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Abstract. Lagrangian methods are widely used in many fields for multi-material com-
pressible flow simulations such as in astrophysics and inertial confinement fusion
(ICF), due to their distinguished advantage in capturing material interfaces automat-
ically. In some of these applications, multiple internal energy equations such as those
for electron, ion and radiation are involved. In the past decades, several staggered-
grid based Lagrangian schemes have been developed which are designed to solve the
internal energy equation directly. These schemes can be easily extended to solve prob-
lems with multiple internal energy equations. However such schemes are typically
not conservative for the total energy. Recently, significant progress has been made
in developing cell-centered Lagrangian schemes which have several good properties
such as conservation for all the conserved variables and easiness for remapping. How-
ever, these schemes are commonly designed to solve the Euler equations in the form
of the total energy, therefore they cannot be directly applied to the solution of either
the single internal energy equation or the multiple internal energy equations without
significant modifications. Such modifications, if not designed carefully, may lead to
the loss of some of the nice properties of the original schemes such as conservation of
the total energy. In this paper, we establish an equivalency relationship between the
cell-centered discretizations of the Euler equations in the forms of the total energy and
of the internal energy. By a carefully designed modification in the implementation,
the cell-centered Lagrangian scheme can be used to solve the compressible fluid flow
with one or multiple internal energy equations and meanwhile it does not lose its total
energy conservation property. An advantage of this approach is that it can be easily
applied to many existing large application codes which are based on the framework
of solving multiple internal energy equations. Several two dimensional numerical ex-
amples for both Euler equations and three-temperature hydrodynamic equations in
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cylindrical coordinates are presented to demonstrate the performance of the scheme in
terms of symmetry preserving, accuracy and non-oscillatory performance.

AMS subject classifications: 65M06, 76M20

Key words: Lagrangian scheme, conservative, cell-centered, internal energy equation, compress-
ible fluid flow, three-temperature model.

1 Introduction

The Lagrangian methods, in which the mesh moves with the local fluid velocity, are
widely used in many fields for multi-material flow simulations such as in astrophysics
and inertial confinement fusion (ICF), due to their distinguished advantage in capturing
material interfaces automatically. Such methods can be classified into two types, one is
the staggered-grid based Lagrangian method, the other is the cell-centered Lagrangian
method. For the staggered-grid based Lagrangian method, the algorithms are built on a
staggered discretization in which velocity (momentum) is stored at vertices, while den-
sity and internal energy are stored at cell centers. The density/internal energy and ve-
locity are solved on two different control volumes directly, see, e.g., [1, 3, 4, 6, 25, 29]. An
artificial viscosity term [5, 7, 29] is usually added to the scheme to prevent spurious os-
cillations near the discontinuities. As the internal energy equation is discretized directly,
this kind of methods usually cannot keep the conservation of the total energy, unless a
specially designed compatible construction is used, see [6]. On the other hand, for the
cell-centered Lagrangian schemes, density, momentum and total energy are all stored
at the cell center and evolved on the same control volume directly. This kind of meth-
ods has several advantages such as easiness for remapping when necessary, no need
for explicit artificial viscosity for shock capturing and conservation for all the conserved
variables including mass, momentum and total energy. In recent years, the cell-centered
Lagrangian method has been developed rapidly and many cell-centered schemes have
been presented [8, 10–12, 14, 19–24, 26, 28] and they are demonstrated to have good prop-
erties such as conservation, accuracy and non-oscillation.

In some hydrodynamic application problems in, e.g., ICF and astrophysics, multi-
ple internal energy equations are involved. For example, the 2D code CHIC [2] applied
to simulate the ICF problem involves electron and ion internal energy equations and it
is based on a cell-centered Lagrangian scheme discretizing the electron internal energy
equation and total energy equation directly. However, most of the existing large codes
used in these fields are originally based on the staggered-grid Lagrangian schemes and
are designed to solve the internal energy equations directly, e.g., the LASNEX [17], HY-
DRA [27] and LARED-H [30] codes. As the cell-centered Lagrangian schemes are com-
monly discretized from the Euler equations in the form of the total energy, it is difficult to
use them in these codes without significant modifications. If such modifications are not
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designed carefully, some of the original good properties such as the conservation of the
total energy may be lost.

In this paper, we establish an equivalency relationship between the cell-centered La-
grangian discretizations of the Euler equations in the forms of the total energy and of the
internal energy. By a suitable modification in the implementation, the cell-centered La-
grangian scheme can be used to solve Euler equations with internal energy without the
loss of its good properties such as the conservation of total energy. In fact, the schemes
for the Euler equations in the forms of the total energy and of the internal energy are
equivalent mathematically. The main advantage of this new strategy of implementation
is that the scheme can then be directly extended to solve the compressible flow with mul-
tiple internal energy equations, which is carried out in this paper. The extended scheme
can keep its original good properties such as the conservation of the total energy and
spherical symmetry easily. This also allows the cell-centered schemes to be conveniently
applied to existing large application codes which involve multiple internal energy equa-
tions and are originally based on staggered-grid schemes, for example the LARED-H
radiation hydrodynamic code [30].

An outline of the rest of this paper is as follows. In Section 2, we establish the relation-
ship between the discretizations of the Euler equations in the forms of the total energy
and of the internal energy. Several numerical examples for Euler equations are given to
demonstrate the performance of the above mentioned technique. In Section 3, we discuss
the discretization of the three-temperature radiation hydrodynamic equations and show
the numerical result obtained by the LARED-H code with the cell-centered Lagrangian
scheme. In Section 4 we will give concluding remarks.

2 Solving the compressible Euler equations in the form of the

internal energy by conservative Lagrangian schemes

2.1 The establishment of an equivalency relationship between the Lagrangian
discretizations of the compressible Euler equations in the forms of the
total energy and of the internal energy

We consider the compressible inviscid flow governed by the Euler equations which have
the following integral form in the Lagrangian formulation

d

dt

∫∫

Ω(t)
ρdV=0, (2.1a)

d

dt

∫∫

Ω(t)
ρudV=−

∫

Γ(t)
Pnds, (2.1b)

d

dt

∫∫

Ω(t)
EdV=−

∫

Γ(t)
Punds, (2.1c)

where ρ is the density, P is the pressure, E is the total energy, u is the velocity vector and
M=ρu is the momentum.



1310 J. Cheng, C.-W. Shu and Q. Zeng / Commun. Comput. Phys., 12 (2012), pp. 1307-1328

The set of equations is completed by the addition of an equation of state (EOS) with
the following general form

P=P(ρ,e), (2.2)

where e= E−ρu2/2 is the internal energy. Especially, if we consider the ideal gas, then
the equation of state has a simpler form

P=(γ−1)e,

where γ is a constant representing the ratio of specific heat capacities of the fluid.
The energy equation in the Euler equations can also be described in the following

internal energy form
d

dt

∫∫

Ω(t)
edV =−

∫∫

Ω(t)
P∇·udV. (2.3)

Eq. (2.1c) and Eq. (2.3) are mathematically equivalent, however schemes based on them
are usually quite different. Conservative schemes are naturally obtained from the Euler
equations in the conservative form (2.1a)-(2.1c) which can keep the conservation of mass,
momentum and total energy. On the other hand, schemes based on the Euler equations in
the nonconservative form (2.1a), (2.1b) and (2.3) are difficult to preserve the conservation
of the total energy.

In this section, we establish an equivalency relationship between the Lagrangian dis-
cretizations of the compressible Euler equations in the forms of the total energy and of
the internal energy. By this technique, we can solve the Euler equations in the form of the
internal energy and the more complicated compressible fluid flow with multiple internal
energy equations by the conservative Lagrangian schemes easily.

Suppose the 2D spatial domain Ω is discretized into quadralateral computational
cells, each quadrangular cell Ωc being assigned a unique index c. The boundary of the
cell Ωc is denoted as ∂Ωc. We denote,

mc=
∫∫

Ωc

ρdV,

ρc=
1

Vc

∫∫

Ωc

ρdV, Mc =
1

Vc

∫∫

Ωc

MdV,

Ec =
1

Vc

∫∫

Ωc

EdV, uc =
Mc

ρc

,

where Vc and mc are the volume and mass of the cell Ωc respectively and Mc and Ec are
the cell averages of the momentum and the total energy in the cell Ωc respectively. uc, as
the ratio of the cell averages of the momentum and density, is equal to the point value
of the velocity at the cell centroid or its cell average up to second order accuracy. For
the Lagrangian scheme, the cell mass mc does not change during the time evolution. The
internal energy ec is defined as follows,

ec=Ec−
1

2
ρcu

2
c , (2.4)
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which is equal to the point value of the internal energy at the cell centroid or its cell
average up to second order accuracy. Notice that the equality (2.4) is used only in the
theoretical derivation below to establish the equivalency of the Lagrangian scheme in the
forms of the total energy and of the internal energy. In the actual implementation of the
scheme, its influence is limited to the initial condition for the internal energy only. Even
for the initial condition, we are not required to take the internal energy based on (2.4),
but are free to choose it in any other way within the accuracy of the scheme, for example
by the point values or cell averages of the initial internal energy for up to second order
schemes. Without loss of generality, we write the first-order conservative cell-centered
Lagrangian scheme for the equations of momentum and total energy (2.1b)-(2.1c) in the
following form,

M
n+1
c Vn+1

c −M
n
c Vn

c =∆tFM, (2.5a)

E
n+1
c Vn+1

c −E
n
c Vn

c =∆tFE, (2.5b)

where FM and FE represent the spacial discretization operators approximating the right-
hand-side terms of Eqs. (2.1b)-(2.1c) respectively. Both FM and FE are determined by the
values of the numerical solution at the n-th time step, while different schemes give dif-
ferent expressions of these terms, see, e.g., [12,13,20,24] for several possible choices. The
superscripts n, n+1 represent the variables at the n-th and (n+1)-th time steps respec-
tively.

The scheme to solve the internal energy equation (2.3) is expressed as follows,

en+1
c Vn+1

c −en
c Vn

c =∆tFe, (2.6)

where Fe stands for the spacial discretization operator approximating the right-hand-side
term of Eq. (2.3). In summary, we have

FM≃−
∫

∂Ωc

Pnds, FE ≃−
∫

∂Ωc

Punds, Fe ≃−
∫∫

Ωc

P∇·udV. (2.7)

Next, we would like to establish an equivalency relationship between (2.5b) and (2.6),
that is, we attempt to determine Fe by the expressions (2.5a)-(2.5b).

Subtracting (2.5a) multiplied by (un+1
c +un

c )/2 from (2.5b) and using the fact that mc=
ρn+1

c Vn+1
c =ρn

c Vn
c , we get

[

E
n+1
c − 1

2
ρn+1

c (un+1
c )2

]

Vn+1
c −

[

E
n
c −

1

2
ρn

c (u
n
c )

2
]

Vn
c =∆t

[

FE−
1

2
(un+1

c +un
c )·FM

]

. (2.8)

Due to (2.4), we have

en+1
c Vn+1

c −en
c Vn

c =∆t
[

FE−
1

2
(un+1

c +un
c )·FM

]

. (2.9)

Thus, we can choose Fe as follows,

Fe =FE−
1

2
(un+1

c +un
c )·FM. (2.10)
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Remark 2.1. The scheme (2.6) with Fe given by (2.10) is an explicit scheme even if it looks
like an implicit scheme due to the appearance of un+1

c . This is because, at each time step,
we can solve the momentum equation (2.5a) first and get un+1

c before the scheme (2.6) is
evolved.

Remark 2.2. The discretization (2.5a), (2.6) with Fe given by (2.10) is not a new scheme.
It is just a mathematically equivalent implementation of the discretization (2.5a)-(2.5b),
hence it enjoys the same properties such as the conservation for momentum and total
energy. The difference in these two discretizations is purely in their implementation.
By this modification in the implementation, the cell-centered Lagrangian scheme can be
used to solve the Euler equations in the form of the internal energy directly and it also
can be easily extended to solve the compressible fluid flow with multiple internal energy
equations, which will be described in the next section.

Remark 2.3. The relationship (2.10) holds for any first-order cell-centered Lagrangian
scheme in any coordinate system such as the cartesian, cylindrical or spherical coordi-
nates which can be written in the form (2.5a)-(2.6). This technique can also be extended
to second order accurate schemes with the TVD Runge-Kutta time discretization. Such
an extension will however not be discussed in this paper and will be left for future work.

2.2 Numerical tests for Euler equations in two-dimensional cylindrical
coordinates

2.2.1 The specific Lagrangian scheme used in the numerical tests

In this subsection, without loss of generality, we choose the cell-centered Lagrangian
scheme given in the paper [13], which is a modified version of the cell-centered control
volume scheme proposed by Maire in [20], to validate the technique introduced in the
previous subsection. This scheme has several good properties such as the conservation
of mass, momentum and total energy, compatibility with the geometric conservation law
(GCL), robustness and one-dimensional spherical symmetry in a two-dimensional cylin-
drical geometry when computed on an equal-angle-zoned initial grid.

The governing equations and the scheme are summarized as follows. We solve the
Euler equations in the cylindrical coordinates and in the form of the internal energy with
the following control volume formulation

mc
d

dt

( 1

ρc

)

=
∫

∂Ωc

u·nrdl,
d

dt
(M

z
cVc)=−

∫

∂Ωc

Pnzrdl, (2.11a)

d

dt
(M

r
cVc)=−

∫

∂Ωc

Pnrrdl+
∫∫

Ωc

Pdzdr,
d

dt
(ecVc)=−

∫∫

Ωc

P∇·urdzdr, (2.11b)

where z and r are the axial and radial coordinates respectively, Mc =(M
z
c ,M

r
c). The first

equation is derived from the mass equation and the geometric conservation law (GCL),

d

dt

∫∫

Ωc

dV=
∫

∂Ωc

u·nrdl. (2.12)
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Following the notations used in [20], in this cell-centered control volume Lagrangian
scheme, each node of the mesh is assigned a unique index p and we denote the coun-
terclockwise ordered list of the four nodes of the cell Ωc by p(c). Ac is used to denote
the area of the cell Ωc. The coordinates and velocity of the point p are denoted as (zp,rp)
and up =(uz

p,ur
p) respectively. Two nodal pressures related to the two edges sharing the

node p are defined at each node p of the cell Ωc which are denoted as πc
p and πc

p, the half

lengths and the unit outward normals of the edges connecting the point p are denoted as
lc
p,lc

p and nc
p,nc

p individually, see Fig. 1.

p 

p

ncp

p 
nc c
p

c

pr
c

p 

c

pr

c

p 

c 

( , , )c c ce u

lp

clp

Figure 1: Notations related to the cell Ωc.

To clarify the determination of the nodal velocity, we further give some notations to
describe the cell edges related to the point p. The list of edges passing through the point
p is denoted by E(p). For the edge e∈ E(p), we denote its other end point as p

′
, which

corresponds to p− or p+ shown in Fig. 1. Denote its direction to be from p to p
′

and
its length to be le

p. ne
p = (ne,z

p ,ne,r
p ) is its unit outward normal direction. νe

p is its normal
velocity. The variables with the subscripts cl and cr are the values of the corresponding
cell-centered variables in its left and right cells respectively.

The specific formula to calculate the nodal velocity used in this paper is as follows [20,
24],

Apup=bp, (2.13)

where

Ap=

(

a11 a12

a21 a22

)

, bp= ∑
e∈E(p)

re
ple

p(ρclacl+ρcracr)ν
e
pne

p, (2.14)

with

a11= ∑
e∈E(p)

re
p le

p(ρclacl+ρcracr)(n
e
p)

2
z,

a22= ∑
e∈E(p)

re
p le

p(ρclacl+ρcracr)(n
e
p)

2
r ,

a12= a21= ∑
e∈E(p)

re
ple

p(ρclacl+ρcracr)(n
e
p)z(n

e
p)r.
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Also, re
p =(2rp+rp′ )/3 and acl , acr are the local speeds of sound in the relevant cells. The

edge’s normal velocity νe
p is determined by the following acoustic Riemann solver along

the normal direction ne
p,

νe
p =

(ρclaclucl+ρcracrucr)·ne
p−Pcr+Pcl

ρclacl+ρcracr
. (2.15)

The formulas to calculate the nodal pressures πc
p and πc

p are as follows

Pc−πc
p=ρcac(up−uc)·nc

p, Pc−πc
p=ρcac(up−uc)·nc

p, (2.16)

where Pc is the pressure of the cell Ωc determined by {ρc,uc,ec}. rc
p and rc

p are defined as

rc
p =

1

3
(2rp+rp−), rc

p=
1

3
(2rp+rp+),

where p−,p+ are the two neighboring points of the point p (see Fig. 1).
The equation of nodal movement is discretized as

zn+1
p = zn

p+∆tnuz,n
p , rn+1

p = rn
p+∆tnur,n

p , (2.17)

where uz,n
p ,ur,n

p are the z and r components of up at the n-th time step. (zn
p,rn

p), (z
n+1
p ,rn+1

p )
are the z and r coordinates of the point p at the n-th and (n+1)-th time steps respectively.

The fully discretized scheme for Eq. (2.11) is written as follows

mc

( 1

ρn+1
c

− 1

ρn
c

)

=∆tnFm, (2.18a)

M
z,n+1
c Vn+1

c −M
z,n
c Vn

c =∆tnFz
M, M

r,n+1
c Vn+1

c −M
r,n
c Vn

c =∆tnFr
M, (2.18b)

en+1
c Vn+1

c −en
c Vn

c =∆tn
(

FE−
1

2
((uz,n+1

c +uz,n
c )Fz

M+(ur,n+1
c +ur,n

c )Fr
M)

)

, (2.18c)

where Vn+1
c = mc/ρn+1

c , Vn
c = mc/ρn

c . M
n
c = (M

z,n
c ,M

r,n
c ), M

n+1
c = (M

z,n+1
c ,M

r,n+1
c ), un

c =
(uz,n

c ,ur,n
c ) and un+1

c =(uz,n+1
c ,ur,n+1

c ) are the cell averages of the momentum and velocity
in the cell Ωc at the n-th and (n+1)-th steps respectively. Also

Fm = ∑
p∈p(c)

(rc,n
p lc,n

p nc,n
p +rc,n

p lc,n
p nc,n

p )·un
p, (2.19a)

Fz
M =− ∑

p∈p(c)

(rc,n
p lc,n

p πc,n
p nc,z,n

p +rc,n
p lc,n

p πc,n
p nc,z,n

p ), (2.19b)

Fr
M =− ∑

p∈p(c)

(rc,n
p lc,n

p πc,n
p nc,r,n

p +rc,n
p lc,n

p πc,n
p nc,r,n

p )+An
c Pn

a , (2.19c)

FE =− ∑
p∈p(c)

(rc,n
p lc,n

p πc,n
p nc,n

p +rc,n
p lc,n

p πc,n
p nc,n

p )·un
p, (2.19d)
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1

2

3

4
c 

3

c
 

1

c
 

2

c
 4

c
 

Figure 2: The definition of the pressures πc
1
, πc

2, πc
3
and πc

4.

where

Pn
a =

1

4
(πc

1
+πc

2+πc
3
+πc

4)

with πc
1
, πc

2, πc
3

and πc
4 being the values of pressure related to the two radial edges of

the cell Ωc if the polar grid is used (see Fig. 2). All the variables with the superscript n
represent the values of the relative variables at the n-th steps. (nc,z

p ,nc,r
p ), (nc,z

p ,nc,r
p ) are the

z and r components of nc
p, nc

p.

The time step ∆tn is controlled by both the CFL condition and the criterion on the
variation of the volume, see [20] for more details.

Remark 2.4. In general, just as shown in [20,24], all the nodal velocities can be calculated
by the formulas (2.13)-(2.15) except for those located at the z coordinate line, which are
obtained by imposing the boundary condition of zero normal velocity into the solver
(2.13)-(2.14). However, in practice, we notice that if we use these formulas on the nodes
located at the free boundary, a significant spurious heating error near this region arises.
In this paper, we apply the zero-pressure boundary condition on the nodal pressures
corresponding to the free boundary and the following alternative way to determine νe

p

at the free boundary, which is demonstrated to give better performance, especially for
expansion problems with free boundaries:

νe
p =

{

ucl ·ne
p, cl∈Ω,

ucr ·ne
p, cr∈Ω.

(2.20)

As an example, in the next subsection, we will show the comparison of the results of
the free expansion problem using the above mentioned two ways to determine the nodal
velocity at the free boundary.

2.2.2 Numerical tests

We have performed all the tests shown in [13] by the scheme (2.18) and obtained the
expected identical results as those in [13]. In this subsection, we will give several new
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tests which have not been shown in our previous papers to further verify the performance
of the scheme and to validate the new implementation. Purely Lagrangian computation,
the ideal gas with γ=5/3 and an initially equal-angled polar grid is used in the following
tests unless otherwise stated. Reflective boundary conditions are applied to the z and r
axes in all the tests. The velocity of nodes located at the z coordinate is obtained by
imposing the boundary condition of zero normal velocity into the solver (2.13)-(2.14).

Test 2.1. (The free expansion problem [31]). The initial computational domain is [0,1]×
[0,π/2] defined in the polar coordinates. The gas is initially at rest with density ρ=1 and
pressure P=1−(z2+r2).

This problem has the analytical solution as follows,

R(t)=
√

1+2t2, uξ(z,r,t)=
2t

1+2t2

√

z2+r2,

ρ(z,r,t)=
1

R3
, P(z,r,t)=

1

R5

(

1− z2+r2

R2

)

,

where R is the radius of the free outer boundary and uξ represents the value of velocity
in the radial direction.

The test is performed on an initially equal-angled polar grid. Free boundary condition
is applied on the outer boundary. To determine the velocity of the nodes at the free
boundary, we apply the two ways mentioned in the previous subsection to calculate the
normal velocity νe

p of the cell edges that are located at the free boundary respectively.
The first one is determined by the expression (2.15), the second one is determined by
the expression (2.20). Fig. 3 shows the grids with 40×40 at t = 1 obtained by the two
ways to determine the nodal velocity at the free boundary. From the figures, we can see
the second way gives more accurate position of the free boundary (its analytical radius
should be

√
3 at this time). Fig. 4 gives the comparison of the internal energy at t=1 by

using these two methods which shows that the first method produces spurious heating
in the cells experiencing expansion while the second one does not.

z

r

0 0.5 1 1.5
0

0.5

1

1.5

z

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3: The grids with 40×40 cells for the free expansion problem at t=1. Left: the nodal velocity at the free
boundary determined by the formulas (2.13)-(2.15); Right: the nodal velocity at the free boundary determined
by the formulas (2.13), (2.14), (2.20).
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Figure 4: The comparison of the specific internal energy for the free expansion problem by using two different
ways to determine the nodal velocity at the free boundary.

Test 2.2. (The Saltzman problem [15]). This is a well known difficult test case to validate
the robustness of a Lagrangian scheme when the mesh is not aligned with the fluid flow.
The initial mesh is 100 cells in the z-direction and 10 cells in the r-direction which is
defined by

z(i, j)=(i−1)∆z+(11− j)sin(0.01(i−1)π)∆r, r(i, j)=(j−1)∆r,

where ∆z=∆r=0.01. The initial mesh is displayed in Fig. 5 which is deliberately distorted
to set it as a more demanding test case. The left boundary of the domain is a piston which
moves from left to right with a constant velocity of 1.0. The initial conditions involve a
stationary gas with a unity density and an internal energy of 10−6. Reflective boundary
conditions are used on the right, upper and lower boundaries. Fig. 6 shows the numerical
results of grid and density at the time t= 0.8 when the shock has hit the wall at x= 1.0
and bounced back to the left region. At this time, the shock is expected to be located at
x=0.967, the analytical values of density are 4 and 10 in the two regions near the shock
respectively. The numerical results are close to these analytical values.
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Figure 5: The initial grid of the Saltzman problem.

Test 2.3. (The one-dimensional simplified spherical ICF ignition problem). This is a sim-
plified spherical ICF ignition problem in a cylindrical coordinate system. The model
consists of two regions filled with DT gas and DT ice respectively, see the left picture in
Fig. 7. The DT gas with density 0.0003g/cm3 is in the domain of radius∈ [0,870](µm) and
the DT ice with density 0.25g/cm3 is in the domain of radius∈[870,950](µm). A source of
pressure is imposed on the outer surface of the model. Its evolution curve is shown in the
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Figure 6: The results of the Saltzman problem at t=0.8. Left: the grid; Right: the density as a function of the
z coordinate.
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Figure 8: The results of the 1D simplified ICF ignition problem with a 90×40 grid. Left: the initial grid; Middle:
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right picture in Fig. 7, where t0=2.613, t1=3.1485, t2=3.3462, t3=5.0, t4=6.0(ns); P0=1,
P1 =4, P2=16, P3 =64, P4 =100(Mbar). This kind of source is designed to generate four
imploding shock waves coalescing near the inner surface of the fuel so that the expected
high temperature and high density are obtained in the DT gas region. A 90×40 grid is
applied in the 1/4-circle computational domain to test this problem. Fig. 8 shows the
initial grid, the grid at the most compressed time (t=5.9) and the trajectories of the inner
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and outer surfaces. The reference solution is given by the one-dimensional second-order
Lagrangian code in the spherical coordinate with 5000 cells. From the figures, we notice
that the numerical result is symmetrical and agrees with the reference solution very well.

Test 2.4. (The two-dimensional simplified spherical ICF ignition problem). We consider
further the above simplified ICF model by using a two-dimensional source of pressure.
To be more specific, the following perturbation of the source of pressure given in Test 2.3
is used,

P=(1+ǫcoskθ)P3,

where P3 denotes the pressure source in Test 2.3, ǫ=0.01 stands for the magnitude of the
perturbation and k= 6 stands for the wave number. The same initial grid as in Test 2.3
is used in this test. The results of the grid and the density at the most compressed time
(t=5.9) are given in Fig. 9. For this two-dimensional problem, we cannot easily obtain an
analytical or reference solution. However, considering that it is difficult for most of the
existing Lagrangian schemes to simulate this model to this critical time due to the serious
grid distortion, the results shown in Fig. 9 demonstrate the robustness of our scheme.
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Figure 9: The results of the 2D simplified ICF ignition problem in the whole region obtained by a mirror image
at t=5.9. Left: the grid; Right: the density contour.

3 Conservative Lagrangian scheme for the three-temperature

radiation hydrodynamic equations

3.1 Three-temperature model for the ICF problem and its discretization

For the inertial confinement fusion (ICF) simulations, usually multiple internal energy
equations are involved. For example, in the LARED-H code [30] which is developed to
study laser target coupling and hohlraum physics, it is assumed that the electron, ion and
radiation field are in local thermodynamic equilibrium (LTE) respectively, each having
its own temperature, resulting in the so-called three-temperature model. In this model,
the energy equation consists of three internal energy equations. To be more specific,
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the three-temperature hydrodynamic equations in the cylindrical coordinates with the
Lagrangian formulation have the following expression

d

dt

∫∫

Ω(t)
ρrdzdr=0, (3.1a)

d

dt

∫∫

Ω(t)
ρurdzdr=−

∫

Γ(t)
(Pe+Pi+Pr)nds, (3.1b)

d

dt

∫∫

Ω(t)
eerdzdr=

∫∫

Ω(t)
(−Pe∇·u+∇·(ke∇Te)+ρse)rdzdr, (3.1c)

d

dt

∫∫

Ω(t)
eirdzdr=

∫∫

Ω(t)
(−Pi∇·u+∇·(ki∇Ti)+ρsi)rdzdr, (3.1d)

d

dt

∫∫

Ω(t)
eerdzdr=

∫∫

Ω(t)
(−Pr∇·u+∇·(kr∇Tr)+ρsr)rdzdr, (3.1e)

where {ee,ei,er}, {Pe,Pi,Pr} and {Te,Ti,Tr} are the internal energy, pressure and tempera-
ture of electron, ion and radiation respectively. {ke ,ki,kr} are the conductivity coefficients
of electron, ion and radiation respectively. {se,si,sr} are the source terms which have the
following detailed expression,





se

si

sr



=





wei(Ti−Te)+wer(Tr−Te)+sl

wei(Te−Ti)
wer(Te−Tr)



, (3.2)

where wei is the electron-ion energy exchange term, wer is the electron-radiation energy
exchange term and sl is the laser energy term. Besides a laser source, other sources such
as that for radiation can be applied either in the energy equations or in the boundary
conditions on the temperature, flux, pressure, etc.

In the LARED-H code, the laser energy term is given with a 3D ray-tracing package
for computing the inverse-bremsstrahlung energy deposition rate. The 3-D laser package
computes the trajectories of laser rays through the mesh. The rays are bent obeying the
laws of refraction. Ray trajectories are calculated using the gradient-index geometrical
optics equations. Based on the computed ray path lengths, energy is deposited in each
cell by inverse bremsstrahlung, see [16] for more details. The specific definition of the
terms and coefficients in Eqs. (3.1)-(3.2) which have not been discussed here can be found
in [9, 32].

The electron, ion and radiation thermal conduction terms in the internal energy equa-
tions are discretized by the Kershaw’s nine-point diffusion difference scheme [18]. The
code uses the staggered-grid based Lagrangian hydrodynamic schemes such as those
in [3, 6] to solve the mass and momentum equations and the work terms (the first right-
hand-side terms) in the energy equations. The Euler forward method is used to discretize
the time derivative terms in Eq. (3.1). The whole system is finally solved by an unsplit
method which applies the implicit discretization to the heat conduction terms and the en-
ergy exchange terms and applies the explicit discretization to the hydrodynamics terms
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and the laser energy term. The above mentioned scheme can keep the spherical sym-
metry property but can not keep the conservation of momentum or total energy in the
cylindrical coordinates. In this paper, we would like to generalize the scheme presented
in [13], with the technique described in the previous section, to the LARED-H code which
can preserve both the spherical symmetry and conservation properties. In the following,
we only discuss the discretization of the terms related to the hydrodynamics, as other
terms are solved by the original methods used in the LARED-H code.

For the mass and momentum equations in (3.1), we use the scheme (2.18) to solve
them directly. We now discuss how to discretize the work terms appearing in the internal
energy equations.

Denote

P=Pe+Pi+Pr, We =−
∫∫

Ωc

Pe∇·urdzdr,

Wi =−
∫∫

Ωc

Pi∇·urdzdr, Wr =−
∫∫

Ωc

Pr∇·urdzdr,

and

W=We+Wi+Wr =−
∫∫

Ωc

P∇·urdzdr=−
∫∫

Ωc

(Pe+Pi+Pr)∇·urdzdr.

Then the work terms of electron and radiation We, Wr are discretized as follows

We ≈Fte :=−Pc
e ( ∑

p∈p(c)

(rc,n
p lc,n

p nc,n
p +rc,n

p lc,n
p nc,n

p )·un
p), (3.3a)

Wr ≈Ftr :=−Pc
r ( ∑

p∈p(c)

(rc,n
p lc,n

p nc,n
p +rc,n

p lc,n
p nc,n

p )·un
p), (3.3b)

where Pc
e ,Pc

r are the electron and radiation pressures at the cell center which are deter-
mined by the density and corresponding internal energy in the cell Ωc through the equa-
tion of state (EOS).

Using the technique introduced in the previous section, the work term of ion Wi is
discretized in the following way,

Wi =W−We−Wr

≈Fti :=FE−
1

2

[

(uz,n+1
c +uz,n

c )Fz
M+(ur,n+1

c +ur,n
c )Fr

M

]

−Fte−Ftr, (3.4)

where Fz
M, Fr

M, FE have the same definitions as in (2.19).

Remark 3.1. We apply the standard technique of staggered-grid based schemes such as
those in [3,6] to solve the three-temperature equations. To be more specific, we discretize
the electron and radiation energy equations by the central difference (3.3) and discretize
the ion energy equation by (3.4) which involves (implicit) numerical viscosity through
upwinding of a cell-centered scheme. This implicit numerical viscosity has an effect of
converting dissipation of kinetic energy into internal energy through shock waves. This
effect can further be demonstrated by the following numerical tests such as the two-
material shock tube problem.
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Proposition 3.1. The above described scheme for the three-temperature hydrodynamic
equations (3.1) can keep the properties of spherical symmetry and the conservation for
mass, momentum and total energy.

Proof. For the preservation of the conservation property, we have the following brief
proof:

As the scheme (2.18) is used to discretize the mass and momentum equations in (3.1)
directly, the conservation of mass and momentum is obtained automatically. For the
proof of the conservation of total energy, here we only consider the hydrodynamics terms
in Eq. (3.1) and assume the discretizations for the heat conduction and source terms do
not destroy the conservation of total energy. Specifically, we will prove that, for the fol-
lowing simplified hydrodynamics equations, the scheme can keep the conservation of
total energy

d

dt

∫∫

Ω(t)
ρrdzdr=0, (3.5a)

d

dt

∫∫

Ω(t)
ρurdzdr=−

∫

Γ(t)
(Pe+Pi+Pr)nds, (3.5b)

d

dt

∫∫

Ω(t)
eerdzdr=

∫∫

Ω(t)
−Pe∇·urdzdr, (3.5c)

d

dt

∫∫

Ω(t)
eirdzdr=

∫∫

Ω(t)
−Pi∇·urdzdr, (3.5d)

d

dt

∫∫

Ω(t)
eerdzdr=

∫∫

Ω(t)
−Pr∇·urdzdr. (3.5e)

As discussed above, the momentum and energy equations in (3.5) are discretized in each
cell Ωc as follows,

ρn+1
c un+1

c Vn+1
c −ρn

c un
c Vn

c =∆tFM, (3.6a)

en+1
e,c Vn+1

c −en
e,cV

n
c =∆tFte, (3.6b)

en+1
i,c Vn+1

c −en
i,cV

n
c =∆tFti, (3.6c)

en+1
r,c Vn+1

c −en
r,cV

n
c =∆tFtr , (3.6d)

where ee,c, ei,c, er,c are the cell averages of electron, ion, radiation internal energy in Cell
Ωc respectively. FM, Fte, Fti, Ftr are determined by (2.19), (3.3), (3.4) individually.

Multiplying (3.6a) by (un+1
c +un

c )/2 and summing it with (3.6b), (3.6c), (3.6d) and
using the fact that mc=ρn+1

c Vn+1
c =ρn

c Vn
c , we then get

[

en+1
e,c +en+1

i,c +en+1
r,c +

1

2
ρn+1

c (un+1
c )2

]

Vn+1
c −

[

en
e,c+en

i,c+en
r,c+

1

2
ρn

c (u
n
c )

2
]

Vn
c

=∆t
[

Fte+Fti+Ftr+
1

2
(un+1

c +un
c )·FM

]

.
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Due to (3.4) and the relationship Ec= ee,c+ei,c+er,c+ρcu
2
c /2, we have

E
n+1
c Vn+1

c −E
n
c Vn

c =∆tFE. (3.7)

This discretization can keep the conservation of total energy which has been shown in [13,
20]. Thus the proof of conservation is finished.

As to the property of spherical symmetry, the steps of the proof follow the lines given
in [13]. We will not repeat them here to save space.

3.2 Numerical tests for the three-temperature model

We have implemented the above approach in the LARED-H code and performed the
two-material shock tube test and the ICF implosion test by using the new hydrodynamic
scheme, which demonstrates the validation of our new approach. The units of time,
length, mass, density and temperature are set to be ns, µm, g, g/cm3 and K respectively
unless otherwise stated.

Test 3.1. (The two-material shock tube problem). We use our two-dimensional code to
test a one-dimensional two-material shock tube problem similar to that given in [2]. The
computational domain is [0,1]×[0,0.1](cm) whose left region consists of Aluminum (Al)
and right region is filled with plastic (CH). The initial interface is located at z = 0.5cm.
The initial condition is as follows

(ρ,Te,Ti,Tr,uz,ur)
T =

{

(2.7,2.32×108,2.32×108,2.32×106,0,0)T, 0≤ z≤0.5,

(1,1.16×108,1.16×108,1.16×106,0,0)T, 0.5≤ z≤1.
(3.8)

The ideal gas equation of state is used to both materials Al and CH. The final time is
t=2. We perform the purely Lagrangian simulation in two cases. The reference solutions
for both cases are produced by the simulation with 2000×4 cells. Firstly, we test the
problem by the three-temperature model, that is, simulating Eq. (3.1)-(3.2) in a normal
way. Fig. 10 shows the results of density, electron temperature and radiation temperature
at the section r=0.05cm with 100×4, 200×4, 400×4 cells respectively. The result of the ion
temperature is similar to that of the electron temperature. In this case, we observe that
most energy of electron and ion is converted to the radiation energy and the radiation
is close to a constant state but the electron and ion are not. The numerical results of
all the variables converge to the reference solutions asymptotically. Secondly, we test the
problem by setting the electron-radiation energy exchange term wer in Eq. (3.2) to be zero.
This treatment on wer results in the test simulated by a two-temperature (electron and ion)
model which is similar to that used in [2]. Fig. 11 shows the results of density and electron
temperature at the section r=0.05cm with three different refined grids. The figures reflect
the convergence trend of the numerical solutions toward the reference solutions and no
oscillation is observed near the interface. These results are comparable to those shown
in [2].
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Figure 10: The results of the two-material shock tube problem by simulating the three-temperature equations
(3.1)-(3.2) at t=2. Left: density; Middle: electron temperature; Right: radiation temperature.
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Figure 11: The results of the two-material shock tube problem by simulating the three-temperature equations
(3.1)-(3.2) with wer =0 at t=2. Left: density; Right: electron temperature.

Test 3.2. (The ICF implosion test). A capsule is a spherical shell filled with low-density
gas. The shell with carbon-hydrogen polymer (CH) is composed of an outer region r∈
[100,112], which forms the ablator and an inner region r ∈ [0,100] of deuterium-tritium
(DT), which forms the main fuel. A radiation source temperature is imposed on the
outer surface of the capsule which changes with time as the curve shown in Fig. 12. At
the initial time, the whole region is at rest. The density of the DT material is 0.0038
and the density of the CH material is 1. The electron, ion and radiation have the same
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Figure 12: The evolution curve of the source radiation temperature.
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Figure 13: The results of the ICF implosion problem with a 100×30 grid. Left: the initial grid; Middle: the
grid at the most compressed time (t=1.54); Right: the zoomed grid near the center at t=1.54ns.

Figure 14: The results of the ICF implosion problem with a 100×30 grid at the most compressed time (t=1.54).
Left: electron temperature; Middle: ion temperature; Right: radiation temperature (the temperature unit is

106K).
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Figure 15: The trajectories of the interface by using different grids. Left: the whole time region; Right: the
zoomed-in time region near the most compressed time. Solid line: the reference solution; dashed line: the
computational solution.

temperature as 300◦. We simulate this model with the Lagrangian scheme (2.18), (3.3)-
(3.4) on a sequence of progressively refined grids with 100×15, 100×30, 200×15, 200×30,
400×15 cells. The final time is t=2.2. The numerical result with a 800×30 grid is taken
as the reference solution. Figs. 13 and 14 show the results with a 100×30 grid at the most
compressed time (t=1.54). We notice the expected symmetrical results both in the grid
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and in the temperature. Fig. 15 shows the trajectories of the interface simulated by the
above mentioned different grids respectively. Comparing with the reference solution,
we can observe the asymptotically convergent trend of the numerical solutions which
demonstrates the validation of our hydrodynamic discretization strategy for the three-
temperature equations.

4 Concluding remarks

Many multi-material hydrodynamic application problems involve multiple internal en-
ergy equations such as those for electron, ion and radiation and their simulation codes
are usually based on staggered-grid Lagrangian schemes which solve the internal energy
equations directly. This paper introduces a strategy to apply cell-centered Lagrangian
schemes, which usually are based on the Euler equations in the total energy form, to
solve the compressible fluid flow with multiple internal energy equations without loss of
its original good properties.

We have established an equivalency relationship between the cell-centered discretiza-
tions of the Euler equations in the forms of the total energy and of the internal energy.
Through a modification on the implementation, without loss of any of its good properties,
the cell-centered Lagrangian scheme can be used to solve one or multiple internal energy
equations directly. As a numerical test, the strategy of solving the three-temperature
equations by the cell-centered Lagrangian scheme is proposed and implemented in the
LARED-H radiation hydrodynamic code. This application does not require any modi-
fication to the original structure of the code. Several two dimensional numerical exam-
ples for both Euler equations and three-temperature hydrodynamic equations in two-
dimensional cylindrical coordinates are presented to demonstrate the validation of the
schemes in terms of conservation, symmetry, accuracy, non-oscillation and robustness.
In future work, we will investigate a second order accurate extension of the cell-centered
Lagrangian scheme with the properties of spherical symmetry and conservation, which
is suitable for the Euler equations both in the forms of the total energy and of the internal
energy.
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