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Abstract. In this paper, the second in a series, we improve the discretization of the
higher spatial derivative terms in a spectral volume (SV) context. The motivation for
the above comes from [J. Sci. Comput., 46(2), 314–328], wherein the authors developed
a variant of the LDG (Local Discontinuous Galerkin) flux discretization method. This
variant (aptly named LDG2), not only displayed higher accuracy than the LDG ap-
proach, but also vastly reduced its unsymmetrical nature. In this paper, we adapt the
LDG2 formulation for discretizing third derivative terms. A linear Fourier analysis
was performed to compare the dispersion and the dissipation properties of the LDG2
and the LDG formulations. The results of the analysis showed that the LDG2 scheme
(i) is stable for 2nd and 3rd orders and (ii) generates smaller dissipation and disper-
sion errors than the LDG formulation for all the orders. The 4th order LDG2 scheme is
however mildly unstable: as the real component of the principal eigen value briefly be-
comes positive. In order to circumvent the above, a weighted average of the LDG and
the LDG2 fluxes was used as the final numerical flux. Even a weight of 1.5% for the
LDG (i.e., 98.5% for the LDG2) was sufficient to make the scheme stable. This weighted
scheme is still predominantly LDG2 and hence generated smaller dissipation and dis-
persion errors than the LDG formulation. Numerical experiments are performed to
validate the analysis. In general, the numerical results are very promising and indicate
that the approach has a great potential for higher dimension Korteweg-de Vries (KdV)
type problems.
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1 Introduction

We continue with the development of the spectral volume (SV) method for solving equa-
tions containing higher spatial derivative terms, following the first paper in the series [17],
wherein a LDG flux discretization method was employed for handling equations contain-
ing third derivative terms. The ultimate goal of this research study is to have a spectral
volume formulation for equations containing higher spatial derivative terms, with the
following attributes: (a) high order accurate; (b) easily applicable to multi dimensional
problems; (c) geometrically flexible; (d) easily hook up with an implicit solver and al-
gebraic, geometric and polynomial multigrid preconditioners and (e) easily extendable
(eventually) for even higher (fourth or more) spatial derivative terms.

The spectral volume method was originally formulated Wang et al. [25, 31–35] and
further developed by Kannan et al. [12–22] for conservation laws on unstructured grids.
The spectral volume method can be viewed as an extension of the Godunov method to
higher order by adding more degrees-of-freedom (DOFs) in the form of sub cells in each
cell (simplex). The simplex is referred to as a spectral volume (SV) and the subcells are
referred to as control volumes (CV). All the SVs are partitioned in a geometrically similar
manner in a simplex, and thus a single reconstruction is obtained. The DOFs are then
updated to high-order accuracy using the usual Godunov method.

The SV method was successfully implemented for 2D Euler [34] and 3D Maxwell
equations [25]. The quadrature free formulation was implemented by Harris et al. [9]. A
h-p adaptation was also carried out in 2D [10]. Recently Sun et al. [29] implemented the
SV method for the Navier Stokes equations using the LDG [7] approach to discretize the
viscous fluxes. Kannan and Wang [14, 22] conducted some Fourier analysis for a variety
of viscous flux formulations. Kannan implemented the SV method for the Navier Stokes
equations using the LDG2 (which is an improvised variant of the LDG approach) [15]
and DDG approaches [16]. Even more recently, Kannan extended the SV method to solve
the moment models in semiconductor device simulations [12, 13]. A new high order
boundary condition was developed in the SV context for inviscid flows by Kannan [18].
A SV formulation for the line contact Elastohydrodynamic Lubrication problem was de-
veloped by Kannan [19].

In this paper, we adapt the LDG2 formulation for solving equations containing third
spatial derivative terms in a SV context. The LDG2 formulation was recently proposed
by Kannan and Wang [15], as an improvement to the traditional LDG formulation. The
LDG2 formulation is more symmetrical and displays higher accuracy than the LDG for-
mulation. Fourier analysis was performed on the LDG and the new variant (LDG2) and
these yielded some interesting results on accuracy and stability of the formulation. Nu-
merical tests were performed to confirm the above.

The paper is organized as follows. In the next section, we review the basics of the SV
method. The LDG formulation for high order spatial derivatives is presented in Section
3. A detailed linear analysis is performed for the LDG formulation in Section 4. Section
5 presents with the different test cases conducted in this study. Finally conclusions from
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this study are summarized in Section 6.

2 Basics of the spectral volume method

2.1 Formulation in 1D

Consider the general conservation equation

∂Q

∂t
+

∂( fi(Q)− fv(Q))

∂x
=0 (2.1)

in a one dimensional domain Ω with appropriate initial and boundary conditions. In
(2.1), x refers to the Cartesian coordinate and (x)∈Ω, t∈[0,T] denotes time, Q is the vector
of conserved variables, and fi and fv are the inviscid and viscous fluxes respectively.
Domain Ω is discretized into I non overlapping sub cells. In the SV method, the simplex
grid cells are called SVs, denoted Si, which are further partitioned into CVs, denoted
Cij, which depend on the degree of the polynomial reconstruction. Fig. 1 shows linear,
quadratic and cubic partitions in 1D. The partitions were originally determined for a
linear advection equation using a linear Fourier analysis [30]. One of the outcomes of this
paper is to obtain stable and accurate partitions for equations having third derivatives.

(a) (b) (c)

Figure 1: Partitions of a SV in 1D. Case (a): Linear reconstruction; Case (b): Quadratic reconstruction; Case
(c): Cubic reconstruction.

We need N unknown control volume solution averages (or DOFs) to construct a de-
gree k polynomial. N is calculated using the below formula (in 1D)

N= k+1, (2.2)

where k is the degrees of the polynomial, constructed using the CV solution averages.
The CV averaged conserved variable for Cij is defined as

Qi,j=
1

Vi,j

∫

Ci,j

QdV, j=1,··· ,N, i=1,··· , I, (2.3)

where Vi,j is the volume of Cij. Given the CV averaged conserved variables, a degree k

polynomial can be constructed such that it is (k+1)th order approximation to Q. In other
words, we can write the polynomial as

pi(x)=
N

∑
j=1

Lj(x)Qi,j, (2.4)
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where the shape functions Lj(x,y) satisfy

1

Vi,j

∫

Ci,j

Ln(x)dV=δj,n, (2.5)

where δj,n is the Kronecker delta. Eq. (2.1) is integrated over the Cij. This results in the
following equation

∂Q

∂t
+

1

Vi,j

K

∑
r=1

∫

Ar
(~F ·~n)dA=0, (2.6)

where ~F=( fi− fv) where Ar represents the rth face of Cij, ~n is the outward unit normal
vector of Ar and K is the number of faces in Cij (two in 1D). The fluxes are discontinuous
across the SV interfaces. The inviscid fluxes can be handled using a numerical Riemann
flux, such as upwinding, the Rusanov flux [27], the Roe flux [26] or AUSM flux [24]. In
this manuscript, upwinding is employed to handle the inviscid fluxes. The handling of
the viscous fluxes is discussed below.

2.2 Spectral volume formulation for the diffusion equation

The following diffusion equation is considered first in domain Ω with appropriate initial
and boundary conditions

∂u

∂t
−∇·(µ∇u)=0, (2.7)

where µ is a positive diffusion coefficient. We define an auxiliary variable

~q=∇u. (2.8)

Eq. (2.7) then becomes

∂u

∂t
−∇·(µ~q)=0. (2.9)

Using the Gauss-divergence theorem, we obtain

~qijVij =
K

∑
r=1

∫

Ar
u·~ndA, (2.10a)

duij

dt
Vij−

K

∑
r=1

∫

Ar
µ~q ·~ndA=0, (2.10b)

where ~qij and uij are the CV averaged gradient and solution in Cij. As the solution u is
cell-wise continuous, u and ~q at SV boundaries are replaced by numerical fluxes~q and u.
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The above equations thus become

~qijVij=
K

∑
r=1

∫

Ar
ū·~ndA, (2.11a)

duij

dt
Vij−

K

∑
r=1

∫

µ~q ·~ndA=0. (2.11b)

The LDG formulation

The commonly used approach for obtaining the numerical fluxes is the LDG approach.
In this approach, the numerical fluxes are defined by alternating the direction in the fol-
lowing manner [29]

u=uL, (2.12a)

~q=~qR, (2.12b)

where uL is the left state solutions of the CV face in consideration and~qR is the right state
solution gradients of the face (of the CV) in consideration. Thus if the CV face lies on the
SV boundary, uL 6=uR and ~qL 6=~qR (assuming that the function is not smooth).

The LDG2 formulation

The LDG2 can be explained using the following notations:

I. eCV refers to the CV boundary.

II. eSV refers to the SV boundary.

III. eCV1 = eCV∩eSV refers to the intersection of the CV and SV boundaries.

IV. eCV2=eCV/eCV1 refers to the set theoretic complement of eCV and eCV1 (i.e., set of all
surfaces present in eCV but not in eCV1).

V. uA =(uL+uR)/2 is the average of the left and right state solutions.

The crux of the LDG2 approach is maintaining two gradients for the residual computa-
tion:

I. The first gradient is the right-sided gradient (−→qr ). The CV averaged −→qr is computed
using uR.

II. The second gradient is the averaged gradient (−→qα). The CV averaged −→qα is com-
puted using uA.

Thus for a given SV, the CV averaged values of −→qα depend only on the CV averaged
solution of the current SV and its closest neighbors. The CV averaged values of the −→qr
depend only on the CV averaged solution of the current SV and the SV to its right. Given
the above CV averages, reconstructions are performed to obtain −→qrL, −→qrR, −→qαL, −→qαR. −→qrL

is used for computing the viscous fluxes through the CV faces lying on eCV1. Either −→qαL

or −→qαR can be used for computing the viscous fluxes through the CV faces lying on eCV2.
This procedure ensures compactness.
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3 SV for higher spatial derivatives

We will explain the procedure using a linear equation; consider the following simple
linear equation with the appropriate initial and boundary conditions

ut+uxxx=0. (3.1)

Rewriting the above into a first order system yields:

ut+px =0, p=qx, q=ux. (3.2)

Integrating (3.2) over the CV and application of Gauss-divergence theorem yields:

dūij

dt
Vij+

K

∑
r=1

∫

Ar
~p·~ndA=0, (3.3a)

~pijVij=
K

∑
r=1

∫

Ar
q·~ndA=0, (3.3b)

~qijVij=
K

∑
r=1

∫

Ar
u·~ndA=0. (3.3c)

u, p and q at SV boundaries are replaced by numerical fluxes u, ~p and~q. Eqs. (3.3a), (3.3b)
and (3.3c) can be solved by extending the LDG method discussed in [14, 15, 29] to higher
derivatives (shown in the below subsection).

3.1 The LDG formulation

In this approach, the numerical fluxes are defined by alternating the direction of the nu-
merical fluxes. There are two choices:

• Choice a

u=uL, ~q=~qR, ~p=~pR. (3.4)

• Choice b

u=uR, ~q=~qR, ~p=~pL. (3.5)

Though there are a total of eight choices (two for each variable), six of them are uncon-
ditionally unstable. More details can be found in [36, 37]. The size of the stencil is 5
(optimal).
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3.2 The LDG2 formulation

Two numerical fluxes are used in this approach. The first numerical flux uses an alternat-
ing formulation. Either of the formulations given in Eq. (3.4) or Eq. (3.5) can be used as
the alternating formulation. The second numerical flux is given by:

u=uR, ~q=
(~qL+ ~qR)

2
, ~p=~pL|~pR. (3.6)

The first numerical flux is used, when the CV boundary in consideration belongs to eCV1.
The second numerical flux is used, when the CV boundary in consideration belongs to
eCV2. The CV averaged value of ~q is computed using the right state values of u. A re-
construction is performed to obtain a high order accurate approximation of ~q at the CV
boundaries. Two different formulations are used to obtain the CV averaged value of ~p:

I. The first formulation uses the right state value of ~q. This corresponds to the first
numerical flux. Let us denote this CV average as ~p1.

II. The second formulation uses the average of the left and the right state values of ~q.
This corresponds to the second numerical flux. Let us denote this CV average as ~p2.

Reconstructions are performed to obtain high order accurate approximations for each
of ~p1 and ~p2. The left state of ~p1 is used as the numerical flux, during the update of the
solution u, when the CV boundary in consideration belongs to eCV1. Either of the left
or the right states of ~p2 can be used, during the update of the solution eCV2, when the
CV boundary in consideration belongs to eCV2. It can be seen that the overhead in LDG2
comes from computing, storing and performing reconstructions for ~p.

It can be seen that the size of the stencil is still 5. Moreover, the inherent asymmetry of
the LDG scheme is drastically reduced, by employing a central formulation for ~p for the
CV boundaries belonging to eCV2. The central formulation is also expected to increase the
overall accuracy of the scheme (shown in later sections, using Fourier analysis and actual
numerical experiments). The above attributes of the LDG2 hold good even in higher
dimensions.

4 Fourier analysis for the new formulation

In this analysis, we follow a technique described by Zhang and Shu [38] and focus on
linear, quadratic and cubic reconstructions. The SV is partitioned into two equal CVs for
the second order simulations. The CVs for the third and the fourth order are clustered
toward the SV boundaries. The locations of the CV faces (i.e., nodes in 1D) were based
on the Gauss quadrature points. For the sake of simplicity, let us first consider a linear
partition shown in Fig. 2. In this case, all the formulations can be cast in the following
form:

d

dt

[

ūj,1

ūj,2

]

=A

[

ūj−2,1

ūj−2,2

]

+B

[

ūj−1,1

ūj−1,2

]

+C

[

ūj,1

ūj,2

]

+D

[

ūj+1,1

ūj+1,2

]

+E

[

ūj+2,1

ūj+2,2

]

, (4.1)
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Figure 2: Linear spectral volume in 1D.

where A, B, C, D and E are constant matrices. We now seek a general solution of the
following form

u(x,t)= ûk(t)e
ikx, (4.2)

where k is the index of modes (k= 1,2,···) representing the wave number and ûk is the
amplitude of the given wave. Obviously, the analytical solution for Eq. (3.1) is u(x,t)=

ei(kx+k3t). The solution we are looking for can be expressed as

[

ūj,1

ūj,2

]

=

[

ûk,1

ûk,2

]

e
ikx

j, 3
2 . (4.3)

Substituting Eq. (4.3) into Eq. (4.1), we obtain the advancement equation:

[

û′
k,1

û′
k,2

]

=G(k,h)

[

ûk,1

ûk,2

]

, (4.4)

where the amplification matrix is given by

G= e−2ikh A+e−ikhB+C+eikhD+e2ikhE. (4.5)

The above method can be easily extended to 3rd and 4th orders. In general, all but one of
the eigen values of G is made up of spurious modes and is damped rapidly. This is under
the assumption that the scheme is stable (ensured by making sure that the real part of the
eigen values is non positive). The error associated with the scheme and the convergence
properties can be determined by analyzing the non spurious mode. It must be noted that
both discretization methods (Eq. (3.4) or Eq. (3.5)) will yield identical results during this
analysis procedure.

4.1 Second order spatial analysis

Fig. 3 shows the variation of the real component of the principal eigen value with re-
spect to the non dimensional frequency ξ = kh for the second order SV. As expected all
the values in Fig. 3 are non-positive for both the LDG and the LDG2 formulations. It
can be seen that the LDG2 formulation has a smaller dissipation than the LDG formu-
lation. Fig. 4 shows the deviation between the imaginary components of the principal
(numerical) eigen value and the analytical eigen value (i.e., iξ3) as a function of ξ. It
can be seen that the LDG2 formulation generates smaller dispersion errors than the LDG
formulation.
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Figure 3: Plot of the real component of the
principal eigen value as a function of the non-
dimensional frequency for the second order SV.

Figure 4: Plot of the error associated with the
imaginary component of the principal eigen value
as a function of the non-dimensional frequency for
the second order SV.

4.2 Third order spatial analysis

The third order SV of unit length has its interior CV boundaries given by the following
local coordinates: {0,d,1−d,1}, where d is the length of the first CV in the SV. A value of
d=0.1 was deemed most accurate in the first paper of this series [17]. This will be used in
the remainder of the paper. Fig. 5 shows the variation of the real component of the prin-
cipal eigen value with respect to the non dimensional frequency ξ for the third order SV.
As expected all the values in Fig. 5 are non-positive. Once again, the LDG2 formulation
has a smaller dissipation than the LDG formulation. Similarly Fig. 6 shows the deviation
between the imaginary components of the principal (numerical) eigen value and the an-
alytical eigen value (i.e., iξ3) as a function of ξ. The LDG2 formulation generated smaller
dispersion errors than the LDG formulation.

Even though the LDG2 outperforms the LDG formulation, it can be seen that the
2nd order LDG2 formulation is more accurate than the 3rd order LDG2 at large wave
numbers. Similar trends were observed by Kannan and Wang during their analysis of
the LDG2 viscous flux discretization formulation [15].

Figure 5: Plot of the real component of the
principal eigen value as a function of the non-
dimensional frequency for the third order SV.

Figure 6: Plot of the error associated with the
imaginary component of the principal eigen value
as a function of the non-dimensional frequency for
the third order SV.
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4.3 Fourth order spatial analysis

The fourth order SV of unit length has its interior CV boundaries given by the following
local coordinates: {0,d,0.5,1−d,1}, where d is the length of the first CV in the SV. A value
of d=0.1 was deemed most accurate in the first paper of this series [17]. This will be used
in the remainder of the paper. Fig. 7 shows the variation of the real component of the
principal eigen value with respect to the non dimensional frequency ξ for the fourth order
SV. The LDG2 formulation generates smaller dissipation error than the LDG formulation.
However, it can be seen from Fig. 7(b) that the real component of the principal eigen value
of the LDG2 formulation briefly becomes positive. Hence, the scheme is mildly unstable.

In order to remove the instability, a weighted average of the LDG and the LDG2
fluxes is used for the numerical flux. Even a weight of 1.5% for the LDG (i.e., 98.5%
for the LDG2) is sufficient to make the scheme stable. This weighted scheme is termed
LDG22. Fig. 8 shows the dissipation errors for the LDG and the LDG22 formulations.

(a) (b)

Figure 7: Plot of the real component of the principal eigen value as a function of the non-dimensional frequency
for the fourth order SV. Case (a): Across all the wave numbers; Case (b): At small wave numbers.

(a) (b)

Figure 8: Plot of the real component of the principal eigen value as a function of the non-dimensional frequency
for the fourth order SV. Case (a): Across all the wave numbers; Case (b): At small wave numbers.
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Figure 9: Plot of the error associated with the imaginary component of the principal eigen value as a function
of the non-dimensional frequency for the fourth order SV formulation.

Since the LDG22 is predominantly LDG2, their dissipation errors look similar (Fig. 7(a)
and Fig. 8(a)). It can also be seen from Fig. 8(b) that the real component of the principal
eigen value of the LDG22 formulation is always non-positive. Hence, the LDG22 scheme
is stable.

5 Test results

In this section, we provide numerical examples to compare the capabilities of the LDG
and the LDG2 (and LDG22) based SV formulations for solving equations containing third
spatial derivative terms. A three stage SSP Runge-Kutta scheme was used for time ad-
vancement [28]:

u
(1)
i =un

i −∆tRi(u
n), (5.1a)

u
(2)
i =

3

4
un

i +
1

4

[

u
(1)
i −∆tRi(u

(1))
]

, (5.1b)

un+1
i =

1

3
un

i +
2

3

[

u
(2)
i −∆tRi(u

(2))
]

. (5.1c)

5.1 Test case 1

We compute the solution of the linear equation:

ut+uxxx=0, (5.2)

with an initial condition u(x,0)=sin(x) and periodic boundary conditions (periodicity=
2π) over the interval [0,2π]. This equation has an analytical solution: u(x,0) = sin(x+
t). Both uniform and non-uniform meshes were used in this study. Two types of non-
uniform meshes were used. The first type had a recurring pattern of SVs of lengths 0.9∆
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Table 1: ut+uxxx=0. ux,0= sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
uniform meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 1.41e-2 - 4.78e-2 -

20 3.55e-3 1.99 1.27e-2 1.91
40 8.87e-4 2.00 3.22e-3 1.98
80 2.22e-4 2.00 8.06e-4 2.00

1 LDG2 10 6.41e-3 - 1.91e-2 -
20 1.60e-3 2.00 4.88e-3 1.97
40 4.01e-4 2.00 1.22e-3 2.00
80 1.00e-4 2.00 3.05e-4 2.00

2 LDG 10 7.31e-4 - 3.31e-3 -
20 9.26e-5 2.98 4.19e-4 2.98
40 1.16e-5 2.99 5.31e-5 2.98
80 1.46e-6 3.00 6.69e-6 2.99

2 LDG2 10 5.22e-4 - 2.21e-3 -
20 6.57e-5 2.99 2.78e-4 2.99
40 8.21e-6 3.00 3.50e-5 2.99
80 1.03e-6 3.00 4.38e-6 3.00

3 LDG 10 2.11e-5 - 1.21e-4 -
20 1.32e-6 3.99 7.61e-6 3.99
40 8.30e-8 4.00 4.79e-7 3.99
80 5.19e-9 4.00 2.99e-8 4.00

3 LDG22 10 1.24e-5 - 6.72e-5 -
20 7.75e-7 4.00 4.20e-6 4.00
40 4.84e-8 4.00 2.63e-7 4.00
80 3.03e-9 4.00 1.64e-8 4.00

Table 2: ut+uxxx=0. ux,0= sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
non-uniform (repeating pattern of 0.9∆x and 1.1∆x) meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 1.60e-2 - 5.83e-2 -

20 4.08e-3 1.97 1.56e-2 1.90
40 1.03e-3 1.99 3.96e-3 1.98
80 2.57e-4 2.00 9.97e-4 1.99

1 LDG2 10 7.24e-3 - 2.43e-2 -
20 1.82e-3 1.99 6.20e-3 1.97
40 4.56e-4 2.00 1.56e-3 1.99
80 1.14e-4 2.00 3.90e-4 2.00

2 LDG 10 8.81e-4 - 4.47e-3 -
20 1.12e-4 2.97 5.74e-4 2.96
40 1.41e-5 2.99 7.28e-5 2.98
80 1.77e-6 3.00 9.16e-6 2.99

2 LDG2 10 6.30e-4 - 3.00e-3 -
20 7.98e-5 2.98 3.83e-4 2.97
40 9.98e-6 3.00 4.82e-5 2.99
80 1.25e-6 3.00 6.02e-6 3.00

3 LDG 10 5.11e-5 - 2.41e-4 -
20 3.26e-6 3.97 1.55e-5 3.96
40 2.06e-7 3.98 9.81e-7 3.98
80 1.30e-8 3.99 6.22e-8 3.98

3 LDG22 10 3.02e-5 - 1.35e-4 -
20 1.92e-6 3.98 8.53e-6 3.98
40 1.21e-7 3.99 5.37e-7 3.99
80 7.54e-9 4.00 3.36e-8 4.00
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Table 3: ut+uxxx=0. ux,0= sinx. Periodic boundary conditions over interval [0,2π]. L2 and L∞ errors using
non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order

1 LDG 10 2.27e-2 - 7.44e-2 -

20 5.87e-3 1.95 2.00e-2 1.89

40 1.49e-3 1.98 5.12e-3 1.97

80 3.75e-4 1.99 1.29e-3 1.99

1 LDG2 10 1.04e-2 - 3.01e-2 -

20 2.65e-3 1.97 7.79e-3 1.95

40 6.68e-4 1.99 1.96e-3 1.99

80 1.67e-4 2.00 4.90e-4 2.00

2 LDG 10 1.27e-3 - 8.51e-3 -

20 1.69e-4 2.91 1.16e-3 2.88

40 2.20e-5 2.94 1.53e-4 2.91

80 2.79e-6 2.98 1.97e-5 2.96

2 LDG2 10 9.20e-4 - 5.79e-3 -

20 1.21e-4 2.93 7.76e-4 2.90

40 1.54e-5 2.97 1.00e-4 2.95

80 1.93e-6 3.00 1.26e-5 2.99

3 LDG 10 3.98e-4 - 1.31e-3 -

20 2.62e-5 3.92 8.77e-5 3.90

40 1.70e-6 3.95 5.71e-6 3.94

80 1.08e-7 3.98 3.64e-7 3.97

3 LDG22 10 2.37e-4 - 7.37e-4 -

20 1.54e-5 3.94 4.83e-5 3.93

40 9.78e-7 3.98 3.10e-6 3.96

80 6.11e-8 4.00 1.95e-7 3.99

and 1.1∆, where ∆ was the length of the corresponding uniform SV. The second type
had a recurring pattern of SVs of lengths 0.7∆ and 1.3∆. An even number of SVs were
used for all the test cases. The L2 and L∞ errors and orders of accuracies of the numerical
solution at t=1 second are given in Tables 1-3. It can be seen that the formulations with kth

degree polynomial asymptotically attains (k+1)th order of accuracy. The LDG2 scheme
generates more accurate solutions than the LDG scheme for the 2nd and 3rd order cases.
Similarly the LDG22 scheme generates more accurate solutions than the LDG scheme for
the 4th order cases. These phenomena are observed for both the uniform and the non-
uniform meshes.

5.2 Test case 2

We compute the solution of the non-linear KdV equation [36, 37]:

ut−3(u2)x+uxxx=0, (5.3)
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Table 4: ut−3(u2)x+uxxx= 0. ux,0=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using uniform meshes at t=0.5.

k Method Grid L2 error L2 order L∞ error L∞ order

1 LDG 10 2.29e-1 - 1.37e-0 -

20 7.25e-2 1.66 5.45e-1 1.33

40 2.08e-2 1.80 1.92e-1 1.50

80 5.50e-3 1.92 6.05e-2 1.67

160 1.40e-3 1.97 1.73e-2 1.80

320 3.51e-4 2.00 4.51e-3 1.94

1 LDG2 10 9.54e-2 - 5.07e-1 -

20 2.76e-2 1.79 1.73e-1 1.55

40 7.24e-3 1.93 5.19e-2 1.74

80 1.85e-3 1.97 1.39e-2 1.90

160 4.62e-4 2.00 3.45e-3 1.99

320 1.16e-4 2.00 8.75e-4 2.00

2 LDG 10 8.39e-2 - 7.70e-1 -

20 1.23e-2 2.77 1.17e-1 2.71

40 1.83e-3 2.75 2.01e-2 2.55

80 2.46e-4 2.89 3.29e-3 2.61

160 3.19e-5 2.95 4.69e-4 2.81

320 3.99e-6 3.00 5.95e-5 2.98

2 LDG2 10 5.24e-2 - 4.53e-1 -

20 7.58e-3 2.79 6.69e-2 2.76

40 1.10e-3 2.78 1.09e-2 2.62

80 1.46e-4 2.92 1.69e-3 2.69

160 1.85e-5 2.98 2.29e-4 2.88

320 2.31e-6 3.00 2.86e-5 3.00

3 LDG 10 2.80e-2 - 2.91e-1 -

20 2.99e-3 3.23 3.37e-2 3.11

40 2.81e-4 3.41 3.22e-3 3.39

80 2.00e-5 3.81 2.94e-4 3.45

160 1.31e-6 3.93 2.14e-5 3.78

320 8.27e-8 3.99 1.38e-6 3.96

3 LDG22 10 1.47e-2 - 1.42e-1 -

20 1.49e-3 3.31 1.51e-2 3.23

40 1.27e-4 3.55 1.29e-3 3.55

80 8.32e-6 3.93 1.03e-4 3.65

160 5.27e-7 3.98 6.85e-6 3.91

320 3.30e-8 4.00 4.34e-7 3.98

with an initial condition u(x,0)=−2sech2(x) over the interval [−10,12]. The following
boundary conditions were applied:

u(−10,t)= g1(t), ux(12,t)= g2(t), uxx(12,t)= g3(t), (5.4)

where gi(t) is obtained from the analytical solution to Eq. (5.3): u(x,t) =−2sech2(x−
4t). The L2 and L∞ errors and orders of accuracies of the numerical solution at t = 0.5
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Table 5: ut−3(u2)x+uxxx = 0. ux,0=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using non-uniform (repeating pattern of 0.9∆x and 1.1∆x) meshes at
t=0.5.

k Method Grid L2 error L2 order L∞ error L∞ order

1 LDG 10 2.62e-1 - 1.46e-0 -

20 8.53e-2 1.62 6.01e-1 1.28

40 2.50e-2 1.77 2.20e-1 1.45

80 6.71e-3 1.90 7.11e-2 1.63

160 1.72e-3 1.96 2.08e-2 1.77

320 4.31e-4 2.00 5.47e-3 1.93

1 LDG2 10 1.09e-1 - 5.41e-1 -

20 3.36e-2 1.70 1.99e-1 1.44

40 9.19e-3 1.87 6.57e-2 1.60

80 2.41e-3 1.93 1.95e-2 1.75

160 6.07e-4 1.99 5.17e-3 1.92

320 1.52e-4 2.00 1.30e-3 1.99

2 LDG 10 1.09e-1 - 1.06e0 -

20 1.66e-2 2.71 1.65e-1 2.68

40 2.51e-3 2.73 2.81e-2 2.56

80 3.43e-4 2.87 4.57e-3 2.62

160 4.41e-5 2.96 6.51e-4 2.81

320 5.51e-6 3.00 8.31e-5 2.97

2 LDG2 10 6.86e-2 - 6.27e-1 -

20 1.03e-2 2.74 9.59e-2 2.71

40 1.48e-3 2.79 1.54e-2 2.64

80 1.96e-4 2.92 2.38e-3 2.69

160 2.48e-5 2.98 3.13e-4 2.93

320 3.11e-6 3.00 3.93e-5 2.99

3 LDG 10 4.99e-2 - 4.09e-1 -

20 5.18e-3 3.27 4.83e-2 3.08

40 4.77e-4 3.44 4.81e-3 3.33

80 3.45e-5 3.79 4.34e-4 3.47

160 2.25e-6 3.94 3.20e-5 3.76

320 1.42e-7 3.98 2.04e-6 3.97

3 LDG22 10 2.64e-2 - 2.06e-1 -

20 2.57e-3 3.36 2.32e-2 3.15

40 2.20e-4 3.55 2.13e-3 3.44

80 1.50e-5 3.87 1.75e-4 3.61

160 9.51e-7 3.98 1.17e-5 3.90

320 5.95e-8 4.00 7.38e-7 3.99

second are given in Tables 4-6. It can be seen that a full (k+1)th order of accuracy is
asymptotically attained for the formulations with kth degree polynomial, in spite of the
problem being heavily non-linear. Once again, the LDG2 (2nd and 3rd order) and the
LDG22 (4th order) schemes generate more accurate solutions than the LDG schemes, for
both the uniform and the non-uniform meshes.
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Table 6: ut−3(u2)x+uxxx= 0. ux,0=−2sech2(x). Domain over the interval [−10,12]. Boundary conditions
given in Eq. (5.4). L2 and L∞ errors using non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at
t=0.5.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 3.21e-1 - 1.82e-0 -

20 1.14e-1 1.50 7.85e-1 1.21

40 3.45e-2 1.72 2.97e-1 1.40
80 9.38e-3 1.88 9.81e-2 1.60

160 2.43e-3 1.95 2.91e-2 1.75

320 6.11e-4 1.99 7.71e-3 1.92
1 LDG2 10 1.35e-1 - 6.84e-1 -

20 4.29e-2 1.66 2.40e-1 1.51
40 1.20e-2 1.84 7.55e-2 1.67

80 3.14e-3 1.93 2.15e-2 1.81

160 7.97e-4 1.98 5.65e-3 1.93
320 1.99e-4 2.00 1.44e-3 1.97

2 LDG 10 2.45e-1 - 2.61e0 -

20 3.80e-2 2.69 4.46e-1 2.55
40 5.70e-3 2.74 7.21e-2 2.63

80 8.18e-4 2.80 1.18e-2 2.61

160 1.09e-4 2.90 1.72e-3 2.78
320 1.39e-5 2.98 2.21e-4 2.96

2 LDG2 10 1.58e-1 - 1.58e0 -

20 2.42e-2 2.71 2.63e-1 2.59
40 3.52e-3 2.78 4.07e-2 2.69

80 4.84e-4 2.86 6.35e-3 2.68

160 6.36e-5 2.93 8.57e-4 2.89
320 8.00e-6 2.99 1.09e-4 2.97

3 LDG 10 1.18e-1 - 7.71e-1 -
20 1.21e-2 3.29 9.71e-2 2.99

40 1.17e-3 3.37 1.03e-2 3.23

80 8.73e-5 3.74 9.08e-4 3.51
160 5.77e-6 3.92 6.75e-5 3.75

320 3.65e-7 3.98 4.28e-6 3.98

3 LDG22 10 6.38e-2 - 3.95e-1 -
20 6.30e-3 3.34 4.61e-2 3.10

40 5.61e-4 3.49 4.46e-3 3.37

80 3.94e-5 3.83 3.58e-4 3.64
160 2.53e-6 3.96 2.43e-5 3.88

320 1.59e-7 3.99 1.53e-6 3.99

5.3 Test case 3

This test case was designed to test the robustness and accuracy of the method for non-
linear problems with small coefficient for the third derivative term [36, 37]. We compute
the soliton solution of the generic KdV equation:

ut+ux+
(u4

4

)

x
+εuxxx=0, (5.5)
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Table 7: ut+ux+(u4/4)x+εuxxx=0. ux,0=−2sech2/3(K(x−x0)) with A=0.2275, x0=0.5, ε=2.058e−5 and

K=3(A3/40ε)1/2. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞ errors
using uniform meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 4.25e-2 - 3.83e-1 -

20 1.60e-2 1.41 1.56e-1 1.29
40 5.39e-3 1.57 6.06e-2 1.37
80 1.60e-3 1.75 2.15e-2 1.49
160 4.45e-4 1.85 7.07e-3 1.61
320 1.13e-4 1.98 2.00e-3 1.82
640 2.82e-5 2.00 5.11e-4 1.97

1 LDG2 10 2.02e-2 - 1.60e-1 -
20 7.06e-3 1.52 6.06e-2 1.40
40 2.30e-3 1.62 2.10e-2 1.53
80 6.28e-4 1.87 6.64e-3 1.66
160 1.65e-4 1.93 1.86e-3 1.84
320 4.15e-5 1.99 4.80e-4 1.95
640 1.04e-5 2.00 1.21e-4 1.99

2 LDG 10 1.99e-2 - 1.67e-1 -
20 3.68e-3 2.44 3.37e-2 2.31
40 7.42e-4 2.31 7.35e-3 2.20
80 1.39e-4 2.41 1.42e-3 2.37
160 2.05e-5 2.77 2.49e-4 2.51
320 2.63e-6 2.96 3.56e-5 2.81
640 3.31e-7 2.99 4.51e-6 2.98

2 LDG2 10 1.53e-2 - 1.19e-1 -
20 2.72e-3 2.49 2.33e-2 2.35
40 5.20e-4 2.39 4.81e-3 2.28
80 9.06e-5 2.52 8.67e-4 2.47
160 1.24e-5 2.87 1.40e-4 2.63
320 1.57e-6 2.98 1.89e-5 2.89
640 1.96e-7 3.00 2.40e-6 2.98

3 LDG 10 1.66e-2 - 1.46e-1 -
20 1.93e-3 3.11 2.17e-2 2.77
40 1.69e-4 3.51 2.69e-3 3.01
80 1.22e-5 3.79 2.60e-4 3.37
160 7.90e-7 3.95 1.91e-5 3.77
320 4.98e-8 3.99 1.27e-6 3.91
640 3.11e-9 4.00 7.98e-8 3.99

3 LDG22 10 1.04e-2 - 8.59e-2 -
20 1.11e-3 3.23 1.13e-2 2.93
40 9.18e-5 3.59 1.22e-3 3.21
80 6.24e-6 3.88 1.00e-4 3.60
160 3.95e-7 3.98 7.01e-6 3.84
320 2.47e-8 4.00 4.51e-7 3.96
640 1.54e-9 4.00 2.82e-8 4.00

with an initial condition u(x,0)=Asech2/3(K(x−x0)), with A=0.2275, x0=0.5, ε=2.058e−
5 and K=3(A3/40ε)1/2. The analytical solution is

u(x,t)=Asech
2
3 (K(x−x0)−ωt), (5.6)

where ω=K(1+A3/10).
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Table 8: ut+ux+(u4/4)x+εuxxx=0. ux,0=−2sech2/3(K(x−x0)) with A=0.2275, x0=0.5, ε=2.058e−5 and

K=3(A3/40ε)1/2. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞ errors
using non-uniform (repeating pattern of 0.9∆x and 1.1∆x) meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 4.45e-2 - 4.15e-1 -

20 1.74e-2 1.35 1.74e-1 1.25
40 6.17e-3 1.50 6.99e-2 1.32
80 1.90e-3 1.70 2.56e-2 1.45
160 5.38e-4 1.82 8.56e-3 1.58
320 1.38e-4 1.96 2.44e-3 1.81
640 3.46e-5 2.00 6.23e-4 1.97

1 LDG2 10 2.13e-2 - 1.73e-1 -
20 8.01e-3 1.41 6.79e-2 1.35
40 2.66e-3 1.59 2.52e-2 1.43
80 7.81e-4 1.77 8.42e-3 1.58
160 2.14e-4 1.87 2.56e-3 1.72
320 5.41e-5 1.98 6.90e-4 1.89
640 1.35e-5 2.00 1.74e-4 1.99

2 LDG 10 2.53e-2 - 2.09e-1 -
20 4.61e-3 2.46 4.32e-2 2.28
40 9.17e-4 2.33 9.27e-3 2.22
80 1.77e-4 2.37 1.84e-3 2.33
160 2.69e-5 2.72 3.32e-4 2.47
320 3.51e-6 2.94 4.77e-5 2.80
640 4.45e-7 2.98 6.10e-6 2.97

2 LDG2 10 1.96e-2 - 1.50e-1 -
20 3.49e-3 2.49 3.00e-2 2.32
40 6.70e-4 2.38 6.19e-3 2.28
80 1.24e-4 2.43 1.16e-3 2.42
160 1.82e-5 2.77 1.91e-4 2.60
320 2.39e-6 2.93 2.66e-5 2.84
640 3.01e-7 2.99 3.37e-6 2.98

3 LDG 10 2.09e-2 - 1.85e-1 -
20 2.57e-3 3.03 2.85e-2 2.70
40 2.37e-4 3.44 3.64e-3 2.97
80 1.76e-5 3.75 3.70e-4 3.30
160 1.18e-6 3.90 2.83e-5 3.71
320 7.47e-8 3.98 1.92e-6 3.88
640 4.67e-9 4.00 1.21e-7 3.99

3 LDG22 10 1.31e-2 - 1.09e-1 -
20 1.54e-3 3.09 1.46e-2 2.90
40 1.36e-4 3.51 1.59e-3 3.20
80 9.66e-6 3.81 1.37e-4 3.54
160 6.29e-7 3.94 9.61e-6 3.83
320 3.99e-8 3.98 6.26e-7 3.94
640 2.49e-9 4.00 3.94e-8 3.99

The following boundary conditions were applied over the interval [−2,3]:

u(−2,t)= g1(t), ux(3,t)= g2(t), uxx(3,t)= g3(t), (5.7)

where gi(t) is obtained from the analytical solution.
The L2 and L∞ errors and orders of accuracies of the numerical solution at t=1 second

are given in Tables 7-9. The findings are identical to that of the above two cases, with the
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Table 9: ut+ux+(u4/4)x+εuxxx=0. ux,0=−2sech2/3(K(x−x0)) with A=0.2275, x0=0.5, ε=2.058e−5 and

K=3(A3/40ε)1/2. Domain over the interval [−2,3]. Boundary conditions given in Eq. (5.7). L2 and L∞ errors
using non-uniform (repeating pattern of 0.7∆x and 1.3∆x) meshes at t=1.

k Method Grid L2 error L2 order L∞ error L∞ order
1 LDG 10 4.86e-2 - 5.14e-1 -

20 2.08e-2 1.22 2.22e-1 1.21
40 7.97e-3 1.39 9.28e-2 1.26
80 2.58e-3 1.63 3.52e-2 1.40
160 7.55e-4 1.77 1.19e-2 1.56
320 1.98e-4 1.93 3.45e-3 1.79
640 4.99e-5 1.99 8.87e-4 1.96

1 LDG2 10 2.37e-2 - 2.19e-1 -
20 9.36e-3 1.34 9.00e-2 1.28
40 3.22e-3 1.54 3.51e-2 1.36
80 9.78e-4 1.72 1.22e-2 1.52
160 2.73e-4 1.84 3.77e-3 1.70
320 7.02e-5 1.96 1.03e-3 1.87
640 1.77e-5 1.99 2.63e-4 1.97

2 LDG 10 3.47e-2 - 3.16e-1 -
20 6.49e-3 2.42 6.42e-2 2.30
40 1.30e-3 2.32 1.31e-2 2.29
80 2.63e-4 2.30 2.76e-3 2.25
160 4.26e-5 2.63 5.16e-4 2.42
320 5.75e-6 2.89 7.56e-5 2.77
640 7.49e-7 2.94 1.02e-5 2.89

2 LDG2 10 2.78e-2 - 2.36e-1 -
20 5.05e-3 2.46 4.72e-2 2.32
40 9.69e-4 2.38 9.39e-3 2.33
80 1.84e-4 2.40 1.77e-3 2.41
160 2.90e-5 2.66 3.10e-4 2.51
320 3.87e-6 2.91 4.33e-5 2.84
640 5.00e-7 2.95 5.69e-6 2.93

3 LDG 10 3.18e-2 - 2.94e-1 -
20 4.12e-3 2.95 4.85e-2 2.60
40 4.09e-4 3.33 6.50e-3 2.90
80 3.26e-5 3.65 6.93e-4 3.23
160 2.26e-6 3.85 5.52e-5 3.65
320 1.45e-7 3.96 3.80e-6 3.86
640 9.08e-9 4.00 2.41e-7 3.98

3 LDG22 10 2.05e-2 - 1.78e-1 -
20 2.51e-3 3.03 2.51e-2 2.83
40 2.31e-4 3.44 2.82e-3 3.15
80 1.72e-5 3.75 2.50e-4 3.50
160 1.14e-6 3.91 1.83e-5 3.77
320 7.25e-8 3.98 1.23e-6 3.89
640 4.53e-9 4.00 7.76e-8 3.99

LDG2 (2nd and 3rd order) and the LDG22 (4th order) schemes generating more accurate
solutions than the LDG schemes, for both the uniform and the non-uniform meshes On
an average, the LDG2 (LDG22 for 4thorder) was slower than the LDG, by around 40%,
45% and 50% for the 2nd, 3rd and 4th order simulations respectively.
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6 Conclusions

In the present study, we implemented a LDG2 formulation for solving equations contain-
ing higher spatial derivative terms in a spectral volume context. A linear Fourier analysis
was performed to compare and contrast the dispersion and the dissipation properties of
the LDG and the LDG2 formulations. The analysis showed that the LDG2 scheme is sta-
ble and generates smaller dissipation and dispersion errors than the LDG formulation
for the second and third simulations. The fourth order LDG2 is mildly unstable. How-
ever, the instability was removed, by using a weighted average of the LDG and the LDG2
fluxes was used as the numerical flux. Even a weight of 1.5% for the LDG (i.e., 98.5% for
the LDG2) was sufficient to ensure stability and yield more accurate solutions than the
LDG scheme.

Numerical experiments were conducted to illustrate the accuracy, capability and ro-
bustness of this new formulation. Expected orders of accuracy were attained asymptot-
ically for both the linear and the non-linear equations. In addition, the formulation was
able to handle stiff convection dominated cases where the coefficients of the third spatial
derivative terms are small. As expected, the LDG2 (and the LDG22 for the fourth order)
outperforms the LDG scheme for all the orders and all the grids.

Future work will include implicit time discretization procedures, employing penalty
based flux formulations (like extensions of the BR2 and the interior penalty schemes),
performing Fourier analysis for 2D problems, implementing an implicit p-multigrid al-
gorithm [23] and extending the formulation to equations containing fourth order spatial
derivative terms.

The final goal of this research project is to extend the current formulation to handle
interactions of non-linear KDV type waves with multiphase flows [2, 4] and turbulent
explosions [2–4]. These problems involve the interplay of various complex physical phe-
nomena such as turbulence interaction with solid particles, mixing-induced combustion,
shock waves, etc., that were succinctly addressed by Balakrishnan et al. [2–4] using lower
order schemes. It would be interesting to assess the performance higher-order schemes
for such complex, real-life problems. Efforts along these lines are currently underway
and will be addressed in the future.
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