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Abstract. Transparent boundary conditions (TBCs) for anisotropic vertical transverse
isotropic VTI medium are formulated for the axially symmetric case. The high accu-
racy of the derived TBCs and their long-time stability are demonstrated in numerical
experiments. The TBCs are represented in terms of the vertical component of the veloc-
ity vector and tangential component of the stress tensor that facilitates the easy imple-
mentation of the boundary condition into the finite-difference staggered-grid scheme.
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1 Introduction

Numerical modeling of wave propagation in an unbounded physical domain is usually
performed in a finite computational domain with nonreflecting boundary conditions ap-
plied on its boundary; these conditions should guarantee low (ideally no) spurious re-
flected waves at the boundary. In the context of acoustic, elastic, and electromagnetic
wave propagation, many publications could be mentioned, but we refer just to the re-
views [4, 11], see also the references therein.

Formulation of accurate, stable, and computationally efficient nonreflecting condi-
tions in the case of elastic anisotropic media has become a hot topic of research in recent
years, basically after Becache et al. [2] demonstrated that although perfectly matched
layer (PML) [3] is good for isotropic media, it may be unstable for anisotropic media. Sev-
eral interesting approaches for anisotropic elastic problems, such as a multiaxial PML [6]
and truncation method on a base of optimal grids [5], have been proposed just recently.
Here, we address the problem of constructing nonreflecting boundary conditions for
anisotropic elastic media in the framework of transparent boundary conditions, [1, 7, 8].

∗Corresponding author. Email address: opodgornova@slb.com (O. Podgornova)

http://www.global-sci.com/ 541 c©2012 Global-Science Press



542 O. Podgornova / Commun. Comput. Phys., 11 (2012), pp. 541-554

For isotropic media, transparent boundary conditions (TBCs) have been obtained for
many problems, including acoustic, linearized Euler, and Maxwell equations. Typically
TBCs are described by an integrodifferential operator represented by a sum of local terms,
like time and spatial derivatives, and a nonlocal term (an integral of convolutional type).
In simple cases, e.g. a wave equation in homogeneous media and the boundary of a sim-
ple shape (planar, spherical, and cylindrical), either the convolutional kernel itself or its
Laplace transform is obtained analytically. The alternative for the cases when the ana-
lytical formulas are unknown is the recently proposed quasi-analytical TBCs [9], where
the Laplace transform of the kernel is calculated numerically for anisotropic vertically
transverse isotropic (VTI) media for the axially symmetric case, (r,z)-geometry. How-
ever media with smooth z-dependent parameters in the exterior domain are allowed in
the approach [9] and it is very computationally expensive.

In this work we obtain analytical formulas of TBC for the particular, but practically
important case of axially symmetric anisotropic elastic VTI media. The derivation of TBC
for this case is a more technically sophisticated task than that of TBCs for an acoustic
scalar equation [1]. Fortunately, in spite of complicated intermediate formulas, the final
form of TBC is relatively simple. We restrict here to the case of a cylindrical boundary and
homogeneous media in the exterior domain, though any arbitrary complex medium is
allowed in the interior domain. Similar to other cases (excluding the 1D wave equation),
TBC is described with the operator that contains both local and non-local terms in time
and space. The local term can be used for the problems that require moderate accuracy. To
achieve higher accuracy we should include the non-local term, which is approximated via
the convolution with a sum of exponentials according to [1, 8] for the efficient numerical
implementation.

The rest of the paper is organized as follows. We start with the problem formulation
in Section 2. Section 3 is devoted to the derivation of analytical formulas for TBC. Ap-
proximation of the boundary condition is discussed in Section 4, and discretization for
a finite-difference staggered-grid scheme is outlined briefly in Section 5. The numerical
experiments and their results are described in Section 6.

2 Problem formulation

We consider a stress-velocity formulation of the elastodynamics equations for the rota-
tionally symmetric case in anisotropic VTI media where the equations of motion are

ρ
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∂t
=

∂σrr

∂r
+

σrr

r
− σϕϕ

r
+

∂σrz
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and the Hooke’s law is
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+Srr, (2.2a)
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)
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Here (ur,uz) and (σrr,σϕϕ,σzz,σrz) are the components of the velocity vector and stress
tensor in (r,z)-coordinates respectively; ρ is the density; A11, A33, A44, A12, A13 are the
parameters of the anisotropic medium; Sr, Sz, Srr, Sϕϕ, Szz, Srz are the components of the
source term.

We consider the wave process in the infinite strip (r,z)∈[0,+∞)×[Zbot ,Ztop] with zero
initial conditions and simple boundary data on the top and bottom boundaries z=Ztop

and z=Zbot

uz=0, σrz =0. (2.3)

The computational domain is a rectangular [0,RΓ]×(Zbot,Ztop) and on the right bound-
ary r=RΓ the transparent boundary condition is set. The outgoing waves leave thus the
domain without reflection from the boundary. We assume that source term functions are
equal to zero and that density and anisotropic parameters are constants outside the com-
putational domain (r>RΓ); an arbitrary source term and anisotropic media are allowed
inside the computational domain (r > RΓ).The geometry of the problem is depicted at
Fig. 1.
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Figure 1: Schematic view of the geometry of the TBCs problem.
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3 Transparent boundary condition

We derive the relation between the solution and its normal derivative defined by a Fourier
transformation along the boundary and a Laplace transformation in time. Then we trans-
form the relation back into the physical space.

We formulate the boundary condition as equations for the radial component ur of
the velocity field and the tangential component σrz of the stress tensor. Such a formu-
lation is very convenient for a finite-difference staggered-grid discretization as we show
further. The formulation of the boundary condition as equations for radial and vertical
components of the displacements can be obtained as well, e.g., quasi-analytical TBCs [9].

3.1 A TBC in the spectral space

We apply a Fourier transformation F along the variable z and a Laplace transformation
L along the variable t

ḡ(t,r,l)=F [g(t,r,z)], ˆ̄g(s,r,l)=L[ḡ(t,r,l)], g=ur ,uz,σrr,σϕϕ,σzz,σrz ,

to the source-free equations (2.1) and (2.2) in a homogeneous medium. Here l and s are
dual variables for z and t respectively. From the obtained system of ordinary differential
equations with the parameters l and s we exclude components uz, σrr, σϕϕ, σzz; after some
algebraic transformations, we obtain a second-order system for ur and σrz

∂2

∂r2
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=0, (3.1)

where the matrix M is defined by
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Using the representation of the matrix M in terms of eigenvalues and eigenvectors, M=
T ·diag{κ2

+ ,κ2
−}·T−1, we split the system (3.1) into two independent equations

∂2v±
∂r2

+
1

r

∂v±
∂r

−
(

1

r2
+κ2

±

)

v±=0 (3.2)

with
[

v+
v−

]

=T−1

[

ˆ̄ur

ˆ̄σrz

]

.

The solutions to (3.2), that decay for r→+∞, are given by

v±=C(l,s)K1(κ±r) , (3.3)
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where K1 is a 1st order Macdonald function corresponding to a modified Bessel function
of the second kind, and C(l,s) is a coefficient, independent of r. Using (3.3), we obtain a
relation between v± and its normal derivative ∂v±/∂r,

∂v±
∂r

=κ±
K′

1(κ±r)

K1(κ±r)
v±.

Transferring back to the functions ˆ̄ur and ˆ̄σrz, we get

∂

∂r
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]
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, (3.4)

where
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K1(κ+r)
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K′
1(κ−r)

K1(κ−r)

}

·T−1. (3.5)

The transparent boundary condition in the spectral space is then defined by Eq. (3.4),
which is a relation between ˆ̄ur, ˆ̄σrz and their normal derivatives ∂ ˆ̄ur/∂r, ∂ ˆ̄σrz/∂r.

We calculate the eigenvalues κ2
+, κ2

−, the matrix T and we obtain ˆ̄P by Eq. (3.5). After
some algebraic calculations, we get

ˆ̄P=
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2
√

ξl4+ηρl2s2+ζρ2s4
P0+

(χ++χ−)
2

(

1 0
0 1

)

, (3.6)

where

P0=
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)

,

and the scalar functions read as
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1(rκ±)/K1(rκ±)

with
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√
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√

ξl4+ηρs2l2+ζρ2s4.

In the above formulas the parameters a0, a2, b1, c1, c−1, α, β, ξ, η, ζ depend on the elastic
coefficients as follows:

a0=
A2
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3.2 A TBC in the physical space

Before applying inverse Laplace and Fourier transformations, we represent the matrix
(3.6) in the following form

ˆ̄P= sQ1+
1

r
Q0+ilQ2+ ˆ̄K(s)+

1

s
Q−1, (3.7)

where we extract explicitly the asymptotic term at s→∞ and a singularity at s=0.
We use symbolic algebra software to calculate matrices Q0, Q1, Q2, Q−1. The first

three of them have a very compact form and depend only on media parameters
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Matrix Q−1 contains only one nonzero element
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We calculate ˆ̄K as
ˆ̄K(s)= ˆ̄P−sQ1−

1

r
Q0−ilQ2−

1

s
Q−1. (3.9)

Both the coefficient q and the matrix ˆ̄K(s) depend on media parameters, harmonic num-

ber l and the boundary position RΓ; elements of ˆ̄K(s) go to 0 as s→+∞.

After backward Fourier and Laplace transformations of (3.4) with ˆ̄P represented as in
(3.7), we obtain TBC in physical space as follows

Q1
∂

∂t

[

ur

σrz

]

− ∂

∂r

[

ur

σrz

]

+
1

r
Q0

[

ur
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]

+Q2
∂

∂z

[
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]

+F−1K̄∗F
[
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]

+F−1Q−1F
t
∫

0

[

ur

σrz

]

dτ=0. (3.10)

The asterisk ∗ denotes convolution with respect to time

u∗v=
∫ t

0
u(t−τ)v(τ)dτ,

and convolutional kernel is K̄(t)=L−1[ ˆ̄K(s)].
In this work we check the stability of the TBC (3.10) on several numerical experiments

that are described further; the rigour analysis of the stability should be done in the future.
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4 Approximation of the TBC

The straightforward calculation of the first convolutional integral in (3.10) is a time and
memory consuming procedure because all history of the solution on the boundary should
be taken into account in the computations for each time t. Therefore to calculate the
convolution, we construct a computationally efficient approximation based on recurrence
formulas according to [1,8]. In addition, the approximation is required anyway since the
analytical expression of the convolutional kernel in time domain K̄(t) is unknown. We
describe the main ideas of the algorithm below.

We approximate each element of the matrix ˆ̄K(s) by rational functions enforcing the
constraint that all poles (Pij is the number of poles) have negative real parts

ˆ̄Kij (s)≈
Pij

∑
p=1

α
p
ij

s−β
p
ij

, Re
(

β
p
ij

)

<0, i, j=1,2. (4.1)

Then the approximation of the inverse Laplace transform is a sum of decaying exponen-
tials

K̄ij(t)≈
Pij

∑
p=1

α
p
ije

β
p
ijt, Re

(

β
p
ij

)

<0, i, j=1,2, (4.2)

and the convolutional integral in the TBC is approximated via a sum of convolutions
with exponentials

∫ t

0
K̄ij(t−τ)g(τ)≈

Pij

∑
p=1

αij

∫ t

0
g(τ)e

β
p
ij(t−τ)

dτ, g= ūr,σ̄rz. (4.3)

The advantage of using approximation (4.3) lies in the fact that a convolution with an
exponential can be calculated by recurrence formulas

I
p
ij (t)=

∫ t

0
g(τ)e

β
p
ij(t−τ)

dτ, p=1,··· ,Pij , (4.4a)

I
p
ij (t+∆t)= e

β
p
ij∆t

I
p
ij (t)+

∫ ∆t

0
g(t+τ)e

β
p
ij(∆t−τ)dτ. (4.4b)

We have observed that in many cases, several tens of the exponentials are enough to
approximate the convolutional kernel on several thousand time steps, i.e., Eqs. (4.3) and
(4.4) perform very well. We refer the reader to [1] for a discussion on the influence of the
number of the exponentials on accuracy of the solution for a case of scalar wave equation.

The second non-local integral term in the TBC is, actually, a convolution with zero
exponential, therefore it is treated in the same way.
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In our numerical experiments, instead of constructing rational approximations of the

four elements of the matrix ˆ̄K(s) we construct approximations of two scalar functions

f1(s)=
χ−−χ+

√

ξl4+ηρl2s2+ζρ2s4
, (4.5a)

f2(s)=χ++χ−+
√

ρ

(

1√
A11

+
1√
A44

)

s+
1

r
, (4.5b)

where both f1(s)→0, f2(s)→0 when s→+∞; functions χ±, parameters ξ, η, ζ are defined

in Section 3.1, l corresponds to the Fourier harmonic. Rational approximations of ˆ̄Kij(s)
are then obtained from (3.6), (3.9), and (4.5).

To improve the efficiency of the TBC we also omit the convolutional term for a high-
frequency Fourier harmonics. If no Fourier harmonics are taken into account in con-
volution, Eq. (3.10) reduces then to computationally cheap but not very accurate local
boundary conditions.

Rational approximations can be obtained by one of the two algorithms, that have
been used previously for the approximation of the convolutional kernels for the wave
equation: the iterative algorithm [1], and the algorithm based on the Pade-Chebyshev
approximations [8]. Here we apply the algorithm suggested in [8]; we adjust the number
of exponentials empirically while estimating the accuracy of the approximation a poste-
riori. Typically, the larger the number of exponentials is, the better the accuracy is. Here
our goal is to validate the robustness of the TBC (3.10); further work is required to op-
timize the number of the exponentials and to create a robust algorithm with guaranteed
accuracy.

5 Discretization of the TBC

Here we describe the numerical discretization and implementation of the TBC (3.10) in
a second order finite-difference staggered-grid scheme [12] for elastodynamics equations
(2.1), (2.2). The stencil of the scheme is shown in Fig. 2 (left); the components of the veloc-
ity vector and stress tensor are defined in the staggered spatial points. The integer time
steps tp correspond to the time moments where velocities are defined, and half integer
time steps tp+1/2 correspond to the time moments where the stresses are defined.

We associate the right boundary of the computational domain, r = rM, to a vertical
grid line where ur and σrz are defined. The discretized TBC are used to update ur and σrz

at r= rM, while the other components of the solution are updated by the staggered-grid
scheme. To get an update at the time steps t=tp+1 and t=tp+3/2, we approximate the first

equation of (3.10) by central finite differences at the point RΓ=(rM−1+rM)/2 and tp+1/2.
While discretizing the convolutional term the values of ur at (RΓ,tp+1/2) are defined as a
half sum of the values at (rM−1,tp+1) and (rM,tp), see Fig. 2 (right). The second equation
of (3.10) is approximated in a similar way at the point RΓ =(rM−1+rM)/2 and tp+1.
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Figure 2: Schematic representation of the computational algorithm of finite-difference staggered-grid scheme
coupled with the TBC. Left: cell adjoining the right boundary in (r,z) plane; triangles are for the points where
ur is defined, crosses for uz, circles for σrr, σϕϕ, σzz, rectangles for σrz; black colored points are updated by

Virieux scheme, red colored are updated by discretized TBCs. Right: (r,t) plane; stencil for time integration.

6 Numerical examples

In the first experiment, we study elastic waves generated by a point source in a homo-
geneous anisotropic medium for which PML is unstable. The medium parameters A11,
A12, A13, A33, A44 are

A11=ρV2
P0(1+2ǫ) , A12=ρV2

P0(1+2ǫ)−2ρV2
S0(1+2γ),

A13=ρ

√

(

V2
P0−V2

S0

)2
+2δV2

P0

(

V2
P0−V2

S0

)

−ρV2
S0, A33=ρV2

P0, A44=ρV2
S0,

where Thompsen parameters [10] are

ρ=2.57, VP0=4.449, VS0=2.585, δ=0.565, ǫ=0.091, γ=0.046.

The computational domain is a rectangular [0,RΓ]×[Zbot,Ztop] elongated along z axis with
Ztop=−Zbot=5 and RΓ =0.3. The TBC is applied at r=RΓ. A point source is introduced
at (0,zs) as a right hand side for the diagonal stress components in Eq. (2.2)

Srr =Sϕϕ =Szz=δ(r)δ(z−zs)R(t),

where
R(t)=

(

1−2π2ν2
0 (t−d)2

)

e−π2ν2
0 (t−d)2

is the Ricker pulse with the central frequency ν0=4 and delay d=2/ν0.
To estimate the accuracy of the TBC, we compute the solutions on three equidistant

grids with different values of grid size h and measure the average relative error in two
sets of the receivers. One set of 25 receivers is located close to the axis of symmetry
at r = 0.025, the other is closer to the computational boundary, at r = 0.25. The lowest
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Figure 3: Schematic view of the numerical experiments geometry. Testcase for homogeneous medium (left).
Testcase for wellbore with fluid (right). The ratio between width and height is not adjusted as computational
domain is too narrow, RΓ/(Ztop−Zbot)=0.03.

receiver in both sets has a vertical coordinate z=1.0 and the gap between receivers is 0.1
in z direction. A schematic view of the geometry is shown in Fig. 3 (left).

Comparisons are made using results of computations on a large domain obtained
by elongating the computational area along r. The right boundary of this large domain is
very distant to RΓ to guarantee that no reflections from the boundary are observed during
the simulation time T= 2.8. In addition, we use a very fine grid on the large domain to
compute what we call the reference solution.

We compute three kinds of relative errors on each grid: an approximation error ǫa, a
TBC error ǫt, and a mixed error ǫa+t (i.e. a sum of the approximation and the TBC errors).
These errors are defined as

ǫa =

∥

∥Uext
h −Ure f

∥

∥

∥

∥Ure f
∥

∥

, ǫt=

∥

∥Uext
h −Utbc

h

∥

∥

∥

∥Uext
h

∥

∥

, ǫa+t=

∥

∥Utbc
h −Ure f

∥

∥

∥

∥Ure f
∥

∥

.

Here U=(ur,uz)t; Utbc
h (resp. Uext

h ) is the solution computed on a grid with a mesh size h
with the TBC (in the large domain); Ure f is the reference solution. The value of ǫa charac-
terizes the error of the finite difference scheme; ǫt contains the error due to approximation
and discretization of the TBC only; ǫa+t includes both the scheme and the TBC errors. The
errors are defined as discrete analogs of L∞ and L2 norms in time.

In Tables 1 and 2 we present ǫa and ǫt,nTBC
as a function of the number of Fourier

harmonics nTBC used in the approximation of the convolution. The results reveal that
the TBC error becomes less than the scheme error, i.e. ǫt < ǫa, if nTBC is large enough
(e.g. about 90 for h=0.01, about 120 for h=0.005). Fig. 4 shows the normalized solution
in a particular receiver for a grid with h = 0.01. The difference between the solution
with the TBC and the one calculated on the extended in r domain is barely visible. The
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Table 1: Accuracy of the TBC compared to the numerical scheme accuracy for different grid size h, L2-norm.

ǫa ǫt,80 ǫt,90 ǫt,94 ǫt,96 ǫt,100 ǫt,120 ǫt,140 ǫt,200

h=0.01 4.2e-2 9.1e-2 4.3e-2 2.4e-2 1.9e-2 1.5e-2 1.4e-2 1.4e-2 1.4e-2
h=0.005 1.0e-2 8.6e-2 4.0e-2 2.1e-2 1.4e-2 5.8e-3 3.4e-3 3.4e-3 3.4e-3
h=0.003 3.8e-3 8.4e-2 4.0e-2 2.1e-2 1.4e-2 5.0e-3 1.3e-3 1.3e-3 1.3e-3

Table 2: Accuracy of the TBC compared to the numerical scheme accuracy for different grid size h, L∞-norm.

ǫa ǫt,80 ǫt,90 ǫt,94 ǫt,96 ǫt,100 ǫt,120 ǫt,140 ǫt,200

h=0.01 4.1e-2 8.3e-2 4.2e-2 2.4e-2 2.0e-2 1.7e-2 1.6e-2 1.6e-2 1.6e-2
h=0.005 1.0e-2 7.2e-2 4.0e-2 2.1e-2 1.4e-2 5.7e-3 4.0e-3 4.0e-3 4.0e-3
h=0.003 3.6e-3 6.8e-2 3.9e-2 2.1e-2 1.5e-2 4.4e-3 1.5e-3 1.4e-3 1.4e-3

stagnation of the error ǫt,nTBC
from a given nTBC, depending on the grid size, is caused by

the discretization error of the TBC equations (3.10).

For a fixed and big enough nTBC, according to Tables 1, 2, the error decreases with
the second order rate while the size of the grid decreases, and it corresponds to the sec-
ond order accuracy of the TBC discretization. Actually, such a behavior demonstrates
that the accuracy of the approximation of the convolutional kernel is satisfactory for the
considered problem; otherwise, the error should stagnate with the decreasing grid size.

In fact, a test of this kind can be used for additional validation of the accuracy of the
exponential approximations. In the current example, we achieve the accuracy better than
10−4 using 30-40 exponentials for each of the functions f1, f2, see (4.5). We believe that
our numbers are not optimal and can be reduced.

We demonstrate the time dependence of ǫa and ǫa+t for a mesh size h = 0.01 and
nTBC = 100 in Fig. 5. The value of the approximation error ǫa is negligible after t = 2.4.
This is expected since, at that time, the major part of the solution leaves the region where
the receivers are located. For times t<2.4, the errors ǫa and ǫa+t are close to each other and
that means the TBC doesn’t corrupt the accuracy of the solution. The spurious reflections
from the TBC come out at later time points. However the value of their amplitude is
an order less than the scheme error and almost three orders less than the amplitude of
the solution at earlier times; such a behavior of the errors (i.e. ǫt < ǫa) is observed for all
experiments for large enough nTBC.

In our long-time simulations with the TBC up to T=20 (nTBC=200) we do not observe
any instability. Fig. 5 (right) shows the norm of the solution up to T= 4; the amplitude
of the spurious reflections due to the TBC is about 0.1%. We do not show the norm
at the later time as, due to the periodicity of the problem in the vertical direction, the
reflections from the top and bottom start arriving and the value of the norm cannot be
used to measure the TBC accuracy.

The second test case is a more realistic problem arising from geophysics. We study
a wave propagating from a point source in a wellbore with fluid surrounded by a VTI
homogeneous medium. We consider the same VTI anisotropic medium as in the previous
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Figure 4: Normalized solution in the receiver at (0.25,1.0); grid with h=0.01, nTBC=120. Solid line corresponds
to the solution on the extended domain; dashed to the solution to the solution with TBCs. Left: ur, uz. Right:
zoomed near zero ur, uz.
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Figure 5: Time dependence of ǫa and ǫa+t for a grid h=0.01 and nTBC=100 (left). Time dependence of the
norm of the solution (right).

case, but keep only the first set of the receivers and increase the central frequency of the
source up to 10 (see Fig. 3 (right)). The density of the fluid in the wellbore is ρ=1.0, and
the velocity is VP=1.5; the radius of the wellbore is about 0.1. Numerical results confirm
good accuracy of the TBC (see Fig. 6). The error of the TBC, ǫt, is about 2% for nTBC

greater than 220, that is less than approximation error of the scheme for this problem.
Stability of the TBC is checked numerically in long-time simulations (up to T=40).
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Figure 6: Top: Field ur in some of the receivers. Two solutions are presented: with TBCs utbc
r (dashed) and

the one obtained on the same grid on the extended domain uext
r (solid). Bottom: error of TBCs ǫt scaled by

50.

7 Conclusions

We have presented the formulation of the transparent boundary condition for elastic
anisotropic VTI media for the axially symmetric case and suggested a computationally
efficient algorithm for the obtained analytical formulas.

The local part of the TBC can be used as a very fast and easy to implement approxi-
mation of the nonreflecting boundary condition, though with limited accuracy. The non-
local part, which involves a time convolution, should thus be taken into account if high
accuracy is required. We have demonstrated numerically that the convolutional kernel
can be approximated by a sum of exponentials and, when the convolution is calculated
by recurrence formulas, the computational cost is drastically reduced. In addition speed
up is achieved by removing the high-frequency Fourier harmonics from the convolution.

Our TBC representation in terms of the velocity ur and the stress σrz facilitates the
easy implementation of the TBC into the finite-difference staggered-grid scheme. We
have demonstrated high accuracy and stability of the derived TBC for two numerical
examples: an academic case with a point source in a homogeneous anisotropic medium
(for which PML is unstable) and a realistic case with fluid surrounded by anisotropic
medium in a wellbore.
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The accuracy of the TBC depends on the accuracy of the approximation of the con-
volutional kernel and the number of Fourier harmonics included into the non-local part.
The desired accuracy level can be reached by increasing the number of exponentials and
Fourier harmonics. We use the algorithm [8] for constructing the approximation of the
kernel and estimate a posteriori accuracy; development of a robust algorithm with guar-
anteed accuracy is still an open problem.
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