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Abstract. An adaptive mesh refinement strategy is proposed in this paper for the Im-
mersed Boundary and Immersed Interface methods for two-dimensional elliptic in-
terface problems involving singular sources. The interface is represented by the zero
level set of a Lipschitz function ϕ(x,y). Our adaptive mesh refinement is done within
a small tube of |ϕ(x,y)|≤ δ with finer Cartesian meshes. The discrete linear system of
equations is solved by a multigrid solver. The AMR methods could obtain solutions
with accuracy that is similar to those on a uniform fine grid by distributing the mesh
more economically, therefore, reduce the size of the linear system of the equations.
Numerical examples presented show the efficiency of the grid refinement strategy.
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1 Introduction

In this paper, we develop an adaptive mesh refinement (AMR) technique for the im-
mersed boundary (IB) method and immersed interface method (IIM) for the following
elliptic interface problem:

∆u= f , (x,y)∈Ω, (1.1a)

u|∂Ω= g, (1.1b)
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together with the jump conditions across the interface Γ :
(

X(s),Y(s)
)

,

[u]Γ=w(s), [un]Γ =v(s). (1.2)

Here, Ω ⊂ R
2 is assumed to be a rectangular domain; the interface Γ ∈ C2 is a curve

separating Ω into two sub-domains Ω−,Ω+ such that Ω=Ω−∪Ω+∪Γ.
Note that when w(s)=0, the above problem can be written as

∆u= f +
∫

Γ
v(s)δ(x−X(s))δ(y−Y(s))ds, u|∂Ω = g. (1.3)

This is the simplest model of Peksin’s Immersed Boundary (IB) method, see for example,
[7, 19–23] for the IB method, the references therein, and applications. The IB method was
originally designed using Cartesian grids. To improve the accuracy of the IB method, the
second order immersed interface method (IIM) [1,4,10–13] and the augmented immersed
interface method (AIIM) [8, 9, 14, 16, 17] have been developed. Both IB and IIM were
originally started with uniform Cartesian grids.

Advantages using uniform Cartesian grids include simplicity, robustness, and no ad-
ditional cost in the grid generation for free boundary and moving interface problems.
Another consideration is that many fast solvers on uniform grids can be employed.

However, uniform meshes may not be efficient or sufficient for some problems that
require high resolutions in some part of the solution domain. In order to resolve the ac-
curacy near the interface one can use refined discretization near the interface to improve
the interface treatment.

Local grid refinement may be effective for interface problems since (1) often we are
mainly interested in the solution near and/or on the interface; (2) the solution away from
the interface is smooth enough and therefore dose not require a fine grid to resolve it;
(3) often accurate gradient computation near the interface is needed. There are a few
adaptive techniques developed for the IB method using Lagrangian formulation, see for
example [2, 5, 6]; and for the level set method, see for example [18, 27, 28].

Many AMR techniques use information about some approximate solution to deter-
mine where to employ a local mesh refinement technique. If the location of the interface
is known in advance, however, then using this a priori information to guide the AMR
process may result in a more efficient method. While one AMR approach has been de-
veloped for the immersed finite element method (IFEM) in [29], no adaptive mesh re-
finement technique has been developed to the Immersed Interface Method using a finite
difference discretization.

In this paper, we propose an adaptive mesh refinement (AMR) technique for the in-
terface problem above for IB and IIM methods that use finite difference discretizations.
Let ϕ(x) be a Lipschitz continuous function whose zero level set (ϕ= 0) is the interface.
If we have a uniform Cartesian grid with mesh size h1. We briefly outline our idea of the
local refinement strategy.

• For the grid points (xi,yj) in the tube |ϕ|≤ δ, we generate a finer grid with smaller
mesh size h2 (h2 <h1).
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• Generate the finite difference equations using the standard 5-point or 9-point sten-
cil. Whenever the finite difference scheme at a grid point in the new mesh needs
values at points that are not grid points in any level of the mesh, an interpolation
scheme is used.

• The resulting finite difference equations can be solved, for example by an algebraic
multi-grid solver.

The procedure can be repeated hierarchically. The details will be given in the paper.
The rest of paper is organized as follows. In the next section, we present the adaptive

mesh strategy based on a level set function. The data structure is also described. In Sec-
tion 3, we explain how to construct finite difference scheme using the IB and IIM methods
at grid points and at hanging nodes. In Section 4, we present numerical examples and
comparisons. The last section contains the conclusions and acknowledgments.

2 Generating the adaptive mesh

We assume that the interface problem is defined on a rectangular domain Ω=[a,b]×[c,d].
We start with a coarse Cartesian grid, xi= a+ih, yj = c+ jh, i=0,1,··· ,m, j=0,1,··· ,n. The
interface Γ is implicitly represented by a Lipschitz continuous function ϕ(x,y):

Γ=
{

(x,y) , ϕ(x,y)=0
}

. (2.1)

In the discrete case, ϕ(x,y) is defined at grid points as ϕ(xi,yj). Often ϕ(x,y) is the signed
distance function from Γ.

To generate a finer mesh around interface Γ, we first select parent points within a tube
of the interface according to

|ϕ(x,y)|≤λh, (2.2)

where λ is a control coefficient to adjust the refinement region. The grid points xij =
(xi,yj) within the tube are selected as parents. We build a refined mesh with new mesh
resolution h/r (r is refinement ratio, r=2 or 4, for example) within the square: |x−xi|≤
h and |y−yj| ≤ h. Generating refined square for every parent points yields a refined
region around interface. Its width is flexible controlled by λ. Fig. 1 shows an example of
refinement mesh around a circular interface. If a finer mesh is needed, we can select from
the second level grid points by:

|ϕ(x,y)|≤λh/r, (2.3)

where h/r is the resolution of the second level refined mesh. We can repeat the process
to get finer and finer mesh. Nevertheless, since IIM is second order already, it requires
much less refinement as that of the IB method.
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Figure 1: A two level refinement mesh generated within h distance from the interface, that is, |ϕij|=|ϕ(xi.yj)|≤h,
around a circular interface with the refinement ratio being r=2 and the control coefficient being λ=1.

Note that the above generation procedure causes large amount of repetitions among
different levels of the mesh. For example, some grid points can be considered to be par-
ents or children multiple times in all levels. Some child grid points can be generated
again and again by different parents in its neighbor. Although these repetitions do not
affect the mesh pattern, they do cause book-keeping issues and waste of storage space.
To overcome this problem, we have developed a procedure to flag, index, and store mul-
tiple levels of grid points without repetition. We use a three-level mesh as an example,
see also Fig. 2 for a flow chart of the procedure, and Fig. 3 for the mesh. Following the
generation steps described above, we start from the first level uniform mesh, obtain sec-
ond and then third level of adaptive meshes. The indexing steps are in the reversed way.
The third level grid points are indexed first and flagged as ‘3’. When we index the grid

Build 1
st
 level uniform 

mesh 

Flag and index 3
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 level 

grid points; Record grid 

points information; 

Allocate solution space 

Select grid points with 
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mesh, based on which 
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Figure 2: Flow chart of a three-level adaptive mesh generation and indexing procedure.
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Figure 3: A three-level mesh with the refinement ratio r=2 and the control coefficient λ=2.

points within the second level mesh, we can disregard those grid points that are indexed
as ‘3’ since the grid points in the third level mesh is completely within the second. We
just need to index those grid points that are left in the second level mesh and flag as ‘2’.
Lastly, we disregard the grid points in both the second and the third levels and just index
those grid points that are left and flag them as ‘1’. In each mesh layer, we index grid
points and record their positions in the domain. Once all the grid points in a layer are
indexed, the required solution space is then allocated for this level according to its size.

We summarize some properties and restrictions of the adaptive mesh described above:

• Every grid point is flagged as a unique level. If a point in domain is not flagged, that
means it is not a grid point and should be expressed by interpolation for use. With
the flag information, we can determine which finite difference scheme to use on
each grid point, and from which level to call its neighbors required in that scheme.

• The (k+1)-th level mesh is entirely embedded in the k-th level mesh. This is to
prevent the complicated case where more than two levels show up together locally.
Moreover, grid points on border of two levels always belong to the finer level.

Fig. 3 shows a sample three-level mesh around a circular interface. The adaptive mesh
satisfies all requirements mentioned above.

2.1 The data structure of the AMR

We illustrate the data structure of our AMR algorithm in Fig. 4 to index grid points, or the
unknowns of the finite difference equations. For simplicity, we assume that the domain
is a square. We start with the first level uniform Cartesian mesh of m×m mesh, based
on which a second level adaptive mesh is generated with refinement ratio r. There are at
most (mr+1)×(mr+1) possible grid points in the refined domain (the second level) and
the unrefined domain. We use the integer coordinate (i, j), 0≤i, j≤mr to record grid points
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rather than their actual location (xi,yj)’s. Suppose we count K grid points in the first level
and L grid points in the second level, then the double precision vector U1K×1 and U2L×1

are allocated to store the solutions of the two levels. We use an array Locate1K×2 to link
the k-th (1 ≤ k ≤ K) in the first level mesh to its integer coordinate (i, j) in the square
domain. Similarly we use an array Locate2L×2 to link the l-th (1≤ l ≤ L) in the second
level mesh to its integer coordinate. Inversely, matrix Pointer(mr+1)×(mr+1) maps the po-
sitions index (i, j) to its corresponding index in the level 1 or 2 meshes. Because some
positions index have never been flagged, the matrix Pointer can have many undefined
entries. Moreover, matrix Flag(mr+1)×(mr+1) maps each position index to its flag infor-
mation: 0(unavailable, not a grid point in any level of the mesh), in the level 1 or level
2 mesh. Notice that except for the solution vectors U1 and U2, all other data structures
are integer pointer arrays or matrices to store grids information. Note that some AMR
methods based on quadtree/octtree-based structure or the structured AMR approach of
Berger and co-workers [2, 3, 18, 27, 28] can save the storage as well. The objective of our
paper is to reduce the unknowns on coarse level apart from interface where the solution
is already good enough. We believe that with more effort, our AMR approach can save
the storage as well but the coding will become more complicated.

1st level 

solution k

l

Grid points 

positions 

Level 

information 
2nd level 

solution 

FlagPointer

U1

U2

Locate 1

Locate 2

Figure 4: The data structure to book-keep the information of two levels grid points.

3 Finite difference schemes

For most of the grid points in each level, the standard 5-point finite difference scheme is
used

Ui−1,j+Ui+1,j+Ui,j−1+Ui,j+1−4Uij

h2
= fij+Cij, (3.1)

assuming that all the grid points involved are in the same level. The correction term for
the immersed boundary method is

Cij=∑v(sk)δh(xi−Xk)δh(yj−Yk)∆sk, (3.2)
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where δh is the discrete cosine delta function defined by

δǫ(x)=







1

4ǫ
(1+cos(πx/2ǫ)), if |x|<2ǫ,

0, if |x|≥2ǫ,
(3.3)

Xk=(Xk,Yk) is a set of control points (Lagrangian particles) on the interface, ∆sk=|Xk+1−
Xk|. In the level set function representation of the interface, Xk can be chosen as the
projection of irregular grid points from one particular side of the interface, see for ex-
ample, [15]. Note that Cij is zero almost everywhere except in the neighborhood of the
interface |ϕij|<2h. Note that, the test results using other type of discrete delta functions
reveal similar behavior as that of the discrete cosine delta function.

It is well known that the IB method is first order accurate especially near the interface
since the solution is smeared out. The immersed interface method is a second order
sharp interface method which means it maintains second order accuracy in the L∞ norm
everywhere including the interface and its neighborhood and the jump conditions are
enforced. The IIM for the interface problem (1.1)-(1.2) is similar to the IB method in the
sense that the standard central five-point finite difference scheme is used everywhere but
Cij is only non-zero in the neighborhood of the interface |ϕij|< h instead of 2h and is
chosen carefully so that second order accuracy can be achieved everywhere.

For a given grid point x=(xi,yj), we define

ϕmax
ij =max

{

ϕi−1,j,ϕi+1,j,ϕij,ϕi,j−1,ϕi,j+1

}

, (3.4)

ϕmin
ij =min

{

ϕi−1,j,ϕi+1,j,ϕij,ϕi,j−1,ϕi,j+1

}

. (3.5)

We call (xi,yj) an irregular grid point in reference to the central five point stencil if

ϕmax
ij ϕmin

ij ≤0.

At an irregular grid point, the correction term can be determined dimension by di-
mension. For example, if the interface cuts the x stencil at x∗ such that xi < x∗ < xi+1,
then

u(xi−1,yj)−2u(xi,yj)+u(xi+1,yj)

h2
≈uxx+[ux]

(xi−x∗)

h2
+[uxx]

(xi−x∗)2

2h2
.

The last two terms are part of the correction term Cij. The jump conditions [ux], [uxx],
[uy], [uyy] are determined from the following relations in terms of the jump relations in
the local coordinates ξ-η, that is, in the normal and tangential directions at (x∗,yj) or
(xi,y

∗),

[ux]= [uξ ]cosθ−[uη ]sinθ, (3.6a)

[uy]= [uξ ]sinθ+[uη ]cosθ, (3.6b)

[uxx]= [uξξ ]cos2θ−2[uξη ]cosθsinθ+[uηη]sin2θ, (3.6c)

[uyy]= [uξξ ]sin2θ+2[uξη ]cosθsinθ+[uηη]cos2 θ. (3.6d)
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The involved jump relations above in terms of the local coordinates ξ-η can be deter-
mined from the original jump condition (1.2) from the following equalities,

[u]=w(s), [uξ ]=v(s), [uη ]=
∂w

∂s
, (3.7a)

[uξξ ]=κv(s)+[ f ]−
∂2w(s)

∂s2
, (3.7b)

[uηη]=−κv(s)+
∂2w(s)

∂s2
, (3.7c)

[uξη ]=κ
∂w(s)

∂s
+

∂v(s)

∂s
, (3.7d)

where ∂v(s)
∂s is the first surface derivative along the interface Γ, and κ is the curvature. We

refer the readers to [13] for the details since the emphasis of this paper is about the AMR
methods.

3.1 The finite difference scheme at hanging nodes

For grid points on border of two mesh levels, the finite difference schemes need to be
modified because of different resolutions from two levels. These grid points are called
hanging points, or hanging nodes. As a common practice in the literature, see for exam-
ple, [3, 24, 25] and the references therein, we need to build some virtual points, so called
“ghost points”, to develop the finite difference scheme.

We illustrate the idea and the finite difference scheme at hanging nodes using Fig. 5,
where the points labeled as 6,8,15 are hanging nodes, of which at least one grid point is
missing in the standard 5-point finite difference stencil. The idea is to replace the missing
point with a ghost point, which can be quadratically interpolated by its neighbor grid
points with O(h3) accuracy. Having this ghost point plugged into discrete Laplacian
and divided by h2, we get O(h) truncation error at this hanging point. Since all hanging
points take one dimension lower than the whole domain, the global accuracy should not
be affected.

We take the hanging point 8 as an example in building the finite difference scheme.
The ghost point g3 is needed along with 7,9,14 in the central 5-point stencil for the grid
point labeled as 8. The value of g3 can be interpolated by the values at 8,14 and g1 that
can be interpolated by the values at points 1,2,3 or 2,3,4. It is easy to check that the
following interpolation schemes

ug1=
3

8
u2+

3

4
u3−

1

8
u4, (3.8)

ug3=−
1

3
u14+u8+

1

3
ug1, (3.9)
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Figure 5: Hanging points and ghost points around the border of two levels mesh with refinement ratio r=2.

are third order accurate, where ui denotes the value of u at the point labeled as i.
After we plug in the above into the standard central 5-point finite difference scheme

u14+u7+u9+ug3−4u8

h2/4
= f8,

we get

2
3 u14+u7+u9+

1
8 u2+

1
4 u3−

1
24 u4−3u8

h2/4
= f8, (3.10)

which is the finite difference equation at the hanging node 8.

4 Numerical examples

We show some numerical results for AMR IB and IIM methods using a benchmark exam-
ple that was first presented in [11], and later was used by the AMR-IB method in [24,25].
All computations were completed within one or several seconds using a notebook com-
puter. The interface problem is the following

uxx+uyy=
∫

Γ
2δ(x−X(s))δ(y−Y(s))ds, (4.1)

or equivalently,

uxx+uyy=0, on Ω\Γ, [u]Γ =0,

[

∂u

∂n

]

Γ

=2, (4.2)

in the domain Ω :−1≤x,y≤1. The interface is the circle Γ: x2+y2=1/4. The true solution
to the interface problem is

u(x,y)=

{

1, if r≤1/2,
1+log(2r), if r>1/2,

(4.3)
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where r=
√

x2+y2. The Dirichlet boundary condition is used according to the true solu-
tion along the boundary of the square.

4.1 The results using the AMR immersed boundary method

We compare our method with the AMR-IB approach [25] to verify that our method
is competitive. Note that, the mesh refinement algorithm of our approach is different
from [25]. We use the same notations as those used in [25]. AMR m(+i)[r] denotes the
mesh that adds i levels of adaptive meshes with the refinement ratio r based on a uni-
form m×m mesh. The “error” presented below are the solution errors measured in the
L∞ norm at all grid points; and “Unknowns” is the number of grid points from all levels
to be solved in the linear systems of finite difference equations. All results in this and
next section are solved by the algebraic multigrid method Amg1r5, see reference [26].

From Table 1, we can see that our AMR method for IB method can save somewhere
60% to 90% amount of memory, that is, the number of unknowns, with about the same
accuracy. In Table 1, the ratio is defined as the ratio of the two consecutive errors. For a
first order method, the ratio should be around number 2, which confirms the well-known
convergence rate of the IB method.

Table 1: Comparison of results using a uniform mesh and that of the AMR-IBM with the same finest resolution
h.

Uniform AMR(+1)[4], λ=1
Finest h m Unknowns Error Ratio m Unknowns Error Ratio

2/80 80 6241 1.34e-2 20 2181 1.31e-2
2/160 160 25281 6.74e-3 1.99 40 5041 6.54e-3 2.00
2/320 320 101761 3.36e-3 2.01 80 13161 3.22e-3 2.03
2/640 640 408321 1.67e-3 2.01 160 39121 1.60e-3 2.01

In Table 2, we show different finest mesh, different levels, and control coefficient λ to
show that our results are comparable and consistent to the results obtained in [24,25]. We
also try multiple levels of AMR to get finer resolution and better results as that in [24,25].
In Table 2, up to 4 levels of AMR are generated. Moreover, our results also support the
argument in [24, 25] about the IB method that the accuracy attained by refining only the
regions where solution is not smooth is the same as that if the whole domain is uniformly
refined with the resolution of the finest level used in the adaptive grids. This is because
for the IB method, the largest error for elliptic interface problems occur in the neighbored
of the interface.

Table 2: Comparison of AMR-IB method with different levels.

Finest h Mesh Selection Unknowns Error
2/640 160(+2)[2], λ=2 38821 1.46e-3

2/1280 80(+2)[4], λ=1 39981 5.04e-4
2/1280 80(+4)[2], λ=2 38829 4.51e-4
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4.2 The results using the AMR immersed interface method

Since the Immersed Interface Method is uniformly second order accurate, the improve-
ment using AMR may not seem to be as obvious as that of the AMR-IB method in terms
of the accuracy. Nevertheless, for the reasons mentioned in the introduction section, it
is important to develop the AMR strategy for IIM because we still can improve the ac-
curacy in the region of the refined mesh; and can reduce the number of unknowns. In
general, if the large error occurs near the neighborhood of the interface, then we can see
the improvement in the accuracy using the AMR-IIM. If the large error occurs at the re-
gion outside of refinement region, then we may not see improvement in the accuracy
using the AMR-IIM. Anyhow, the AMR-IIM will not affect global second order accuracy
but reduce size the linear system of the finite difference equations.

In Table 3, we show the results of the AMR-IIM for the same example that used for the
AMR-IB method. Even with a coarse grid 40×40, the error obtained from IIM is already
smaller than that of IB with a 640×640 mesh. When we use a local refinement, the global
error may not decrease since the largest error may occur outside of the local refined mesh,
often in the regions near the border of the two meshes. The situation can be improved if
we take larger λ to ensure refinement region is not too thin compared with whole domain.
Also from Table 3, we can see that the AMR-IIM can save 40%-50% amount of memory,
that is, the number of unknowns, with about the same accuracy. Moreover, the AMR-IIM
always maintains second order accuracy.

Table 3: Comparison of results using a uniform mesh and that of the AMR-IIM with the same finest resolution
h. The runtimes in second by algebraic multigrid solver are also provided.

Uniform AMR(+1)[2]

Finest h m Unknowns Error Ratio Time m λ Unknowns Error Ratio Time
2/40 40 1521 8.44e-4 0.03 20 1 805 9.07e-4 0.02

2/80 80 6241 2.45e-4 3.4 0.08 40 2 2745 2.86e-4 3.2 0.06

2/160 160 25281 6.69e-5 3.7 0.31 80 4 10201 7.80e-5 3.7 0.19
2/320 320 101761 1.57e-5 4.3 1.3 160 8 39225 1.89e-5 4.1 0.67

2/640 640 408321 3.65e-6 4.3 5.4 320 16 153805 5.04e-6 3.8 2.5

To further show the advantage of our adaptive mesh over a uniform mesh when ap-
plied to the IIM, we designed another series of numerical experiments in Table 4. Given
a global error tolerance ǫ, we try to find out the minimum unknowns required by vari-
ous meshes such that the error E∞ ≤ ǫ. We select proper AMR m(+i)[r] to roughly ob-
tain tolerance scale, and then control the refinement width λ to slightly adjust error be-
low tolerance. From Table 4, we can see that when ǫ = 10−4 the uniform mesh needed
about 16900 unknowns, the AMR 80(+1)[2] only needed about 7945 unknowns, and the
AMR 40(+2)[2] needed about 8353 unknowns. When the error tolerance is lowered to
ǫ=2.5×10−5, the uniform mesh needed at least 65025 unknowns, but the AMR 160(+1)[2]
needed only 30249 unknowns, and the AMR 80(+2)[2] needed about 28833 unknowns. In
general, AMR methods can save about half of the computational cost than that of the
uniform mesh for the same accuracy.
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Table 4: Number of unknowns needed to have the L∞ < ǫ for the AMR-IIM method with different levels.

Given Error Tolerance 1.00e-4 Given Error Tolerance 2.50e-5

Mesh Selection Error Unknowns Mesh Selection Error Unknowns

Uniform: m=131 1.00e-4 16900 Uniform: m=256 2.59e-5 65025
AMR: 80(+1)[2], λ=1 9.95e-5 7945 AMR: 160(+1)[2], λ=2 2.50e-5 30249

AMR: 40(+2)[2], λ=5 8.13e-5 8353 AMR: 80(+2)[2], λ=9 2.45e-5 28833

5 Conclusion

In this paper, we have developed an adaptive mesh refinement (AMR) strategy using the
level set representation of the interface and applied it to the immersed boundary (IB) and
interface (IIM) methods. While AMR methods do not increase accuracy of the discretiza-
tion, they can efficiently make the use of higher resolution more economical and, ideally,
can enable one to obtain accuracy that is similar to the uniformly fine discretization but
at a greatly reduced cost. Not only our AMR approach can improve (particularly for the
IB method) or maintain the same order of accuracy as the finest mesh, but also reduce
the size of the resulting linear system of equations significantly. Note that, this is the first
time that an AMR strategy has been applied to IIM using finite difference discretizations.
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