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Abstract. In this paper, a newly developed second order temporally and spatially
accurate finite difference scheme for biharmonic semi linear equations has been em-
ployed in simulating the time evolution of viscous flows past an impulsively started
circular cylinder for Reynolds number (Re) up to 9,500. The robustness of the scheme
and the effectiveness of the formulation can be gauged by the fact that it very accu-
rately captures complex flow structures such as the von Kármán vortex street through
streakline simulation and the α and β-phenomena in the range 3,000≤Re≤9,500 among
others. The main focus here is the application of the technique which enables the use
of the discretized version of a single semi linear biharmonic equation in order to ef-
ficiently simulate different fluid structures associated with flows around a bluff body.
We compare our results, both qualitatively and quantitatively, with established numer-
ical and more so with experimental results. Excellent comparison is obtained in all the
cases.
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1 Introduction

Flow over a bluff body is a common phenomenon which occurs when fluid flows over an
obstacle or along with the movement of a natural or artificial body. Common examples
are the flows past an airplane, a submarine, an automobile, or wind blowing past a high-
rise building. Although bluff bodies exist in many different shapes, the circular cylinder
is considered to be the representative of a two dimensional bluff body. As such, the flow
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around a circular cylinder has been the subject of intense research in the last century and
numerous theoretical, numerical and experimental investigations have been reported in
the literature [1–18]. The time development of an incompressible viscous flow induced
by an impulsively started circular cylinder is now a classical problem in fluid mechanics.
It displays almost all the fluid mechanical phenomena for incompressible viscous flows
in the simplest of geometric settings.

In the context of numerical studies on this problem, with the advent of Computational
Fluid Dynamics (CFD), more and more computational methods for simulating fluid flows
are coming into the fore [10–16, 19–25] which has led to the better understanding of the
characteristics of the flow. Numerical simulation could now invade areas hitherto un-
explored by experimentalists where it is possible to analyze all aspects of the flow at
each stage of its development. A quick look at these works reveals that there exists only
a few studies where a single numerical scheme has been employed to tackle the flow
throughout the whole range of 100 ≤ Re≤ 104. The ranges of Reynolds numbers which
came under the purview of these works, varied from one study to the other. Although
investigations on vortex shedding has been quite popular with the experimentalists ever
since Roshko [6] first measured the period of von Kármán vortex shedding behind a bluff
body, the simulation and characteristic study of streak lines seem to have failed to attract
the attention of numerical analysts. One of the objectives of the present study is also to
address these two issues apart from capturing other flow characteristics for this problem.

Fluid flow problems governed by Navier-Stokes (N-S) equations can be solved by us-
ing a variety of numerical methods. As is well established, these methods can broadly be
classified as finite difference, finite volume or finite element approach. Amongst these,
finite difference (FD) method is the most popular approach that has been used quite fre-
quently in CFD because of its easiness in implementation. In the FD set up, approxima-
tion of a higher order derivative generally requires more points and as such is associated
with non-compact stencils. Such schemes, which are used for higher order differential
equations on non-compact stencils, require additional conditions in order to tackle the
difficulty of flow computation at the boundary. Contrary to these, a compact finite differ-
ence scheme [26–28] which utilizes grid points located only directly adjacent to the node,
computes the flow with information solely from the nearest neighbours and are gaining
popularity via-a-vis wide-molecule schemes [29–32].

Over the years, the CFD community has seen the extensive use of both the primitive
variable and stream function-vorticity (ψ-ω) formulation to compute incompressible vis-
cous flows governed by the N-S equations. Both these formulations have their relative
advantages and disadvantages over each other: while the primitive variable formulation
has been traditionally difficult because of the presence of the pressure term in the gov-
erning equations, a typical difficulty with the ψ-ω formulation is that the vorticity ω is
not prescribed on the boundaries. Due to these facts, the biharmonic pure stream func-
tion form of the N-S equations, which eliminates the need to compute both pressure and
vorticity, is emerging as an attractive alternative [33–36]. Besides, this approach has the
advantage of requiring to solve only a single fourth order PDE instead of a system of
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second order PDEs.
However, the schemes developed so far for the biharmonic pure stream function form

of the N-S equations were capable of computing the flow only for simple rectangular
geometries on uniform grids. Efficient implementation of the velocity-stream function
approach spearheaded by Gupta and Kalita [35,36] in its original form is extremely diffi-
cult, if not impossible on nonrectangular physical domains. In the present study, we use a
newly proposed [37] compact second order temporally and spatially accurate FD scheme
for the biharmonic pure stream function form of transient N-S equations on non-uniform
grids which is capable of tackling geometries beyond rectangular and hence can be used
to simulate the dynamics of fully coupled flow-body system. We chose the problem of
impulsively started circular cylinder because of the availability of benchmark experi-
mental as well as numerical results and therefore serve very well as a suitable test case
for accuracy and effectiveness of the newly proposed technique. The grid is constructed
using a conformal mapping, which results in a general orthogonal grid, where the degree
and nature of the non-uniformity can be specified to meet the needs of the problem being
studied. The added advantage of our approach is that no other boundary condition is
required except for stream function and velocity. To the best of our knowledge this is the
first attempt to simulate flow around a bluff body by using a single discretized equation
instead of a system of equations.

Our main focus in this paper is to analyze the flow past an impulsively started circular
cylinder in different laminar flow regimes using a single numerical scheme and compare
our numerical results with established experimental and numerical ones. Time evolution
of flow structure is studied through numerical simulation for a wide range of Reynolds
numbers ranging from 50 to 9,500. This includes the visualization of the flow by nu-
merically generating streak lines. The computations are performed by time marching,
using a predictor-corrector approach. Despite being spatially lower order accurate than
traditional higher order compact schemes, the numerical solutions obtained through the
proposed scheme are in excellent match with the available experimental and established
numerical results as would be seen later. This is due to the fact that the scheme utilizes
the advantage of grid clustering in the regions of small scales which invariably requires
more grid points to resolve the scale irrespective of the spatial accuracy of the scheme.

The paper has been arranged in six sections. Section 2 deals with the mathematical
formulation and discretization procedures, Section 3 with the problem and the numerical
issues, Section 4 with the solution of the algebraic system of equations, Section 5 with the
numerical results and finally, Section 6 summarizes the whole work.

2 Mathematical formulations and discretization procedures

2.1 Mathematical formulation

The unsteady 2D incompressible viscous flows are governed by the N-S equations. In
cartesian (x,y) coordinate system, the non-dimensional form of these equations can be
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written as:

∂u
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+
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∂y
=0, (2.1)
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Here u, v are non-dimensional velocities along x-, y-directions respectively and p is the
pressure. The Reynolds number Re is defined as Re=DU∞/ν where D=2a is the diam-
eter of the cylinder, U∞ is the free-stream velocity and ν kinematic viscosity. The non-
dimensionalization have been carried out following [38]. Introducing stream function ψ
and vorticity ω we have
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and the above formulation may be rewritten as:
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As is well known a rectangular grid on an irregular physical domain needs special
treatment. To circumvent this we take help of coordinate transformation and convert
a non-rectangular physical domain onto a rectangular computational domain. Let the
physical (x,y) plane be transformed into a computational (ξ,η) plane using the mapping:

x= x(ξ,η), y=y(ξ,η). (2.6)

Under this transformation Eqs. (2.4) and (2.5) in the computational plane becomes:
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where J= xξyη−yξ xη is the Jacobian of the transformation with
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If the transformation (2.6) is a conformal transformation i.e. of the form:

z= z(θ), (2.11)

z= x+iy and θ= ξ+iη then Eqs. (2.7) and (2.8) simplify to:
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In deriving Eq. (2.13) expressions (2.9) and (2.10) have also been made use of. Note that
in this case the Jacobian of the transformation is, J= xξyη−yξ xη = x2

ξ+y2
ξ = x2

η+y2
η .

Eliminating ω from Eqs. (2.12) and (2.13), we obtain the following form of the N-S
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equations:
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where C= Jξ/J, D= Jη/J, and E=2C2+2D2− Jηη/J− Jξξ /J. This is a fourth order transient
semi-linear partial differential equation.

Eq. (2.14) is of form

∂

∂t
∆ψ= a(ξ,η)∆2ψ+b(ξ,η,ψξ ,ψη)∆ψξ+c(ξ,η,ψξ ,ψη)∆ψη+d(ξ,η,ψξ ,ψη)∆ψ (2.15)

with a(ξ,η) > 0 and can be termed as the biharmonic form of the N-S equation in the
transformed plane. It contains ψ as the only dependent variable from which other flow
variables can be post processed in contrast to the other cases viz. (A) three dependent
variables u, v, and p associated with the system of equations (2.1) to (2.3) and (B) two de-
pendent variable ψ and ω associated with the system of equations (2.4) and (2.5). Hence
Eq. (2.14) is much more handy for numerical simulation.

2.2 Discretization

The spatial operators ∆
2
hψi,j and ∆hψi,j present in Eq. (2.15) are discretized as:

∆
2
hψi,j =

2

h4

(

28ψi,j−8(ψi+1,j+ψi,j+1+ψi−1,j+ψi,j−1)

+(ψi+1,j+1+ψi−1,j+1+ψi+1,j−1+ψi−1,j−1)

+3h(ψξi+1,j
−ψξi−1,j+ψηi,j+1

−ψηi,j−1
)

)

+O(h2), (2.16)

∆hψi,j =
1

h2

(

ψi+1,j+ψi,j+1−4ψi,j+ψi−1,j+ψi,j−1

)

+O(h2). (2.17)

Since (2.16) carries ψξ and ψη they need to be approximated compactly and are given
as:
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The time derivative has been discretized by a Crank-Nicolson type of approximation
to obtain a finite difference scheme for equation (2.15) as:

∆hψ
(n+1)
i,j =∆hψ

(n)
i,j +δt(1−λ)

[

ai,j∆
2
hψ

(n)
i,j +bi,j∆hψ
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]
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+di,j∆hψ
(n+1)
i,j

]

. (2.20)

With λ= 1
2 Eq. (2.20) yields an O(h2;δt2) accurate scheme.

3 The problem and the numerical issues

The schematic diagram is presented in Fig. 1(a). The cylinder is considered to be of unit
radius with uniform free-stream velocity U∞=1 and far-field R∞ ≈43. A typical compu-
tational grid of size 61×101 are shown in Fig. 1(b). We employ a uniform grid spacing
along the cross radial direction and nonuniform grid spacing in the radial direction with
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Figure 1: (a) Configuration of the flow past a circular cylinder problem; (b) A typical 61×101 grid; (c)
Geometrical parameters of the closed wake for the motion past a circular cylinder.
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clustering around the surface of the cylinder so that propagation of large solution error
can be avoided [39]. The conformal transformation considered here is

x= e(πξ)cos(πη), y= e(πξ)sin(πη).

Under this transformation Eq. (2.14) reduces to

Re
π2e2πξ

4

∂
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∆ψ=∆

2ψ−

(
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2
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)
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2
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2
ψη

)

∆ψ. (3.1)

Using (2.20), an implicit O(h2;δt2) accurate finite difference approximation for (3.1) is
obtained as:
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. (3.2)

We estimate the boundary conditions for stream function and its first order deriva-
tives as below:

1. On the surface of the cylinder ξ=0, u=v=0 ⇒ ψξ =0, ψη =0, ψ=0.

2. In the far upstream u=U∞, v = 0 ⇒ ψξ = πe(πξ)sin(πη), ψη =πe(πξ)cos(πη) and

ψ= e(πξ)sin(πη) which corresponds to the potential flow.

3. In the far downstream we use the Neumann condition that ∂Vr
∂ξ =0= ∂Vt

∂ξ . One sided
second order approximation translates these conditions to,

ψηimax,j

.
=

1

3

(

4eπhψηimax−1,j
−e2πhψηimax−2,j

)

, ψξimax,j

.
=

1

3

(

4eπhψξimax−1,j
−e2πhψξimax−2,j

)

,

respectively.

It should be noted here that once the vortex shedding starts, at the downstream of the

flow, one needs to use convective boundary condition for ψ, i.e.
∂ψ
∂t +U∞

∂ψ
∂x =0. For such

flows, where aim is to simulate vortex shedding, at the downstream of the flow, potential
boundary condition for ψ has been replaced by convective boundary condition and was
found to be quite efficient. Again for flows with higher Re the convective boundary
condition at the very initial stage of flow does not work well. Thus if one wishes to
simulate a flow from very beginning to the final vortex shedding state an ideal choice
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will be to march first few iterations say till non dimensional time 0.25 with the potential
boundary condition and then to proceed with the convective boundary condition. As far
as the initial condition is concerned we have started with ψ=0 everywhere except at the
boundary as also ψξ =ψη =0 everywhere except at the upstream boundary. Note that the
implicitness of Eq. (3.2) allows our scheme to use larger time step, and it is seen that a
value of δt as large as 0.01 is sufficient to carry out a stable computation. However, in
order to accurately capture the time evolution of the flow, we use δt = 0.001 for all the
simulations considered in this work.

4 The solution of algebraic system of equations

Let us now discuss the solution of algebraic systems associated with the finite difference
approximation (3.2). As we are interested in second order accuracy in time we chose
λ= 1

2 . The resulting system of equation in matrix form can be written as:

A1Ψ
(n+1)=F1

(

Ψ
(n),Ψ

(n)
ξ ,Ψ

(n)
η ,Ψ

(n+1)
ξ ,Ψ

(n+1)
η

)

. (4.1)

For a grid of size m×n, the matrix A1 has the dimension mn. Due to the compact nature
of our scheme A1 is a branded matrix with nine non zero diagonals. Also Ψ

(n+1), Ψ
(n),

Ψ
(n)
ξ , Ψ

(n)
η , Ψ

(n+1)
ξ , Ψ

(n+1)
η are all mn component vectors. At any time step once Ψ

(n) has

been approximated Ψ
(n)
ξ , Ψ

(n)
η can be obtained by solving tridiagonal systems

A2Ψ
(n)
ξ =F2

(

Ψ
(n)

)

, (4.2)

A3Ψ
(n)
η =F3

(

Ψ
(n)

)

, (4.3)

respectively. Eqs. (4.2) and (4.3) are the corresponding matrix forms of the relations (2.18)
and (2.19). Thus the main objective now is to solve Eq. (4.1), thereby evaluating unknown
vector Ψ

(n+1). But a difficulty arises due the presence of (n+1)th time level gradients
of Ψ on the right hand side of Eq. (4.1) as those quantities will be available only after
solving for stream function at the (n+1)th time level. To overcome this difficulty we
adopt a predictor-corrector approach. By setting λ=0 in Eq. (3.2) we get a first order time
accurate formula which has the matrix representation

A4Ψ
(n+1)=F4

(

Ψ
(n),Ψ

(n)
ξ ,Ψ

(n)
η

)

. (4.4)

Here A4 is a matrix with only five non zero diagonals and we have the advantage that
Ψ

(n+1) can be estimated directly.
Direct solution of any of the above linear system is impractical because of huge size

of the coefficient matrix and enormous storage requirements even for moderate values
of step size h. On the other hand condition number of the coefficient matrix increases
rapidly with reduced step size h and one must be very cautious when attempting to solve
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such linear systems using iterative solvers. As the coefficient matrix A1 is not diagonally
dominant, conventional solvers such as Gauss-Seidel also cannot be used. Therefore all
the computations were performed using the biconjugate gradient stabilized (BiCGStab)
[40] method without preconditioning, where, thanks to the compact grid, it is easy to
implement matrix vector multiplication A1Ψ without the need of storing all the entries of
the matrix A1. It is worth mentioning here that in solving all the linear systems mentioned
above nowhere we felt the need to under relax or over relax any of the parameters. This
is indeed a refreshing experience as compared to solving formulations based of vorticity-
stream function or primitive variable where there is a severe need to under relax quite a
few parameters.

The convergence criterion for BiCGStab iteration based on norm of residual was set at
10−8 and the stopping criterion for the corrector was set at 10−12. All our computations
were carried out on a Pentium Dual-Core processor based PC with 2 GB RAM using
double precision floating point arithmetic.

5 Numerical results

The drag D on the surface of a cylinder of radius r is D= ρrU2
∞CD, where CD is a non-

dimensional coefficient. Following [41], the formula for evaluating CD on the surface of
a cylinder of radius r can be written as:

CD =
1

2πr

∫ 2

0

{

(ψ2
ξ−ψ2

η)cos(πη)−ψξψη sin(πη)
}

dη

−r
∫ 2

0
ψηωsin(πη)dη+

2r

Re

∫ 2

0
(ωξ−πω)sin(πη)dη. (5.1)

Using the expression for ω that can be obtained from Eq. (2.7) and the boundary
conditions on the surface of the cylinder the above formula for r=1 can be simplified to:

CD =
2

π2Re

∫ 2

0

(

3πψξξ−ψξξξ

)

sin(πη)dη.

Similarly the expression for lift coefficient becomes:

CL=
2

π2Re

∫ 2

0

(

3πψξξ−ψξξξ

)

cos(πη)dη.

This enables us to describe the entire problem purely in terms of stream function. The
above integrals has been evaluated by using Simpson’s one-third formula.

We intend to use the formulation developed here to numerically simulate and com-
pare experimental results available in literature. This can be used to further our under-
standing of flow past impulsively started circular cylinder.

As it is well established by now that immediately after the fluid motion starts, the flow
is irrotational everywhere. But gradually, due to the fluid motion vorticity is generated
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on the surface of the cylinder and slowly it is transported to the rear stagnation point and
flow reversal takes place. After a short period of time for flows with Re>5 a recirculating
zone appears and it continues to grow eventually leading to the flow separation. The
time development of flow differs with Re increasing. In order to establish the robustness
of the scheme we focus our attention in the Re range of 50 to 9,500. In the first part we
discuss about the flow structures for 50≤ Re≤ 550 where the wake behind the cylinder
becomes unstable as time progresses. Oscillations in the wake grow in amplitude and
finally forms a trail of vortices known as von Kármán vortex street. Next we consider the
laminar regime in the Reynolds number range 3,000≤Re≤9,500 in the early stages after
the impulsive start. In this part flow is characterized by the most complicated structures
associated with the α- and β-phenomena. We carry out our computation with a value of
R∞≈43 on a grid of size 181×301.

5.1 Flows for 50≤Re≤550

The flow around a impulsively started circular cylinder for this range eventually becomes
periodic and is known to develop vortex shedding represented by the von Kármán vortex
street. As the flow starts impulsively, a recirculating eddy quickly develops behind the
cylinder and evolves with time. We tabulate the evolution of the maximum width lmax

and the abscissa of this maximum xlmax, as defined in Fig. 1(c), of the recirculating zone
for Re=200 and 550 in Table 1. In this table we also compare our numerical results with
the experimental ones given by Bouard and Coutanceau [38]. A good comparison can be
seen in this table. Further for Re= 550 we compare velocity distribution on flow axis at
early times with the experimental work [38]. Again a very good comparison can be seen.

During the development of the periodic vortex shedding, the flow goes through dif-
ferent phases eventually leading to the development of so called von Kármán vortex

Table 1: Comparison of numerical values of the magnitude and of the abscissa of the maximum width for various
Re and t with experimental observations [38] (value shown with parenthesis).

t 1 1.5 2.0 2.5 3.0
Re=200 xlmax/D 0.37 0.52 0.66 0.77 0.85

(0.35) (0.51) (0.65) (0.76) (0.86)
lmax/D 0.92 0.99 1.05 1.10 1.15

(0.94) (0.97) (1.02) (1.07) (1.10)
Re=550 xlmax/D 0.26 0.43 0.65 0.73 0.80

(0.30) (0.50) (0.66) (0.76) (0.85)
lmax/D 0.95 1.00 1.05 1.12 1.18

(0.94) (0.98) (1.03) (1.10) (1.16)
Re=3,000 xlmax/D 0.16 0.27 0.36 0.67 0.80

(0.19) (0.26) (0.40) (0.73) (0.84)
lmax/D 0.98 1.02 1.08 1.14 1.20

(0.93) (0.98) (1.04) (1.11) (1.20)
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Figure 2: Streak lines for (a) Re=50, (b) Re=100, (c) Re=200, (d) Re=300.

street. Once shedding has been initiated, the vortices are shed in a routine manner al-
ternatively from the two sides of the cylinder. As time progresses, shedding frequency
increases until a limiting condition is reached. As the flow fully develops, both the drag
and lift coefficients reach periodic nature. The characteristics of the final periodic state
depends on Re under consideration. With the increase in Re value the shedding becomes
more pronounced. In experimental setup this is clearly depicted by streak lines while
in numerical simulation the phenomena is captured by estimation of Strouhal number.
Streaklines are seldom shown in numerical computations. One of the objectives in this
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Figure 3: (a) Power spectrum of Drag and Lift coefficient for Re=100, Re=300; (b) Phase diagram of Drag
and Lift coefficients for Re=300.

section of the present work is to examine the properties of the streakline patterns behind
a circular cylinder during the process of vortex shedding. In incompressible flow, vor-
ticity is generated only at solid boundaries, which, for this problem is the surface of the
cylinder, and this vorticity resides within the fluid. The streaklines for Re=50, 100, 200,
and 300 are presented in Fig. 2. These streaklines provide an effective view of the spots
in the flow field where the vorticity is inherent. Our computed streakline patterns for
the range of Reynolds numbers in these figures are in conjunction with those depicted
in [18, 42]. Note that the relationship between instantaneous streamlines and streaklines
is extremely complex and visualization of both is necessary for proper understanding
of flow field character. As is well known, our numerical streaklines remain continuous
without breakage although they get thinned up. Streaklines now represent a flexible bar-
rier which a fluid can never cross, and is quite evident from the Fig. 2(a)-(d). The fluid
entering the wake moves in and jumps towards the cylinder surface in turn from both
sides and are eventually squeezed out of the wake and roll-up. The two sets of vortex
sheets intertwine with each other in the far wake and this have been completely captured
by our simulation.

We also calculate the Strouhal St number which characterizes the vortex shedding
process and is estimated from the periodic variation of the lift coefficient. It is defined as
St= nD

U∞
, where n is the dominant frequency of the lift variations, which we compute by

a spectral analysis of a time sample of the lift coefficients. The power density spectra of
this analysis normalized by the maximum value for Re= 100 and Re= 300 is shown in
Fig. 3(a); Fig. 3(b) displays the phase-plane of the drag and lift coefficients for the same
time sample for Re= 300; it clearly establishes that the frequency of drag coefficients is
twice that of the lift coefficients. As can be seen from Fig. 3(a), the frequency of vortex
shedding increases with the increase in Re as corroborated by Fig. 2 as well.
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5.2 Flows for 3,000≤Re≤9,500

Flow around a cylinder at these Reynolds numbers eventually becomes three dimen-
sional and turbulence sets in. Therefore we simulate the flow only for the very early
laminar stage and compare our results with those obtained from experiments. At first
we compare our numerical results for Re= 3,000 with the results of [38] in Table 1. As
observed in earlier sections for Re = 200 and 550, a very good agreement of the values
of lmax and xlmax can be found for the early part of flow development. We also compare
velocity distributions along the flow axis behind the cylinder for different times with the
experimental results of [38] in Fig. 7(b). Next we compare our results with the works
of [15] in Fig. 4. From Fig. 4(a) it is seen that the primary vortex behind the cylinder
makes its appearance and develops quite early. Shortly afterwards there is the distortion
of streamlines somewhere midway between the stagnation and separation points (refer
to Fig. 1(c)). Stream lines close to the cylinder deviate from the cylinder causing a bulge
pattern, known as bulge phenomenon. As time progresses, this bulge gives rise to a
small secondary eddy known as secondary eddy phenomenon which can clearly be seen
at time t=1.0 in Fig. 4(b). For Re=3,000, the secondary eddy grows with time, captured
in Fig. 4(c), to such an extent that it touches the boundary of the main eddy, thereby
splitting the main one into two parts and isolating the region of the wake next to the
separation point where another secondary eddy can now be seen. These two secondary
eddies are equivalent in size and in strength and constitute pair of secondary eddies. This
phenomenon is called α-phenomenon and is distinctly visible in Fig. 4(d). As can be seen
from Fig. 4, our computed solutions are excellent match with the experimental ones and
closer to them than the numerical results presented in [15].

Next we consider the cases for Re= 5,000 and 9,500. The most important feature of
this flow range is that the flow exhibits the so called β phenomenon. In this range, at
an early stage, as the back flow near the cylinder starts, a recirculating zone attached
to the cylinder is created. As the flow of fluid develops in downstream, due to the high
Reynolds number of the flow the core of this recirculating zone gets strengthened quickly.
Though the rest of the recirculating zone gathers strength, it is slow compared to its core,
thereby setting the stage for the development of secondary vortex. At around t=1.0 this
secondary vortex becomes prominent, dividing the primary vortex into two chambers,
one of which is the core. Nevertheless the second weaker part maintains some sort of
communication with its core part. For some time both the core and the secondary vortex
acquire strength and the channel of communication between the two parts of the primary
vortex becomes narrow. But as the primary vortex becomes bigger in size again, both its
parts starts getting stronger and devor the secondary vortex from left and right, reducing
its strength and size. At time around t= 1.5 the secondary vortex becomes quite small.
This is what is popularly known as β phenomenon. The β phenomena can be clearly
seen for Re= 5,000 and 9,500 at times t= 1.5 and 1.0 in Figs. 5(a) and 6(a) respectively.
For Re= 5,000 this β phenomenon quickly leads to the α phenomenon described earlier
which can be seen in Fig. 5(b) at time t= 2.0 and Fig. 5(c) at t= 2.5. But for Re = 9,500
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Figure 4: For Re=3,000 comparison of numerical and experimental [15] visualization at times (a) t=0.5, (b)
t=1.0, (c) t=1.5, (d) t=2.5.

(a)
1 2

-1

0

1

(b)
1 2

-1

0

1

(c)

0 1 2 3

-1

-0.5

0

0.5

1

(i)

(iv)(iii)

(ii)

Figure 5: For Re=5,000 comparison of numerical and experimental [38] visualizations at time (a) t=1.5, (b)
t=2.0, (c) t=2.5. In (c) (iii) is due to Sanyasiraju and Manjula [21]; (iv) is due to Kalita and Ray [22].

the flow becomes unstable later on and α phenomenon cannot be observed (see Figs. 6(b)
and 6(c)). Note that in the above mentioned figures we have presented our numerical
results side by side with that of experimental results reported in [38]. It is heartening to
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Figure 6: For Re=9,500 comparison of numerical and experimental [38] visualizations at time (a) t=1.0, (b)
t=1.25, (c) t=1.5.

note that our computed solutions almost exactly replicate the α and β-phenomena of the
experimental results of [38] as suggested by Figs. 5 and 6. In Fig. 5(c) we compare our
computed results with two other numerical results obtained by Sanyasiraju and Man-
jula [21] and Kalita and Ray [22] at time t=2.5 along side the experimental visualization
of [38]. Our computation captures the shape of the primary vortex as also the small sec-
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Figure 7: Comparison between experimen-
tal [38] and numerical results for the velocity
distribution on flow axis for (a) Re=550, (b)
Re=3,000, (c) Re=9,500.

ondary vortices most accurately as compared to the other simulations. Fig. 7(c) compares
the velocity distribution on the flow axis with the experimental one for Re=9,500. As in
the case of Re=550 and 3,000 a very close comparison is obtained in this case as well.

6 Conclusion

Compact schemes based on biharmonic pure stream function formulation of the transient
N-S equations have so far been successfully used only on rectangular cartesian coordi-
nates. In this paper, we carry out a comprehensive numerical validation of the classical
problem of the transient flow past an impulsively started circular cylinder by specifi-
cally adopting a newly developed implicit scheme for biharmonic form of the Navier-
Stokes equation. We have computed the flow for a wide range of Reynolds numbers
ranging from 50 to 9,500 and have considered both long time as well as transient cases.
In particular, the flow features which are typical of the sub-ranges 50 ≤ Re ≤ 550 and
3,000≤Re≤ 9,500 are discussed in details. We compare our results with established ex-
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perimental and numerical results, and obtain excellent comparison in all the cases, both
qualitatively and quantitatively. The robustness of the scheme is highlighted not only
when it captures the periodic nature of the flow for 50≤Re≤300, which is characterized
by vortex shedding represented by the von Kármán street for which a detailed streakline
analysis is provided, but also by the fact that it very accurately captures the so called α-
and β-phenomena for higher Re. The strength of the scheme is exemplified by the fact
that flow simulations from our computations are much closer to the experimental visual-
ization than other existing numerical simulations available in the literature, particularly
for the higher Reynolds numbers. To the best of our knowledge, no pure stream func-
tion based scheme for the N-S equations has been employed to simulate the transient
flow past a circular cylinder till date. Currently we are working on the extension of the
scheme to the oscillating cylinder and cylinder in cross flow problems and preliminary
indications are that this would be as successful as its impulsively started circular cylinder
counterpart.
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