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Abstract. After setting a mixed formulation for the propagation of linearized water
waves problem, we define its spectral element approximation. Then, in order to take
into account unbounded domains, we construct absorbing perfectly matched layer for
the problem. We approximate these perfectly matched layer by mixed spectral ele-
ments and show their stability using the ”frozen coefficient” technique. Finally, nu-
merical results will prove the efficiency of the perfectly matched layer compared to
classical absorbing boundary conditions.
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1 Introduction

In this article we focus on the water wave equations presented in [1] which model grav-
ity wave generation and propagation in water, in its complete form, it read as solving
a homogeneous Laplacian problem in water coupled with a non linear boundary condi-
tion on the surface, depending on time. A simpler model is obtained by linearizing the
surface condition in order to only describe the propagation of the gravity wave, which
is sufficient for waves of small amplitudes compared to the deepness of the bottom and
the wavelength. The purpose of this paper is to develop original absorbing perfectly
matched layers (PML) to take into account the propagation of linearized water waves
(LWW) problem in unbounded domains and to present their finite element discretiza-
tion. PML was introduced by Bérenger [2] for hyperbolic problems. In this paper we
extend these ideas to a strongly elliptic problem. We will present the approximation of
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the PML for the LWW equations by high order mixed spectral elements with Legendre-
Gauss-Lobatto points. This approach was successfully applied to the acoustics and linear
elastodynamic equations [3, 4]. For classical transient equations, this approximation is
fundamental, as it provides mass-lumping which substantially reduces the cost of the
method. In our case, the mixed form of the spectral element method enables a simple
writing of the PML system, without adding extra variables (as in [2] and [5]), and leads
to a low storage and factorization of the propagation operator (the stiffness matrix). This
second property provides an efficient algorithm for wave equations in the frequency do-
main [6]. This factorization can be even more efficient for a Laplacian problem, which
justifies our approximation for the LWW problem. The stability of our PML is also stud-
ied. Whereas stability issues are often a difficult question (especially for elastodynamic
waves), in this article we manage to prove the stability of the PML at a continuous level.
We also present 2D numerical results that show that previously designed high order ab-
sorbing condition (see [7]) is long time unstable, whereas the PML are long time stable at
a discrete level.

Our paper is divided into four parts: in the second section, we introduce the mixed
form of the problem and its variational formulation. In the third section, we construct its
approximation by spectral elements whose principle is recalled. Thereafter, we present
the discrete formulation by pointing out the sparse and low storage character of the
matrices involved. In the fourth section, after discussing the stability of the absorbing
boundary conditions (ABC) of first order for taking into account unbounded domains [7],
we construct perfectly matched layers using the reformulation introduced by Chew and
Weedon [5]. We then show how to apply the mixed spectral element method to these
PML. Lastly we show the stability of the continuous PML by using a frozen coefficient
technique as in [8]. The fifth section is devoted to numerical experiments which prove
the stability and the efficiency in terms of reflections of the PML compared to the first
order ABC.

2 The continuous problem

2.1 Classical formulation

Let Ω be an open domain of R
d (d = 2,3) and ΓS, ΓB and Γh three subsets providing a

partition of ∂Ω.
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With these notations, the continuous problem reads as follows:




∆Φ=0, in Ω,

∂2Φ

∂t2
+g

∂Φ

∂n
=0, on ΓS,

∂Φ

∂n
=h, on Γh,

∂Φ

∂n
=0, on ΓB,

(2.1)

where h is a given function of x and t, g is the gravitation constant and Φ is the velocity
potential in the fluid. On the other hand, ∂/∂n=~n ·∇, ~n being the outward normal unit
on ∂Ω. In the following we consider zero initial condition. The shape of the surface of
the ”ocean” is given at any time by

η(x,t)=
1

g

∂

∂t
Φ(x,0,t). (2.2)

This problem has its evolution term on its boundary, which must be coupled with the
equation in Ω. We write a proper variational formulation, in which Φ ∈ H1(Ω). We
multiply by H1(Ω) test functions the first equation of (2.1), integrate by parts and replace
the boundary terms. We have to find Φ∈H1(Ω) such that

∫

Ω
∇Φ·∇ϕd~x+

1

g

d2

dt2

∫

ΓS

Φϕdσ=
∫

Γh

hϕdσ, ∀ϕ∈H1(Ω). (2.3)

2.2 Mixed formulation

The first step towards the construction of our approximation is to reformulate equations
(2.1) as the following system:





∇·~v=0, in Ω,

~v=∇Φ, in Ω,

∂2Φ

∂t2
+g~v ·~n=0, on ΓS,

~v·~n=h, on Γh,

~v·~n=0, on ΓB.

(2.4)

As before, the second step is the definition of a proper variational formulation of the

mixed formulation. We seek for Φ ∈ H1(Ω) and ~v ∈
[
L2(Ω)

]d
. Again, we integrate by

parts the first equation and we replace the boundary terms by (2.4). We finally get

−
∫

Ω
~v·∇ϕd~x+

1

g

d2

dt2

∫

ΓS

Φϕdσ=
∫

Γh

hϕdσ, ∀ϕ∈H1(Ω), (2.5a)

∫

Ω
~v·~ψd~x=

∫

Ω
∇Φ·~ψd~x, ∀~ψ∈

[
L2(Ω)

]d
. (2.5b)
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3 Construction of the discrete formulation

3.1 Approximation spaces

In order to define the approximate spaces, let K̂=[0,1]d be the squared or cubic reference
element, ~̂x ∈ K̂ and Mh be a mesh of Ω composed of Ne quadrilaterals in 2D and of
hexahedra in 3D denoted Kj. ~Fj = (Fj,1,··· ,Fj,d) is the mapping such that ~Fj(K̂) =Kj, we
note DFj the jacobian matrix of Fj and Jj its determinant. On this mesh, we define the

following subspace of H1(Ω):

Ur
h=

{
vh ∈H1(Ω) such that vh |Kj

◦~Fj ∈Qr

}
, (3.1)

and the subspace of
[
L2(Ω)

]d
defined as

Vr
h =

{
~vh ∈

[
L2(Ω)

]2
such that ∀Kj∈Mh, |Jj|DF−1

j ~vh |Kj
◦~Fj ∈

[
Qr

]d
}

, (3.2)

where Qr is the classical polynomial of total degree at most r. For elements with straight
edges, the mapping ~Fj can be easily derived from the Q1 basis functions on K̂. The use of

elements derived from K̂ is very convenient since basis functions ϕ̂ in 2D or 3D on K̂ can
be written as a product of one-dimensional basis functions as follows:

ϕ̂~j(
~̂x)=

d

∏
k=1

ϕ̂jk(x̂k). (3.3)

{ξ̂p} being a 1D set of r+1 interpolation points, which are the Legendre Gauss-Lobatto
(LGL) quadrature points. The functions ϕ̂jk satisfy the relation

ϕ̂jk(ξ̂p)=δjk p, ∀p=1,··· ,r+1, (3.4)

where δjk p is the Kronecker symbol. In what follows the integral with the upper script
LGL are computed using the LGL quadrature points. More details about the definition
of the approximation spaces and the quadrature formulae can be found in [3].

3.2 The semi-discrete problem in space

With the above notations, the approximate problem reads: Find Φh∈Ur
h and~vh∈Vr

h such
that

∫ LGL

Ω
~vh ·∇ϕhd~x+

1

g

d2

dt2

∫ LGL

ΓS

Φh ϕhdσ=
∫ LGL

Γh

hϕhdσ, ∀ϕh∈Ur
h, (3.5a)

∫ LGL

Ω
~vh ·~ψhd~x=

∫ LGL

Ω
∇Φh ·~ψhd~x, ∀~ψh∈Vr

h. (3.5b)
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By computing all the integrals of (3.5) using a LGL quadrature rule of order r (which
is exact for polynomials of order 2r−1), we get the following semi-discrete problem in

space: Find U=(ui)
Nu
i=1 and V=(vi)

Ne(r+1)d

i=1 such that

RhV+
1

g

d2

dt2
D

γ
h U−H=0, BhV=R∗

hU, (3.6)

where R∗
h is the transposed matrix of Rh and

Rh,ij=
∫ LGL

Ω

~ψj ·∇ϕidx, Bh,ij=
∫ LGL

Ω

~ψj~ψjdx, D
γ
h,ij=

∫ LGL

ΓS

ϕj ϕidx. (3.7)

We now list some important properties of the discretization:

1. U and V are the degree of freedom (D.O.F) vectors corresponding to Φh and ~vh

respectively, H is the right-hand side,

2. Rh is a stiffness matrix whose definition requires its knowledge on K̂ only,

3. D
γ
h is a diagonal matrix such that dij = aijδijδ~xi∈ΓS

, δ~xi∈ΓS
being equal to one if the

location ~xi corresponding to the ith D.O.F is on ΓS zero otherwise,

4. Bh is d×d block-diagonal symmetric matrix.

Property 2 comes from the following identity

∀Kj∈Mh, ∀ϕh∈Ur
h, ∀~ψh∈~Vr

h ,
∫ LGL

Kj

∇ϕh ·~ψhd~x=
∫ LGL

K̂
∇̂ϕ̂h ·~̂ψhd~̂x, (3.8)

where ∇̂ is the ∇ operator in ~̂x coordinates, Jj =detDFj and ~̂ψh = |Jj|DF−1
j

~ψh|Kj
◦~Fj. This

justifies the somehow strange definition of ~Vr
h . On the other hand, if R∗

h is computed
element by element, we do not need to store it. This kind of computation become more
and more efficient as the order increase. The properties 3 and 4 are crucial, it corresponds
to mass lumping on discrete H1 and [L2]d spaces and will enable an easy implementation
of the perfectly matched layer.

Remark 3.1. As proven in [3], we have

Kh=RhB−1
h R∗

h, (3.9)

where Kh is the stiffness matrix of the following approximate variational formulation:
find Φh ∈Ur

h such that

∫ LGL

Ω
∇Φh ·∇ϕhd~x+

1

g

d2

dt2

∫ LGL

ΓS

Φh ϕhdσ=
∫ LGL

Γh

hϕhdσ, ∀ϕh∈Ur
h. (3.10)

This shows that (3.6) is a reformulation of the spectral element approximation of (2.1).
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3.3 The fully discrete problem

The discretization in time is made by a centered θ-scheme as follows

Rh

(
θVn+1+(1−2θ)Vn+θVn−1

)
+

1

g
D

γ
h

Un+1−2Un+Un−1

∆t2
−Hn =0, (3.11a)

BhVn =R∗
hUn, (3.11b)

where ∆t is the time-step and θ≥1/4. For the sake of simplicity we choose to take θ=1/2
(as it kills the centered term) but every choice of θ≥1/4 will provide an unconditionally
stable scheme The choice θ<1/4 gives either an ill-posed problem (θ=0) or an unstable
scheme. With θ=1/2, taking into account (3.9), the solution of (3.11a)-(3.11b) reads

Un+1= g∆t2
(

D
γ
h −

g∆t2

2
Kh

)−1(1

2
KhUn−1+

1

g∆t2
D

γ
h (2Un−Un−1)+Hn

)
. (3.12)

3.4 Algorithmic issues

Computing the solution of (3.12) requires an inversion of a discrete Laplace operator at
each time-step. When a factorization cannot be achieved, the resolution is classically
made by a conjugate gradient method which is based on a recurrent product of matrix
D

γ
h +g∆t2Kh/2 by a vector pk. By using (3.9), this product πk can be decomposed as

follows:

qk =B−1
h R∗

h pk. (3.13)

Consequently,

πk =− g∆t2

2
Rhqk+D

γ
h pk. (3.14)

As shown in [3] such a decomposition leads to a low-storage and fast matrix-vector prod-
uct for high-order approximation. For preconditioning, a multigrid algorithm can be
used, i.e., the inverse of the matrix is approximate by the inverse of a matrix coming from
the a lower order approximation. It has been shown in [6] to be an efficient technique
on Helmoltz problem (especially in 3D) and it can naturally be extended to a laplace
problem.

4 Unbounded domains

4.1 Absorbing boundary conditions

The key idea to write an ABC is to look for a Dirichlet to Neumann operator. The domain
after ΓA is a semi-infinite rectangle, so we consider LWW equations in such a domain
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Figure 1: We look for a DtN on ΓA. The solution on a semi-infinite rectangle is computed analytically.

with Dirichlet data on ΓA denoted ĥ(y,t). By using Fourier transform, we look at the
problem in frequency domain

∂2Φ̂

∂x2
1

+
∂2Φ̂

∂x2
2

=0, in Ω, (4.1a)

−ω2Φ+g
∂Φ̂

∂n
=0, on ΓS, (4.1b)

∂Φ̂

∂n
=0, on ΓB, (4.1c)

Φ̂= ĥ, on ΓA. (4.1d)

As in [7], we denote by {wn}+∞
n=0 the orthonormal eigenfunctions of the self-adjoint oper-

ator A=−∂2/∂x2
2 acting D(A) with

D(A)=
{

ϕ∈H2(0,L)
/ ∂ϕ

∂x2
(L)=0 and

∂ϕ

∂x2
(0)=ω2ϕ(0)

}
. (4.2)

The related eigenvalues are denoted λn. They are all positive and real except for the first
one which is negative. Their corresponding values are uniquely defined (up to a sign) by

λ2
0tanhλ2

0L=
ω2

L
, λ2

n tanλ2
nL=

ω2

L
, n≥1. (4.3)

Φ̂ is decomposed on the Hilbert basis made of eigenfunctions {wn}

Φ̂(ω,x1,x2)=
+∞

∑
n=0

Φ̂n(ω,x1)wn(ω,x2). (4.4)

By injecting Φ̂ in (4.1a), we obtain a family of problems for all n written, on [0,+∞]

∂2Φ̂n

∂x1
2
−λnΦ̂n =0. (4.5)

The solution of theses problems are easily obtained using the limit absorption principle
to eliminate the ingoing wave and exponential growing waves

Φ̂0(ω,x1)=
(
ĥ,w0

)
L2e−i

√
−λ0(ω)x1 , Φ̂n(ω,x1)=

(
ĥ,wn

)
L2 e−

√
λn(ω)x1 , n≥1. (4.6)
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We see that only one mode is propagating, so the approximation made in [7] is to neglect
the evanescent waves. The definition of the DtN operator is then straightforward

∂Φ̂

∂x1
(ω,0,x2)≃

∂Φ̂0

∂x1
(ω,0)w0(ω,x2)=−i

√
−λ0(ω)Φ̂0(ω,0)w0(ω,x2). (4.7)

Using the same approximation the DtN operator reads

−i
√
−λ0(ω)Φ̂0(ω,0)w0(ω,x2)≃−i

√
−λ0(ω)Φ̂(ω,0,x2) ⇒ ∂Φ̂

∂x1
=−i

√
−λ0Φ̂. (4.8)

The main question is how to approximate λ0(ω) to have a stable problem when we get
back into the time domain. The high order boundary condition (ABC1) presented in [7]
reads √

−λ0(ω)≃ 1√
gL

+
bω2

1−aω2
(4.9)

with

a=
11

60

L

g
, b=

1

6

√
L

√
g3

. (4.10)

It has been proven that in the time domain, there is no exponential growth of the solu-
tion. This relative weak result can not validate this model for long time simulation. The
approximation of

√
−λ0(ω) by functions which provides a long time stable and accurate

scheme is still an open and difficult question. This motivates the construction of efficient
perfectly matched layers.

4.2 Construction of perfectly matched layers

In this section, we try to get better absorption by constructing perfectly matched layers
(PML), introduced in [2], for this problem. This construction is based on Chew and Wee-
don’s approach for Maxwell’s equations [5]. It was already applied to different other
Eqs. [3] but never to the LWW system.We first add a rectangular (in 2D) domain ΩPML

such that x1≥ L, on which PML equations are defined, to the physical domain Ω and we
set Ω̃=Ω∪ΩPML. Then, we define the following variable change:

x̃1=





x1, if x1<0,

x1−
i

ω

∫ x1

0
ζ(s)ds, otherwise,

this provides
∂

∂x̃1
=

iω

iω+ζ(x1)

∂

∂x1
. (4.11)

For sake of simplicity, we suppose in the following that d=2, but the computations can
be easily extended to the 3D case. In a first step, we replace x1 by x̃1 in Eq. (2.4) and we
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Figure 2: The PML are constructed by adding an artificial layer.

apply the Fourier transform in time. We get





∂v̂1

∂x̃1
+

∂v̂2

∂x2
=0, in Ω̃,

∂Φ̂

∂x̃1
= v̂1, in Ω̃,

∂Φ̂

∂x2
= v̂2, in Ω̃,

ω2Φ̂= g~̂v ·~n, on ΓS,

~̂v·~n=h, on Γh,

~̂v·~n=0, on ∂Ω̃\ΓS∪Γh.

(4.12)

By using (4.11), Eqs. (4.12) become





iω
∂v̂1

∂x1
+(iω+ζ(x1))

∂v̂2

∂x2
=0, in Ω̃, ω2Φ̂= g~̂v·~n, on ΓS,

iω
∂Φ̂

∂x1
=(iω+ζ(x1))v̂1, in Ω̃, ~̂v·~n=h, on Γh,

iω
∂Φ̂

∂x2
= iωv̂2, in Ω̃, ~̂v·~n=0, on ∂Ω̃\ΓS∪Γh.

(4.13)

By applying the inverse Fourier transform in time to (4.13), we get the system in the time
domain





∂

∂t
∇·~v+ζ(x1)

∂v2

∂x2
=0, in Ω̃,

∂2Φ

∂t2
+g~v ·~n=0, on ΓS,

∂

∂t
~v− ∂

∂t
∇Φ+ζ(x1)v1~e1=0, in Ω̃,

~v·~n=h, on Γh,

~v·~n=0, on ∂Ω̃\ΓS∪Γh,

(4.14)

where~e1 is the unit vector of the x1-axis. One should remark that no auxiliary unknown
are needed to write the continuous problem. This should be compared to what must be
done for the wave equation, where, even for a 2D problem auxiliary unknowns must be
added. The same remarks can be done for the 3D problem.
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4.3 Variational formulation and approximate problem

As for (2.5), from (4.14), after integrating by parts, taking into account the boundary

conditions and setting Φ̃=∂Φ/∂t (Φ̄=∂2Φ/∂t2 in 3D)†, we get the following variational
problem

d

dt

∫

Ω̃
~v·∇ϕd~x+

∫

Ω
ζ(x1)v2~e2 ·∇ϕ+

1

g

d

dt

∫

ΓS

ζ(x1)Φ̃ϕdσ

+
1

g

d2

dt2

∫

ΓS

Φ̃ϕdσ=
d

dt

∫

Γh

hϕdσ, ∀ϕ∈H1(Ω), (4.15a)

d

dt

∫

Ω
~v·~ψd~x−

∫

Ω
∇Φ̃·~ψd~x+

∫

Ω
ζ(x1)v1~e1 ·~ψd~x=0, ∀~ψ∈

[
L2(Ω)

]d
, (4.15b)

we temporarily introduce an auxiliary variable

~w=

[
0 0
0 ζ(x1)

]
~v ⇒

∫

Ω
ζ(x1)vy

∂

∂y
ϕd~x=

∫

Ω
~w·∇ϕd~x. (4.16)

By applying the mixed formulation defined in Section 3.1, we get the following semi-
discrete problem in space

d

dt
RhV+RhW+

1

g

d

dt
D

γ,ζ
h Ũ+

1

g

d2

dt2
D

γ
h Ũ=

d

dt
H, (4.17a)

d

dt
BhV=R∗

hŨ−B
ζ,1
h V, BhW=B

ζ,2
h V, (4.17b)

where V is the discrete vector corresponding to ~vh, Ũ the discrete vector corresponding

to Φ̃h. For ϕi∈Ur
h and ~ψi∈Vr

h we define

B
ζ,1
h,ij=

∫ LGL

Ω

[
ζ(x1) 0

0 0

]
~ψj~ψidx, B

ζ,2
h,ij=

∫ LGL

Ω

[
0 0
0 ζ(x1)

]
~ψj~ψidx, D

γ,ζ
h,ij=

∫ LGL

ΓS

ζ(x1)ϕj ϕidx.

We want to keep a fully implicit scheme to achieve unconditional stability. A θ-scheme
with θ = 1/2 will be systematically used combined with centered discretizations for the
derivatives in time. We get

1

2
Rh

( 1

∆t
Ih+B−1

h B
ζ,2
h

)
(Vn+1−Vn−1)+

1

2g∆t
D

γ,ζ
h (Ũn+1−Ũn−1)

+
1

g∆t2
D

γ
h (Ũ

n+1−2Ũn+Ũn−1)=
( d

dt
H
)n

, (4.18a)

( 1

∆t
Bh+B

ζ,1
h

)
Vn+1=R∗

h(Ũ
n+1+Ũn−1)+

( 1

∆t
Bh−B

ζ,1
h

)
Vn−1. (4.18b)

†This change of variable avoids a third-order derivative of Φ in time. The velocity potential can be recovered

by a post processing process using Φ̃.
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As ζ is positive, ∆t−1Bh+B
ζ,1
h is always invertible. We can replace in (4.18a) Vn+1 by its

value defined in (4.18b) to have

(
K

ζ
h+

1

2g∆t
D

γ,ζ
h +

1

g∆t2
D

γ
h

)
Ũn+1

=
( d

dt
H
)n

+
2

g∆t2
D

γ
h Ũn+RhB

ζ
hVn−1+

(
K

ζ
h+

1

2g∆t
D

γ,ζ
h − 1

g∆t2
D

γ
h

)
Ũn−1, (4.19)

with

K
ζ
h =

1

2
Rh

( 1

∆t
Ih+B−1

h B
ζ,2
h

)( 1

∆t
Bh+B

ζ,1
h

)−1
R∗

h, (4.20a)

B
ζ
h =

( 1

∆t
Ih+B−1

h B
ζ,2
h

)
−
( 1

∆t
Bh+B

ζ,1
h

)−1( 1

∆t
Bh−B

ζ,1
h

)
. (4.20b)

As Bh,B
ζ,1
h ,B

ζ,2
h are d×d block-diagonal matrices B

ζ
h can be easily pre-computed and stored

only for the PML domain. One should remark that we intensively use the inverse of the
local L2 mass matrix their particular structures (d×d block-diagonal) is the key point
of the efficiency of the proposed discretization. Experiments have shown that an ex-
plicit time discretization of the PML operator (RhW in (4.17a)) leads to unstable schemes.
As the original problem ((3.11a)-(3.11b)) is unconditionally stable, a reasonable time dis-
cretization of the PML should keep this property. This motivates the use of a centered
implicit scheme for the time discretization of the PML operator. Although we achieved
to prove the stability at a continuous level, we were unable to prove a stability result of
the fully discretized system of the PMLs.

4.4 Consistency analysis

The aim of this subsection is to briefly justify the change of variable (4.11). In that pur-
pose, we consider a simplified problem. We take a domain infinite in the positive x1-
direction, Ω being bounded but not ΩPML. We can write the problem using the x̃1 vari-
able in frequential domain. We consider Dirichlet condition on Γh. As seen before, the
solution can be written as a superposition of the functions

Φ̂0(ω,x1)=
(
ĥ,w0

)
L2e−i

√
−λ0(ω)x̃1 , (4.21a)

Φ̂n(ω,x1)=
(
ĥ,wn

)
L2 e−

√
λn(ω)x̃1 , n≥1, (4.21b)

which gives for every n exponentially decaying waves by writing the solution on x1

Φ̂0(ω,x1)=
(
ĥ,w0

)
L2 e−i

√
−λ0(ω)x1 e−

√
−λ0(ω)

∫ x1
0 ζ(s)ds, (4.22a)

Φ̂n(ω,x1)=
(
ĥ,wn

)
L2 e−

√
λn(ω)x1 ei

√
λn(ω)

∫ x1
0 ζ(s)ds, n≥1. (4.22b)
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This shows that we do not have propagating modes in PML and that the solution is
preserved in the physical domain. We now need to prove that no exponentially growing
modes exist. Indeed the use of the limit absorption principle in (4.5) is not clear anymore,
we need to do more to say that no exponential growth occurs.

4.5 Stability analysis

In order to be efficient,the PML must be well-posed and stable in the sense that it must
not produce exponentially growing solutions. This section is devoted to the study of
stability by plane wave analysis (as in [8]) in an infinite strip of width L. We suppose that
ζ is constant positive and use the frozen coefficient technique proposed by Kreiss and
Lorenz [9]. We first redefine the PML by using the classical LWW problem described by
(2.1). By using (4.11) and applying the inverse Fourier transform in time, we get

∂4Φ

∂t2∂x2
1

+
∂4Φ

∂t2∂x2
2

+2ζ
∂3Φ

∂t∂x2
2

+ζ2 ∂2Φ

∂x2
2

=0, in Ω, (4.23a)

g
∂Φ

∂n
+

∂2Φ

∂t2
=0, on ΓS, (4.23b)

∂Φ

∂n
=0, on ΓB. (4.23c)

Theorem 4.1. The solution of (4.23) of the form Φ(x1,x2,t)=Φx2(x2)ei(ωt−kxx1) are exponen-
tially decaying function in time.

Proof. We set Φ(x1,x2,t) = Φx2(x2)eiωRte−ωI te−ikxx1 , where ω(kx) = ωR(kx)+iωI(kx) and
kx ∈ R. We are looking for solutions such that ωI > 0 in order to obtain exponentially
decreasing solutions in time. By plugging the plane wave solution in (4.23), we get the
following ODE:

− (iωkx)2

(iω+ζ)2
Φx2(x2)+Φ′′

x2
(x2)=0, (4.24)

with boundary conditions

Φ′
x2
(0)=

ω2

g
Φx2(0) and Φ′

x2
(L)=0. (4.25)

Solving (4.24) with (4.25) leads to relation

iωkx

ζ+iω
tanh

iωkx L

ζ+iω
=

ω2

g
. (4.26)

For kx and ζ fixed, ω=0 is one of the solutions of (4.26). For ω 6=0, (4.26) can be rewritten
as

(a+ib)tanh(aL+ibL)=
ω2

R−ω2
I

g
+

2ωRωI

g
i, (4.27)
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where

a=
kx(ω2

I +ω2
R−ωIζ)

(ζ−ωI)2+ω2
R

∈R and b=
ωRkxζ

(ζ−ωI)2+ω2
R

∈R. (4.28)

Let us call DR the set of (a,b) such that ω and kx verify (4.27). Since xtanhx is an even
function, we restrict ourself to kx ≥0. Now, we take ωR =0, which implies that b=0. So,
if we expand (4.27) and we look at its real part, we have

a(e4aL−1)

d1(a,0)
=−ω2

I , (4.29)

where d1(a,b)≥ 0, ∀(a,b) ∈ DR. This implies that a(e4aL−1)≤ 0 and then a = 0. Subse-
quently, ωI =0. We now suppose that ωR 6=0. As above, we expand (4.27) and we look at
its real part. We get

e4aLb+4ae2aL sin(bL)cos(bL)−b

d1(a,b)
=2ωRωI . (4.30)

After some computations, we get

kxζg(a,b)

Ld1(a,b)
=2ωI , (4.31)

where

g(a,b)=
e4aL

L
+4ae2aL sin(bL)cos(bL)

bL
− 1

L
. (4.32)

Since kx and ζ are positive, we have sign(g)= sign(ωI). To prove that g(a,b) is always
positive, we prove that ωI < 0⇒ g(a,b)≥ 0, so that the assumption ωI < 0 can never be
true because of (4.31). For this purpose, we first minor g(a,b). Since

sin(X)cos(X)

X
≥−1, ∀X∈R, (4.33)

we can write
e4aL

L
−4ae2aL− 1

L
≤ g(a,b), ∀(a,b)∈DR, (4.34)

this relation can be rewritten as follows

2
e2aL

L
(sinh2aL−2al)≤ g(a,b), ∀(a,b)∈DR. (4.35)

Now, ωI < 0⇒ a ≥ 0 implies that sinh2aL−2al > 0 and finally g(a,b) is positive, which
contradicts (4.31), and finishes the proof.



298 G. Cohen and S. Imperiale / Commun. Comput. Phys., 11 (2012), pp. 285-302

4000

a w

PML

500

6000S
Γ

Γ
h

Γ
A

Figure 3: Domain of computation. The domain is meshed with squares of length 500.

5 Numerical results

In this section we present the 2D numerical results obtained with the scheme (4.18b)-
(4.19). First we validate the PML model by presenting numerical results on a simple rect-
angle using the same configuration (source and domain) as in [7], secondly, we present a
more realistic situation on a non regular mesh.

The numerical domain of the first numerical experiment is described in Fig. 3. The
length L=4000 of the domain will remain constant throughout the simulations whereas
the width of the PML w and the width of the physical domain a will vary. The mesh will
remain fixed, but the order of approximation (r) used on each element of the mesh will
vary and so spatial refinements will be done through the increase of order of approxima-
tion. We use the parameter g=10m/s2 and the source on Γh defined by:

h(x1,x2,t)=Aexp
( (t−t0)2

p2

)
with A=0.169m/s, p=11.1408s, t0=35s. (5.1)

Following [3] we use a damping function in the PML parametrized by σ a positive con-
stant:

ζ(x1)=
σ(x1−a)2

w2
. (5.2)

The choice of a reasonable σ is not discussed here but the quality of the PML depends on
the matching of the discretization parameters and the damping function (see Fig. 4). If σ
is too small reflected waves are not damped enough (the reflected waves come from the
right boundary of the PML domain). If σ is too big the discretization is not fine enough
to correctly take into account the decreasing behavior of the solution which produce re-
flections as soon as the wave penetrates the PML domain.

At each time step we have to invert the matrix defined by (4.19)-(4.20a), to do so we
use a standard conjugate gradient. The performance not being a key point to evaluate
the efficiency of our PML, we do not use preconditioning technique. At each time step
the iterative method stops when the norm of the relative residual vector is below 10−8.
Fig. 5 presents snapshots of the elevation of the surface of the sea without PML on a large
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Figure 4: Evolution of the reflections with respect to σ.
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Figure 5: Snapshots at t= 25s, 50s, 75s, 100s, 125s and 150s of the elevation for two different cases. Left:
on a sufficiently large domain. Right: with PML, the dashed line separates the physical domain from the PML
domain.

domain and with PML. We clearly see the decaying behavior of the water waves when it
enters the PML.

To study more precisely the efficiency of the PML model, we compute the difference of
elevation η(x1,t) at x1=6000, obtained with different sizes of PML (w=4000 or w=8000)
and different orders (r= 1 to r= 5) of discretization between an elevation computed on
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Figure 7: Reflections with respect to the order r for different time steps ∆t for a fixed σ=8.

a larger domain (a = 64000) with the ABC1. To filter the discretization error from the
reflection error, the elevation computed on the larger domain is always obtained with
the same time step and order of elements as the simulation (with PML) it is compared
with. A simple homogeneous Neumann condition is used on the right boundary when
PML are used. When w=0, i.e., when no PML are used, we use the ABC1 on ΓA. As the
ABC1 explodes in long time simulation (see Fig. 6), we compute the infinite norm of the
reflection for short time simulation (between t= 0 and t= 120) and compare PML and
ABC1, the result are shown Fig. 7.

On the left graph in Fig. 7, we observe a numerical locking when we increase the order
of approximation. The time step is not small enough to correctly take into account the
decreasing behavior of the wave. Order 1 and 2 elements are also not able to correctly take
into account this behavior. On the right graph a smaller time step is used. The numerical
locking is shifted and the reflections decreased with the order of approximation. In both
cases, the reflections decrease with the increase of the layer’s width (w=4000 to w=8000),
note also that the reflections generate by the ABC1 are independent of the discretization
parameters. These reflections are more important than those produced by the PML as
soon as the discretization parameters are well chosen.
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Figure 8: Mesh of the computational domain surrounded by PML. The triangles are cut into quadrangles to
apply the mixed spectral elements method.
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Figure 9: Snapshot at t=30, t=90, t=150 and t=340 of the elevation (upper part) and the time derivative
of the velocity potential (lower part). The domain is surrounded by PML.

Previous results and practical experiments show that whereas the ABC1 are cheap in
term of computation time compared to the PML they do not provide satisfactory result
in term of stability. PML also offer a better precision if one adjusts the discretization
parameters.

To conclude the numerical result section, we present a more realistic simulation. We
consider a sea bottom with an obstacle (see Fig. 8). PML are used to bound the domain
on the left and on the right. The mesh is composed of triangles that are cut into quad-
rangles in order to apply the mixed finite element technique. The left side of the domain
represents the beginning of a coast, that is the region where the linearized water waves
equation may be no longer valid. In Fig. 9, we present different snapshots of the simula-
tion on which the elevation η and the derivative in time of the velocity potential (Φ̃) are
represented.
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6 Conclusions

We constructed an algorithm of resolution for the linearized water waves problem in 2D
by using a mixed spectral element method. This construction can be extended to the
3D case provided the possibility of meshing the domain by hexahedra. The statement of
instability of absorbing boundary conditions for unbounded domains motivated the con-
struction of an original perfectly matched layer. We analyzed the stable character of our
perfectly matched layer in the presence of constant coefficient by using the Fourier tech-
nique. Numerical results showed the stability of our approach for long time simulation
and its capability to model unbounded complex domains.
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