Krylov subspace methods are applied to such well-conditioned
systems, the number of iterations will be independent of the number of unknowns, mak-
ing it possible to develop asymptotically optimal O(N) algorithms. We are currently
searching for such Fredholm second kind formulations and results will be presented in
the future.

3.2 Krylov subspace methods

Moving all unknowns in Eq. (3.4) to the left and all known quantities to the right, one
obtains a general linear system

Ax=B. (3.6)
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Assuming there are N unknowns, when the LU decomposition based Gauss elimina-
tion (GE) is applied to the dense linear system, O(N2) memory and O(N3) operations
are required, which is not effective for large N. Alternatively, one can apply the least
square based Krylov subspace methods to iteratively search for the optimal solution in
the corresponding Krylov subspace. As our linear system is in general non-symmetric
and there exist no fast algorithms for computing the product of AT with a given vector,
applicable Krylov subspace methods include the generalized minimal residual (GMRES),
biconjugate gradients stabilized (BiCGStab) and transpose-free quasi-minimal residual
(TFQMR) algorithms (see [38] for detailed discussions of the Krylov subspace methods),
which have been widely used to solve boundary integral equations [38–43]. Our prelim-
inary numerical experiments show that the GMRES method converges faster than other
methods, which agrees with existing analyses. However, as the memory required by the
GMRES method increases linearly with the iteration number k and the number of multi-
plications scales like 1

2 k2N, for large k, the GMRES procedure may become very expensive
and requires excessive memory storage. For these reasons, instead of a full orthogonal-
ization procedure, GMRES can be restarted every k0 steps where k0 < N is some fixed
integer parameter. The restarted version is often denoted as GMRES(k0). In the follow-
ing, we briefly describe the GMRES(k0) algorithm used in our current implementation.

1. Start: Choose initial vector X0 and compute r0 =B−AX0. Let β= ‖r0‖, v1 = r0/β. Set the

error tolerance to ε.

2. Iterate: For j=1,2,··· ,k0 do:

hi,j=(A·vj,vi), i=1,2,··· , j, v̂j+1=A·vj−
j

∑
i=1

hi,j ·vi,

hj+1,j=‖v̂j+1‖, vj+1= v̂j+1/hj+1,j.

Form Hk0
using computed hi,j.

3. Form approximate solution:

Xk0
=X0+Vk0

Y,

where Y minimizes ‖βe1−Hk0
Y‖, e1=(1,0,0,···)T, Vk0

=(v1,v2,··· ,vk0
).

4. Restart: Compute

rk0
=B−AXk0

,

if ‖rk0
‖/β< ε, then stop; else let X0=Xk0

, v1= rk0
/‖rk0

‖ and go to Step 2.

In addition to the GMRES(k0), we have also tested BiCGStab and TFQMR, our numerical
results show very similar convergence rates and the numbers of iterations increase only
slightly when compared with the original GMRES procedure. However for large number
of Krylov iterations, the required memory is bounded and the number of multiplications
only grows linearly in the GMRES(k0), BiCGStab and TFQMR algorithms.
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4 FMM accelerated BIEM for elasticity system associated

with dislocations

To obtain the elasticity fields associated with dislocations in a finite medium, Van der
Giessen and Needleman [28] introduced a general method for the incorporation of bound-
ary conditions. In particular, an elastic field of dislocations in finite medium is the super-
position of (a) the elastic field associated with dislocations in an infinite elastic medium
and (b) the elastic field obtained from a complementary boundary value problem without
dislocations to satisfy the given boundary conditions, i.e.,

ui= ũi+ûi, ǫij = ǫ̃ij+ ǫ̂ij, σij = σ̃ij+σ̂ij, (4.1)

where the (̃ ) fields are generated by dislocations in an infinite medium and the (̂ ) fields
are those from the complementary problem in order to satisfy the boundary conditions.
Fig. 1 illustrates this decomposition approach.

= +

, ,u ε σ , ,u ε σ�� � ˆˆ ˆ, ,u ε σ

dislocation

boundary

dislocation

boundary

Figure 1: Decomposition of elastic fields associated with dislocations in a finite medium.

The (̃ ) fields generated by dislocations in an infinite medium have integral formu-
las [1]. For dislocations in an infinite isotropic medium, the stress field is given by
Eq. (2.6). Direct numerical calculation of the integrals in Eq. (2.6) requires O(N2) op-
erations, where N is the total number of dislocation segments in the discretization. In
our method, this stress field is calculated efficiently using the new version of FMM as
presented in [26], which is asymptotically O(N) efficiency with an optimized prefactor.

We solve the complementary (̂ ) fields in the finite medium within the framework of
BIEM. In this paper, we focus on the traction free boundary condition, see Eq. (2.10). The
(̃ ) fields generated by dislocations in an infinite medium obtained above generally do not
satisfy this boundary condition. In the complementary problem, no dislocations are con-
tained inside the medium and the traction-free boundary condition is satisfied by adding
on the boundary a negative traction from the (̃ ) fields in an infinite medium obtained
above, i.e., t̂i=−t̃i=−∑

3
j=1 σ̃ijnj. The BIEM formulation is given in Eq. (3.1), in which the

traction T=(t1,t2,t3) is given everywhere on the boundary and the unknown functions
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are the displacement vector u=(u1,u2,u3) on the boundary. For the discretization of these
boundary integral equations, we use the formulation in Eq. (3.4), which is a linear system
of {ui(yk)}, i=1,2,3.

The resulting linear system in Eq. (3.4) is solved iteratively using the restarted GM-
RES algorithm described in Section 3.2. In the iterations, the matrix-vector products are
calculated efficiently using the new version FMM. This reduces both the operation count
and memory from O(N2) to the asymptotically optimal O(N) for each Krylov iteration
step, where N is the total number of unknowns in the BIEM discretization. Note that for
the dense linear system, the Krylov subspace methods do not require the storage of each
entry in the matrix, but only the results of the matrix vector multiplication computed us-
ing the new version of FMM. In our current FMM implementation, by representing the
Green’s functions Uij(x,y) and Tij(x,y) as different partial derivatives of the harmonic
kernel as

Uij(x,y)=
1

16πµ(1−ν)

[
(3−4ν)δij−xj

∂

∂xi

]
1

R
+

1

16πµ(1−ν)

∂

∂xi

(yj

R

)
, (4.2a)

Tij(x,y)=
1−2ν

8π(1−ν)

[
∂

∂xi

(nj(y)

R

)
− ∂

∂xj

(ni(y)

R

)
−δij

3

∑
s=1

∂

∂xs

(ns(y)

R

)]

+
1

8π(1−ν)

[ 3

∑
s=1

xs
∂2

∂xi∂xj

(ns(y)

R

)
−

3

∑
s=1

∂2

∂xi∂xj

(ysns(y)

R

)]
, (4.2b)

for all i, j=1,2,3, we utilize existing new version of FMM package FMMSuite developed
by one of the authors from [44]. Interested readers are referred to [27,45] for details of the
new version of FMM. In our current implementation, 6 harmonic FMMs are used to calcu-
late the summations ∑

N
k 6=k0

∑
3
j=1Uij(x,yk)tj(yk)Sk, and 12 for ∑

N
k 6=k0

∑
3
j=1 Tij(x,yk)uj(yk)Sk

in Eq. (3.4). Therefore a total of 18 harmonic FMMs are needed in each Krylov iteration.
We are currently investigating possible strategies to further reduce this number.

Once the numerical values of the displacement vector on the boundary are obtained,
the displacement at any point inside the medium can be evaluated conveniently using
Eq. (3.5). One advantage of the BIEM formulation over FEM is that given the numerical
values on the boundary, the elastic fields inside the medium can be evaluated accurately
using BIEM, whereas in the FEM formulation, interpolations are generally needed except
when the locations where these fields are evaluated are the same as the nodal points. This
advantage is crucial in dislocation dynamics simulations, in which the elastic fields are
evaluated on dislocations which move continuously inside the medium.

In this paper, we focus on the calculation of the stress field associated with disloca-
tions in a finite medium, which determines the velocity of dislocations and is a crucial
step in dislocation dynamics simulations. We calculate the stress tensor from the dis-
placement vector given by Eq. (3.5) using difference approximations. A convergence test
of this difference approximation scheme is given in Fig. 5 in the next section.
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medium

traction (t
1
, t

2
, t

3
)

x

z

Figure 2: A half space medium.

5 Numerical results

In this section, we present some numerical examples using our method.
In the first numerical example, we examine the accuracy of our method for solving

the boundary value problem of the elasticity system. For the purpose of comparison,
we choose a special case where analytical solution is available. We consider a half-space
medium z ≤ 0, see Fig. 2. The boundary of this medium is the xy plane, on which the
traction is:

t1= t2=0, t3=cos2πx. (5.1)

Under this boundary condition, the displacement has explicit solution (e.g., [46], Ap-
pendix N). The components of the displacement vector on the surface are:

u1=
1−2ν

4πµ
sin2πx, u2=0, u3=

1−ν

2πµ
cos2πx. (5.2)

We choose the computational domain for the boundary to be [−1,1]2. As most of the ex-
isting open source FMM solvers only consider the so called ”free space” kernels and do
not apply directly to periodic problems, we include 5 replica of the domain in the x direc-
tion (no need to repeat the cell in the y direction along which the solution is uniform). We
then consider the solution for x∈ [−0.5,0.5] and y=0, for which the cut-off effect is small.
We want to mention that currently the FMMSuite is being upgraded to allow periodic
and other boundary conditions and the open source code will be released in the future.

Fig. 3 shows the numerical results and comparisons with the analytical formula for
the displacement on the boundary. The boundary [−1,1]2 is discretized into rectangular
meshes using grid sizes ∆x = ∆y = 0.01. The number of expansion terms in the FMM
is p = 9 for 3 digits accuracy [26]. The figure shows excellent agreement between our
numerical results and those from analytical formula and the maximum relative error is
about 0.9%.

In the second example, we consider a circular prismatic dislocation loop located at
the center of a L×L×L/2 cuboid box as shown in Fig. 4. The Burgers vector b is in the
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Figure 3: Comparison of our numerical results with the analytical formulas for the displacement vector u=
(u1,u2,u3) on the boundary of the half space medium. The l∞ norm of vector u is used in (d).
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Figure 4: A prismatic dislocation loop in a cuboid box.

z direction and the radius of dislocation loop is r= 0.4L= 200b, where b is the length of
the Burgers vector. Traction-free boundary conditions are used for the whole boundary.
Rectangular mesh is used in the boundary discretization with ∆x=∆y=∆z.

We first present convergence tests for the stress calculation. As described in the pre-
vious section, after the boundary integral equations are solved, we use difference ap-
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Figure 5: Convergence tests for the stress
calculation using the central difference
scheme. (a) and (b) difference approxima-
tion spacing ∆ varies, and the boundary mesh
sizes are fixed as ∆x=∆y=∆z= L/40, i.e.,
there are 40, 40 and 20 grid points along the
x, y and z directions, respectively—denoted
by 40×40×20. (a) Convergence for appro-
priate values of ∆. (b) Divergence for very
small values of ∆. (c) Boundary mesh sizes
vary and the difference approximation spac-
ing ∆ is fixed as L/400.

proximations to calculate the stress from the displacement obtained by Eq. (3.5) (see also
Eqs. (2.2) and (2.3)). In our calculations, central difference formula is used to approximate
the spatial derivatives, using spacing ∆, e.g.,

∂ui(x′,y′,z′)
∂x

=
ui(x′+∆,y′,z′)−ui(x′−∆,y′,z′)

2∆
.

The error tolerance is fixed to 10−6 in the restarted GMRES solver and the number of
expansion terms in the FMM is set to be p = 18 (so that the relative error is also about
10−6 [26]). Note that the accuracy of σ̂33 is determined by both the boundary mesh size
and the choice of ∆ when approximating the derivatives using central difference. We
choose σ̂33 on the dislocation loop as an example to investigate the convergence of our nu-
merical method. We first discretize the box boundary using grid sizes ∆x=∆y=∆z=L/40,
i.e., there are 40, 40 and 20 grid points along the x, y and z directions, respectively, and
investigate how the results depend on ∆. The results are shown in Fig. 5(a) and (b). We
see that when ∆ decreases from L/40 to L/400, the results converge, as shown in Fig. 5(a).
However, for smaller ∆, the results diverge due to the instability in the central difference
approximation, see Fig. 5(b). This is because when we numerically evaluate ∆u/∆, as the
error of u is about 10−6, if the magnitude order of ∆ decreases to a comparable order of
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Figure 6: (a) The complementary stress component σ̂33 of a prismatic dislocation loop placed in a cuboid box.
The values along the x axis from the center of the dislocation loop are plotted. (b) The stress components σ̂33,
σ̃33, and σ33 along the x axis from the center of the dislocation loop. (c) The complementary stress component
σ̂33 on the dislocation loop. (d) The stress components σ̂33, σ̃33 and σ33 on the dislocation loop. In (c) and
(d), θ is the central angle from x axis in the counterclockwise direction.

10−6, the results will obviously diverge. An alternative approach currently being consid-
ered for computing the derivatives is to differentiate the local expansions for the far-field
contribution in FMM. However this option will be slower than the difference approxi-
mation technique and is less preferred when efficiency is the top priority, such as in dis-
location dynamics. In Fig. 5(c), we show the convergence of σ̂33 with respect to different
boundary mesh sizes, with a fixed ∆=L/400. When the boundaries are discretized using
20, 20 and 10 points along x, y and z directions, respectively, i.e., ∆x=∆y=∆z=L/20, the
result is not smooth and the error is large due to the coarse mesh. When smaller mesh
sizes are used, we observe convergence.

The obtained results of stress using ∆x=∆y=∆z= L/40 and ∆= L/400 are summa-
rized in Fig. 6. Fig. 6(a) shows the complementary stress component σ̂33 along the x axis
from the center of the dislocation loop and Fig. 6(b) shows the comparison of σ̂33 and the
stress component in an infinite medium σ̃33. The total stress σ33=σ̂33+σ̃33 along the x axis
is also presented in Fig. 6(b). It can be seen that away from the boundary, σ̂33 varies very
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Figure 7: A prismatic dislocation loop in a cuboid box with a curved top surface.

slowly. Whereas when approaching the surface, σ̂33 varies rapidly. This phenomenon
qualitatively agrees with that of the complementary stress field of some straight dislo-
cations where analytical formulas are available [1]. Away from the dislocation loop and
box boundary, σ̃33 and σ̂33 are comparable. Near the dislocation loop, σ̃33 dominates and
when approaching the box boundary, σ̂33 dominates.

Fig. 6(c) shows the complementary stress component σ̂33 on the dislocation loop and
Fig. 6(d) shows the comparison of σ̂33 and the stress component in an infinite medium
σ̃33 and the total field σ33 = σ̂33+σ̃33 on the dislocation loop. We can see that σ̂33 is os-
cillating along the dislocation loop. When θ = 0,π/2,π,3π/2, the absolute value of σ̂33

reaches maximum, which is related to the fact that these points are closer to the bound-
ary of the box. On the contrary, for the dislocation loop in the infinite medium, the stress
component σ̃33 is a constant along itself.

In the next example, we make a small perturbation on the top surface of the box, see
Fig. 7. The explicit function of the top surface is

z(x,y)=0.1L
(

cos
2π

L
x+1

)(
cos

2π

L
y+1

)
.

We investigate the influence of the perturbation on the top surface. The parameters are
the same as those in the previous example. The complementary stress component σ̂33

due to the box with flat top surface and curved top surface is presented in Fig. 8. Fig. 8
clearly shows that the absolute value of σ̂33 of curved top surface is less than that of the
flat top surface, which agrees with the fact that the dislocation loop is farther from the
curved surface than the original flat one.

Finally, we consider an array of seven circular glide dislocation loops contained in the
L×L×L/2 cuboid box, see Fig. 9(a). The dislocation loops are parallel to the xy plane and
the Burgers vector b is in the x direction. The radius of the dislocation loops is r=0.4L=
200b and the distance between adjacent loops is 25b. Traction-free boundary conditions
are used for the whole boundary. Discretization parameters are ∆x = ∆y = ∆z = L/40
and ∆ = L/400. We calculate the stress component σ13 along the center loop and the
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Figure 8: The complementary stress component σ̂33 for the prismatic dislocation loop in the cuboid box with
flat and curved top surfaces. (a) Along x axis from the center of the dislocation loop. (b) On the dislocation
loop.
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Figure 9: (a) An array of seven circu-
lar glide dislocation loops contained in a
cuboid box. (b) The stress component
σ13 along the center dislocation loop and
the top dislocation loop in the array in the
box. (c) In an infinite medium, the stress
component σ13 along the center disloca-
tion loop and the top dislocation loop in
the array, and that along a single circular
glide dislocation loop. In (b) and (c), θ is
the central angle from the +x direction in
the counterclockwise direction.

top loop, see Fig. 9(b). For the purpose of comparison, the values of σ13 along a single
dislocation loop, the center loop and the top loop in the array in an infinite medium are
also calculated, see Fig. 9(c).

The stress component σ13 generates a force in the slip plane of a dislocation loop,
which drives the loop to expand or shrink (positive force: shrink; negative force: expand).
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For a single loop in an infinite medium, this self-force makes the loop shrink and the
driving force has its maximum at the screw points and minimum at the edge points of
the loop (see [1], Section 6-5), see the result shown in Fig. 9(c). Due to the long-range
interaction of dislocations, the values of this stress component along a dislocation loop
in the array are quite different from those along a single dislocation loop, see Fig. 9(c).
Comparing the results of dislocation loops in the box in Fig. 9(b) with the corresponding
ones in an infinite medium in Fig. 9(c), one can see that the boundaries of the box play the
role of attracting the loops, i.e., driving the loops to expand, in contrast with the self-force
of dislocation loops in an infinite medium, so that the dislocation loops in the array in
the box may either expand or shrink depending on the location of the loops due to the
competition between the force due to interaction of dislocations including the dislocation
self-force and the force due to material boundaries.

6 Conclusions and discussion

We have developed an efficient numerical method based on the boundary integral equa-
tion formulation and new version fast multipole method to solve the boundary value
problem for the stress field associated with dislocations in a finite medium. Numerical
examples are presented to show the accuracy of the method and investigate the influence
of material boundaries on dislocations.

These developed numerical methods and formulations are for dislocations in an
isotropic medium. The generalization of our methods and formulations to dislocations
in an anisotropic medium is currently being considered. An important application of
the developed methods is the dislocation dynamics in thin film materials, which is being
studied and results will be presented in the future.

Appendix: Numerical formulation for the singular integrals

The integrals in the boundary integral equations Eq. (3.1) are singular over the boundary
element containing the target point itself. In this appendix, we derive numerical approx-
imations to these singular integrals based on linear approximation of the boundary.

We present the formulation for square boundary elements, which are used in this
paper. Consider a boundary element S0 parameterized by z= z(x,y) for (x,y)∈ [−v,v]×
[−v,v], see Fig. 10. Let the center of the boundary element be O=(0,0,z0) and P=(x,y,z)
be any point on the element. Using linear approximation, the boundary is

z= z0+x
∂z

∂x
(0,0)+y

∂z

∂y
(0,0), (x,y)∈ [−v,v]×[−v,v]. (A.1)

Denote

c=
∂z

∂x
(0,0) and d=

∂z

∂y
(0,0).
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Figure 10: A boundary element S0 under linear approximation.

Then the distance between points P and O is

R=
√

x2+y2+(z−z0)2=
√

x2+y2+c2x2+d2y2+2cdxy, (A.2)

and the singular integrals over this boundary element S0 can be expressed as

∫

S0

UijtjdS=
∫ v

−v
dy

∫ v

−v
dxUij(x,y,z)tj(x,y,z)

√
1+c2+d2, (A.3a)

∫

S0

TijujdS=
∫ v

−v
dy

∫ v

−v
dxTij(x,y,z)uj(x,y,z)

√
1+c2+d2. (A.3b)

We also use linear approximation for the traction and displacement in the integrals:

tj(x,y,z)= tj(0,0,z0)+
(

x
∂

∂x
+y

∂

∂y

)
tj

∣∣
(0,0,z0)

, (A.4a)

uj(x,y,z)=uj(0,0,z0)+
(

x
∂

∂x
+y

∂

∂y

)
uj

∣∣
(0,0,z0)

. (A.4b)

The obtained approximation formulas for the singular integrals are

∫

S0

U11t1dS=
t1(0,0,z0)

16πµ(1−ν)

√
1+c2+d2[(3−4ν)p1+p2], (A.5a)

∫

S0

U22t2dS=
t2(0,0,z0)

16πµ(1−ν)

√
1+c2+d2[(3−4ν)p1+p3], (A.5b)

∫

S0

U33t3dS=
t3(0,0,z0)

16πµ(1−ν)

√
1+c2+d2[(3−4ν)p1+c2 p2+d2 p3+2cdp4], (A.5c)
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∫

S0

U12t2dS=
t2(0,0,z0)

16πµ(1−ν)

√
1+c2+d2 p4, (A.5d)

∫

S0

U13t3dS=
t3(0,0,z0)

16πµ(1−ν)

√
1+c2+d2(cp2+dp4), (A.5e)

∫

S0

U21t1dS=
t1(0,0,z0)

16πµ(1−ν)

√
1+c2+d2 p4, (A.5f)

∫

S0

U23t3dS=
t3(0,0,z0)

16πµ(1−ν)

√
1+c2+d2(cp4+dp3), (A.5g)

∫

S0

U31t1dS=
t1(0,0,z0)

16πµ(1−ν)

√
1+c2+d2(cp2+dp4), (A.5h)

∫

S0

U32t2dS=
t2(0,0,z0)

16πµ(1−ν)

√
1+c2+d2(cp4+dp3), (A.5i)

∫

S0

T11u1dS=
∫

S0

T22u2dS=
∫

S0

T33u3dS=0, (A.5j)

∫

S0

T12u2dS=
1−2ν

8π(1−ν)

(
−dp2

∂

∂x
−dp4

∂

∂y
+cp4

∂

∂x
+cp3

∂

∂y

)
u2(0,0,z0), (A.5k)

∫

S0

T13u3dS=
1−2ν

8π(1−ν)

[(
p2+c2 p2+cdp4

) ∂

∂x
+
(
n3 p4+c2 p4+cdp3

) ∂

∂y

]
u3(0,0,z0), (A.5l)

∫

S0

T21u1dS=
1−2ν

8π(1−ν)

(
−cp4

∂

∂x
−cp3

∂

∂y
+dp2

∂

∂x
+dp4

∂

∂y

)
u1(0,0,z0), (A.5m)

∫

S0

T23u3dS=
1−2ν

8π(1−ν)

[(
p4+cdp2+d2 p4

) ∂

∂x
+
(

p3+cdp4+d2 p3

) ∂

∂y

]
u3(0,0,z0), (A.5n)

∫

S0

T31u1dS=
1−2ν

8π(1−ν)

[(
−c2 p2−cdp4−p2

) ∂

∂x
+
(
−c2 p4−cdp3−p4

) ∂

∂y

]
u1(0,0,z0), (A.5o)

∫

S0

T32u2dS=
1−2ν

8π(1−ν)

[(
−cdp2−d2 p4−p4

) ∂

∂x
+
(
−cdp4−d2 p3−p3

) ∂

∂y

]
u2(0,0,z0), (A.5p)

where

p1=
∫ v

−v
dy

∫ v

−v
dx

1√
x2+y2+c2x2+d2y2+2cdxy

=
2v√
1+d2

ln
1+d2+cd+

√
(1+d2)(2+c2+d2+2cd)

cd+
√

(1+c2)(1+d2)

+
2v√
1+c2

ln
1+c2+cd+

√
(1+c2)(2+c2+d2+2cd)

cd+
√

(1+c2)(1+d2)

+
2v√
1+d2

ln
1+d2−cd+

√
(1+d2)(2+c2+d2+2cd)

−cd+
√
(1+c2)(1+d2)

+
2v√
1+c2

ln
1+c2−cd+

√
(1+c2)(2+c2+d2+2cd)

−cd+
√

(1+c2)(1+d2)
, (A.6a)
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p2=
∫ v

−v
dy

∫ v

−v
dx

x2

(x2+y2+c2x2+d2y2+2cdxy)3/2

=2cdv

√
2+c2+d2+2cd−

√
2+c2+d2−2cd

(1+c2)(1+c2+d2)

+
2v

(1+c2)3/2
ln

1+c2+cd+
√
(1+c2)(2+c2+d2+2cd)

cd+
√
(1+c2)(1+d2)

+
2v

(1+c2)3/2
ln

1+c2−cd+
√
(1+c2)(2+c2+d2+2cd)

−cd+
√
(1+c2)(1+d2)

, (A.6b)

p3=
∫ v

−v
dy

∫ v

−v
dx

y2

(x2+y2+c2x2+d2y2+2cdxy)3/2

=2cdv

√
2+c2+d2+2cd−

√
2+c2+d2−2cd

(1+d2)(1+c2+d2)

+
2v

(1+d2)3/2
ln

1+d2+cd+
√
(1+d2)(2+c2+d2+2cd)

cd+
√
(1+c2)(1+d2)

+
2v

(1+d2)3/2
ln

1+d2−cd+
√
(1+d2)(2+c2+d2+2cd)

−cd+
√
(1+c2)(1+d2)

, (A.6c)

p4=
∫ v

−v
dy

∫ v

−v
dx

xy

(x2+y2+c2x2+d2y2+2cdxy)3/2

=
2v

1+c2+d2

(√
2+c2+d2−2cd−

√
2+c2+d2+2cd

)
. (A.6d)

Note that in these formulas, the partial derivatives of uj and tj with respect to x and y can
be approximated numerically by finite difference expressions.
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