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Abstract. In this paper, we study high order discretization methods for solving the
Maxwell equations on hybrid triangle-quad meshes. We have developed high order
finite edge element methods coupled with different high order time schemes and we
compare results and efficiency for several schemes. We introduce in particular a class
of simple high order low dissipation time schemes based on a modified Taylor expan-
sion.
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1 Introduction

Our aim is to develop very precise and very efficient solvers for the Maxwell equations in
time domain and in complex geometries. So, we will need high order methods for good
precision and unstructured meshes to handle complex geometries.

The numerical solution of Maxwell’s equations has been performed most reliably
with the Finite Difference Time Domain Yee solver which has proved very robust, but
comes to its limits when unstructured meshes need to be handled or when higher order is
helpful. Hence, developing new efficient and reliable Maxwell solvers has been an area of
intense research in the last 40 years. Different approaches have been followed to develop
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solvers that can handle unstructured meshes, the most important certainly being the Fi-
nite Element (FE) solvers including their discontinuous variants. Finite Element methods
are better adapted for complex geometries as they can be based on different computa-
tional elements (hexahedra, tetrahedra) which can be used to mesh efficiently complex
geometries. Finite Elements adapted to Maxwell’s equations, the so-called edge elements
have been introduced by Nédélec [29] in 1980. Moreover the Finite Element methodology
gives easy access to higher order methods which have proved useful recently for several
applications [3,33]. Let us also mention the concept of discrete differential forms (see [25]
for a review) that provide new insights of the reasons why some solvers work well and
other do not. One of the drawbacks of these edge finite element methods for Time Do-
main computations, is the need to solve a linear system at each time step, and therefore
these methods are known to be expensive. For this reason mass-lumped elements for
any order have been introduced on squares and cubes [7–9] and a quasi mass-lumped
method has been proposed in [17]. Mass-lumped elements for first and second order
edge elements have been developed on triangles [14] and tetrahedra [15]. Mass lumped
nodal Finite Elements for a formulation of Maxwell’s equations keeping the divergence
constraint and adding a Lagrange multiplier have also been developed [1, 5]. More re-
cently a lot of effort has gone into the derivation of high-order Discontinuous Galerkin
schemes [2, 16, 23, 24, 35] which completely eliminate the need for solving a global linear
system. Apart from that let us also mention Finite Volume schemes which also can be
made high order on unstructured grids [18]. A detailed review of high order methods by
Hesthaven can also be found in [22].

Our aim in this paper is to study high-order conforming Finite Element schemes
based on hybrid triangle-quad meshes for use in the time domain. In order to really
keep high-order schemes, we will work not only with high-order schemes in space but
also in time. We introduce in particular a very simple high-order time stepping scheme
which is based on a stabilized (when needed) Taylor expansion method. Indeed after
space discretization with our finite elements, we get a linear system of ordinary differ-
ential equations which conserves exactly a discrete energy and that can be written as
dU/dt=AU where A is a matrix with purely imaginary eigenvalues. An order p Tay-
lor expansion scheme for this linear system reads Un+1=(I+∆tA+···+ ∆t

p! Ap)Un. Note

that this scheme is equivalent to the unique p-stage, order p Runge-Kutta method for the
linear system we consider [19, 20]. Such a scheme is unstable for any ∆t for some orders
including 1, 2, 5 and 6, and stable for others including 3 and 4. Our stabilization method
consists in adding an additional term ξAp+1 where ξ is chosen to stabilize the method, its
order being conserved. Moreover ξ can also be tuned in order to get low dissipation. This
yields stable arbitrary high order schemes which are very efficient, compared to existing
schemes, for orders higher than 4. Note that the Strong Stability Preserving schemes ad-
vocated in [20] do apply only for space-discretized problems for which there is a negative
real part of the eigenvalues for which explicit Euler is stable. This is the case for Discon-
tinuous Galerkin methods with upwinding, but not for conforming Finite Elements like
ours where the eigenvalues are purely imaginary. On the other hand, the modified equa-
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tion approach can be used to get high order centered schemes [11] with optimized CFL.
Unlike these works, the idea behind our method is to add some low dissipation effect
in the high order time scheme in order to make long time or non linear simulation more
robust.

The paper is organized as follows. First we recall the mixed variational formula-
tion for the Maxwell equations and we construct our conforming families of finite el-
ements spaces which satisfy an exact sequence property. We also verify that the edge
element mass matrix can be lumped on uniform quads. Then we introduce our time dis-
cretization based on a stabilized Taylor expansion as well as high-order symplectic time-
discretizations in order to compare their efficiency. Finally, we compare the efficiency of
the different schemes for different grids and orders.

2 Variational formulation for the 2D Maxwell equations

2.1 The continuous problem

We consider the Maxwell equations in a subdomain Ω⊂R2 supposed regular with a
regular boundary denoted by Γ=∂Ω. We note n, the outward unit normal vector of Ω on
the boundary Γ. We recall that in 2D, we have two curl operators, one acting on scalars
u, denoted by ∇×u=( ∂u

∂y − ∂u
∂x )

T, and one acting on vectors v=(vx vy)T denoted by

∇×v=
∂vy

∂x − ∂vx
∂y . We also introduce the function spaces needed in the sequel

H(curl,Ω)=
{

v∈ (L2(Ω))2; ∇×v∈L2(Ω)
}

and

H0(curl,Ω)={v∈H(curl,Ω); v×n=0}.

Finally, we recall the Green formulas we will need

∫

Ω
(∇×G)·F dX=

∫

Ω
G(∇×F)dX−

∫

Γ
(G×n)·F dS, ∀ F∈H(curl,Ω), ∀ G∈H1(Ω), (2.1)

and

∫

Ω
(∇·F)G dX=−

∫

Ω
F·(∇G)dX+

∫

Γ
(F·n)G dS, ∀ F∈H(div,Ω), ∀ G∈H1(Ω). (2.2)

In bi-dimensional domains, Maxwell’s equations can be decoupled into two systems.
The first involving the (Ex,Ey,Bz) components is called the Transverse Electric (TE) mode,
and the second, involving the (Bx,By,Ez) components is called the Transverse Magnetic
(TM) mode. As both mode can be discretized in the same manner, we shall only consider
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in the sequel the TE mode which reads

∂E

∂t
−∇×B=−J, (2.3)

∂B

∂t
+∇×E=0, (2.4)

∇·E=ρ, (2.5)

where the components are defined by E = (Ex Ey)T, B = Bz. These equations need to
be supplemented with initial and boundary conditions. We shall only consider perfectly
conducting boundary conditions E×n=0.

Let us notice that Gauss’ law (2.5) is a direct consequence of the continuity equation

∂ρ

∂t
+∇·J=0.

Indeed, taking formally the divergence of Ampere’s law and replacing the divergence of
J by the time derivative of ρ implies the time derivative of Gauss’ law. Hence assuming
the latter is satisfied by the initial conditions, it remains satisfied for all times.

In order to derive a conforming Finite Element approximation of Maxwell’s equa-
tions we first need to write an appropriate variational formulation. We would like to stay
with the first order version of the system and are then naturally led to a mixed formu-
lation involving two different functional spaces for E and B. The two options are, after
multiplying both equations by a test function and integrating by parts, to use a Green’s
formula for either one of the two equations but not for both.

Using the Green’s formula (2.1) in Ampere’s law (2.3) yields the variational formula-
tion: Find (E,B)∈H0(curl,Ω)×L2(Ω) such that

d

dt

∫

Ω
E·ψ dX−

∫

Ω
B(∇×ψ)dX=−

∫

Ω
J·ψ dX, ∀ψ∈H0(curl,Ω), (2.6)

d

dt

∫

Ω
Bϕ dX+

∫

Ω
(∇×E)ϕ dX=0, ∀ϕ∈L2(Ω). (2.7)

As we have for φ∈H1
0(Ω) that ∇φ∈H0(curl,Ω), we can use ∇φ as a test function in

the variational formulation of Ampere’s law. Then using the continuity equation and the
Green formula (2.2), it yields that

d

dt

∫

Ω
E·∇φ dX=

d

dt

∫

Ω
ρφ, ∀φ∈H1

0(Ω)

which is a weak form of the time derivative of Gauss’ law (2.5). Hence we do not have
to worry about it as it will automatically be satisfied in our framework, provided it is at
t=0.

The other option we will not consider here, is to use the variational formulation ob-
tained by applying the Green formula (2.1) on Faraday’s law. The conclusion for the time
scheme would be the same.
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2.2 Discretization using conforming finite elements

In order to keep the specific features of Maxwell’s equations at the discrete level which
are useful in different contexts, we shall consider finite dimensional subspaces endowed
with the same exact sequence structure as in the continuous level [25]. Let us first derive
the linear system that comes out of this discretization. Let {ψi}i=1,···,N be a basis of W⊂
H(curl,Ω) and {ϕk}k=1,···,M a basis of V⊂ L2(Ω). Rewriting Eqs. (2.6) and (2.7) our goal
is to solve the following problem: Find (E,B)∈W×V such that







d

dt

∫

Ω
E·ψi dX−

∫

Ω
B(∇×ψi)dX=−

∫

Ω
J·ψi dX, ∀i=1,··· ,N,

d

dt

∫

Ω
Bϕk dX+

∫

Ω
(∇×E)ϕk dX=0, ∀k=1,··· ,M,

(2.8)

which becomes when E and B are decomposed on the respective bases of W and V

{
MwĖ−KB= J̃,

MvḂ+ KTE=0,
(2.9)

where E (resp. B) denote vectors of degrees of freedom and Ė (resp. Ḃ) is the time deriva-
tive of those vectors, with

(Mw)1≤i,j≤N =
∫

Ω
ψj ·ψi dX, (Mv)1≤i,j≤M =

∫

Ω
ϕiϕj dX,

(K)1≤i≤N,1≤j≤M=
∫

Ω
ϕj(∇×ψi)dX.

In the variational formulation of Faraday’s law, (i.e. in the second equation of system
(2.8)), ∇×E∈V because of the structure of our discrete spaces. Hence we can express
∇×E on the basis {ϕk}k=1,···,M of V which yields

∇×E=
M

∑
l=1

σV
l (∇×E)ϕl =

M

∑
l=1

σV
l

( N

∑
j=1

σW
j (E)(∇×ψj)

)

ϕl =
M

∑
l=1

N

∑
j=1

σW
j (E)σV

l (∇×ψj)ϕl.

In particular we get that σV
l (∇×E)=∑

N
j=1 σW

j (E)σV
l (∇×ψj), and injecting this expression

in the discrete Faraday law

∫

Ω
(∇×E)ϕk dX=

M

∑
l=1

N

∑
j=1

∫

Ω
ϕl ϕk dX σV

l (∇×ψj)σW
j (E),

which is the kth line (for k from 1 to M) of the vector MvRE where R is the matrix defined
by

(R)1≤i≤M,1≤j≤N =σV
i (∇×ψj),
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so that the system (2.9) can be written equivalently in the form
{

MwĖ−KB= J̃,
Ḃ+RE=0.

(2.10)

This new formulation yields an explicit expression of B which can then be computed
without solving a linear system.

On rectangular meshes, the actual subspaces W⊂H(curl,Ω) and V⊂ L2(Ω) are de-
fined as follows

W=

{

ψ∈H(curl,Ω) | ψ|Ki
∈
(

Qk−1,k(Ki)
Qk,k−1(Ki)

)

, ∀i=1,··· ,r
}

,

V=
{

ϕ∈L2(Ω) | ϕ|Ki
∈Qk−1(Ki) , ∀i=1,··· ,r

}
,

where

Qm,n=< xiyj / 0≤ i≤m, 0≤ j≤n> .

The space W is known as the first family of edge elements H(curl)-conforming of Nédélec
[29] and the space V is the space of discontinuous functions which restrict to a polynomial
of degree k−1 with respect to each variable on each cell. This is the kind of approximation
used in Discontinuous Galerkin methods.

On triangular cells the discrete spaces are defined by

W=

{

ψ∈H(curl,Ω) | ψ|Ti
∈P2

k−1(Ti)+Pk−1(Ti)

(
y
−x

)

, ∀i=1,··· ,r
}

,

V=
{

ϕ∈L2(Ω) | ϕ|Ti
∈Pk−1(Ti) , ∀i=1,··· ,r

}
,

where Pk−1 denotes the set of polynomials of degree exactly k−1. The space V is Pk−1 on
each element and discontinuous across element boundaries (conforming in L2(Ω)), so is
straightforward to construct. For the space W, we have again used the first family of edge
elements of Nédélec [29], conforming in H(curl,Ω), but we have changed the degrees of
freedom.

Remark 2.1. Conformal coupling of edge elements on triangles and quads. Uniform
Cartesian meshes with identical square cells and triangular meshes have both advan-
tages and drawbacks. On the one hand, the data structure needed to implement Carte-
sian meshes is much lighter and one can take advantage of its specific form to accelerate
computations. On the other hand they cannot easily handle complex geometries. There-
fore a natural idea is to use hybrid meshes made of uniform square cells in the largest
possible zone and of triangles close to the boundaries. An example of such a mesh is
given in Fig. 1. First, we want to make sure that the approximation space based on our
edge finite elements on both quads and triangles is still included in H(curl,Ω). Second,
we want to ensure that the sequence of discrete spaces on this mesh is still an exact one.
This can be verified easily as we have chosen the degrees of freedom in such a way that
they correspond on edges shared by quads and triangles.
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Figure 1: Example of hybrid mesh of a disk.

3 Lumping of mass matrix

When solving the Maxwell equations with Finite Elements in the time domain, a linear
system involving the mass matrix needs to be solved at each time step, which can be
very costly. This is one of the reasons of the popularity of Discontinuous Galerkin meth-
ods [23] for which the mass matrix is always at least block diagonal with fairly small
blocks so that the linear system can be solved very quickly. Concerning continuous Fi-
nite Element methods for wave propagation in the time domain, a lot of effort has been
made to construct new Lagrange Finite Elements using approximate mass matrices that
are diagonal without impairing the order of the method [6]. There have been efforts in
this direction as well for Edge elements. In particular for the triangles of lowest order, a
mass lumping scheme has been proposed by Haugazeau and Lacoste [27]. On the other
hand, on a rectangular quadrilateral mesh, there is a natural way to perform the mass
lumping as pointed out by Cohen and Monk [9]. Other mass lumping schemes for the
Maxwell equations have been proposed by Elmkies and Joly [14] for triangular elements
and by Cohen and co-authors [6, 30] for arbitrary quadrilateral meshes but they add de-
grees of freedom on the edges which are not tangential and therefore are difficult to put
into an exact sequence framework. Therefore we shall not consider mass lumping on
triangles.

On rectangles, we can choose basis functions which are products of Legendre and
Lagrange polynomials in one variable and thus naturally lead to mass lumping. Indeed,
by choosing the Gauss-Lobatto points as degrees of freedom associated to the Lagrange
polynomials Lξi

(where ξi is equal to xi or yi) and using the associated high-order Gauss
quadrature formula we get

∫

K
ψm

ξi
.ψn

ηj
dX=δξηδmn

∫ 1

0
Lξi

(ξ)Lξ j
(ξ)dξ≃ωiδijδξηδmn, ∀ ψm

ξi
, ψn

ηj
∈W,

where {ωi}i=0,···,k are the weights associated to the quadrature formula.
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4 Time discretization

As for wave propagation problems, due to the CFL condition, explicit schemes generally
use a time step of the same order as the typical cell size in the space discretization. Then,
it is desirable to have a time stepping scheme which is of the same order as the space
discretization one. Typical time stepping schemes that can be used up to an arbitrary
order for equations of the same form as ours are Runge-Kutta schemes [19,23], symplectic
schemes [4, 31, 32, 38], modified equation schemes [10, 34], or Cauchy-Kovalewski type
techniques [12, 13, 21].

4.1 A Taylor expansion method

After our Finite Element space discretization, we get a system of linear ordinary differ-
ential equations of the form

dU

dt
=AU, (4.1)

where U is the time-dependent unknown vector and A a constant coefficient matrix.
For such a system, where the time derivatives can easily be computed using Eq. (4.1),
dkU
dtk =AkU, the simplest way to get an order p method is to use a Taylor expansion of U

between tn and tn+1, where tn =n∆t, for a time step ∆t:

U(tn+1)=U(tn)+∆t
dU(tn)

dt
+

∆t2

2!

d2U(tn)

dt2
+···+∆tp

p!

dpU(tn)

dtp +O(∆tp+1).

Then replacing the time derivatives by powers of A we get

U(tn+1)=U(tn)+∆tAU(tn)+
∆t2

2!
A2U(tn)+···+

∆tp

p!
ApU(tn)+O(∆tp+1).

Note that if we interpret the matrix vector multiplication AU as a discrete space deriva-
tive, this method can be assimilated to the Cauchy-Kovalewski technique advocated
by [12, 13].

Following this idea, the successive approximations Un of U(tn) are given by the
scheme:

Un+1=

(

I+∆tA+
∆t2

2!
A2+···+∆tp

p!
Ap

)

Un. (4.2)

We now denote by A the amplification matrix

A= I+∆tA+
∆t2

2!
A2+···+∆tp

p!
Ap.

The numerical time stepping scheme then reduces to Un+1 = AUn and will be stable
provided ‖A‖≤1.
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It is well known that for any matrix A,

ρ(A)≤‖A‖,

where ρ(A) is the spectral radius of A, i.e. the largest modulus of an eigenvalue of A.
Moreover both quantities are equal when the matrix A is symmetric or skew symmetric.

Let us now assume that the starting matrix A is symmetric (resp. skew-symmetric),
A is then diagonalizable and all its eigenvalues are real (resp. imaginary). Then, given an

eigenvalue λ of A, it is easy to see that 1+∆tλ+···+ ∆tp

p! λ is an eigenvalue of A (and that

all the eigenvalues of A can be expressed in a similar way from the eigenvalues of A). In
order to study the stability of the time discretization it is thus enough to find the zone of
the complex plane where the polynomial function of one complex variable µ=∆tλ given

by R(µ)=1+µ+···+ µp

p! , is of modulus less than 1.

Using MAPLE c© we plot the stability regions in Fig. 2.
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Figure 2: Stability regions for the time discretizations of order 1 to 6 (from left to right and top to bottom).

4.1.1 Application to Maxwell’s equations

Let us recall the space-discretized Maxwell equations we obtained

Mw
dE

dt
−KB=0, (4.3)

Mv
dB

dt
+ KTE=0, (4.4)



872 S. Jund, S. Salmon and E. Sonnendrücker / Commun. Comput. Phys., 11 (2012), pp. 863-892

that we can rewrite as

d

dt

(
E
B

)

=

(
0 M−1

w K
−M−1

v KT 0

)

︸ ︷︷ ︸

A

(
E
B

)

.

Proposition 4.1. If λ denotes a non vanishing eigenvalue of A associated to the eigenvector
(E B)T, then −λ2 is an eigenvalue of M−1

v KT M−1
w K and M−1

w KM−1
v KT associated respec-

tively to the eigenvectors B and E, and λ is purely imaginary.
Conversely if µ denotes a non vanishing eigenvalue of M−1

v KT M−1
w K, then µ is also eigen-

value of M−1
w KM−1

v KT and, µ is real and strictly positive and λ =±i
√

µ is an eigenvalue of
A.

Proof. Let λ 6=0 be a non vanishing eigenvalue of A associated to the eigenvector (E B)T,
then we have:

M−1
w KB=λE, (4.5)

−M−1
v KTE=λB. (4.6)

Note that necessarily E and B are non zero: assume E= 0 then by (4.6), λB is vanishing
which implies B= 0, as λ is non zero. In a same way, if B = 0, we can prove that E is
vanishing also.

By multiplying (4.5) by M−1
v KT and using (4.6), we obtain

M−1
v KT M−1

w KB=λM−1
v KTE=−λ2B.

Then−λ2 is an eigenvalue of M−1
v KT M−1

w K associated to the eigenvector B. Similarly, we
have

M−1
w KM−1

v KTE=−λM−1
w KB=−λ2E,

then−λ2 is an eigenvalue of M−1
w KM−1

v KT associated to the eigenvector E. If we consider
µ 6=0 eigenvalue of M−1

v KT M−1
w K associated to the eigenvector B. Then,

KT M−1
w KB=µMvB,

and multiplying by B
T

, we obtain

(KB)T M−1
w KB=µB

T
MvB.

As matrices M−1
w and Mv are symmetric and positive definite, µ≥0. Then−λ2 is positive

which implies that λ is purely imaginary. Same result by considering the eigenvalues of
M−1

w KM−1
v KT.

Conversely, consider µ 6=0 eigenvalue of M−1
v KT M−1

w K associated to the eigenvector
B, then we have:

M−1
v KT M−1

w KB=µB.
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Letting

E=± 1

i
√

µ
M−1

w KB=∓ i√
µ

M−1
w KB,

E is non vanishing (µ and B are non vanishing), and the equation can be rewritten

±i
√

µM−1
v KTE=µB,

or

M−1
v KTE=∓i

√
µB.

Then M−1
w KB=±i

√
µE, and −M−1

v KTE=±i
√

µB, which means that ±i
√

µ is an eigen-
value of A. We deduce

M−1
v KTE=(±)2µK−1MwE,

M−1
w KM−1

v KTE=µE.

Finally µ is also an eigenvalue of M−1
w KM−1

v KT.

Remark 4.1. This proposition tells us first that for the matrix A issued from the space
discretization of Maxwell’s equations, the eigenvalues are pure imaginary; and second,
as the spectral radius of

A=

(
0 M−1

w K
−M−1

v KT 0

)

is the same as the spectral radius of M−1
w KM−1

v KT or of M−1
v KT M−1

w K, that the stabil-
ity condition for the second order wave formulation and for the first order system are
equivalent.

4.1.2 Stabilization of the time discretization

Actually, as we can see in Fig. 2, the discretizations of order 1, 2, 5 and 6 are unstable
for any ∆t>0 for systems which have their eigenvalues on the imaginary axis, as in our
case. Indeed these all have a neighborhood in the vicinity of zero where the imaginary
axis is not included in the stability zone. Note in particular that the order 1 discretization
corresponds to the forward Euler time scheme which is unstable in our case. Hence the
SSP p-stage, pth order Runge-Kutta methods which are equivalent to our formulation for
the linear case [19] cannot claim anything about stability. Note that these methods where
originally designed for dissipative space discretizations (upwind) for which the forward
Euler method is stable for small enough ∆t as the eigenvalues all strictly lie on the left
half of the imaginary axis.

Our aim is now to stabilize the Taylor expansion methods for problems involving
only eigenvalues on the imaginary axis without changing the order. This can be done
for a method of order p by adding a term of the form ξAp+1 to A. More precisely, we
are looking for ξ such that the intersection of the imaginary axis with the stability zone



874 S. Jund, S. Salmon and E. Sonnendrücker / Commun. Comput. Phys., 11 (2012), pp. 863-892

0.5

y

0.0

−0.5

−0.75

0.0

−0.5−1.0

−1.0

x

1.0

−0.25

Figure 3: Stabilization of the order 1 time discretization.

contains a non empty interval as large as possible around 0. For example, for the first
order method our stability region will consist of the µ such that

R(µ)=1+µ+ξ
µ2

2!

is of modulus less than 1. By taking µ= iy with y∈R, we get that |R(iy)|= 1 for y= 0
or for y2 = 4(ξ−1)/ξ2 . By computing its derivative with respect to ξ we see that this
last term is maximized for ξ = 2, in which case y2 = 1. So that the stability interval on
the imaginary axis is [−i,i] and the stability condition for our linear system of ordinary
differential equations is ∆tρ(A)≤1. Fig. 3 represents the stability region for ξ=2.

For the order 2 discretization, we get the modified stability polynomial

R(µ)=1+µ+
µ2

2!
+ξ

µ3

3!
.

The same procedure as for the first order yields that |R(iy)| = 1 for y = 0 or for y2 =
(12ξ−9)/ξ2 which is maximized for ξ= 3

2 . The stability interval on the imaginary axis is
then [−2i,2i] (see Fig. 4) and the stability constraint becomes ∆tρ(A)≤2.

x

y
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0

−0.5
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1

Figure 4: Stabilization of the order 2 time discretization.
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Figure 6: Stabilization of the order 6 time discretization: zoom around the imaginary axis.

For the order 5 discretization, we get the modified stability polynomial

R(µ)=1+µ+
µ2

2!
+

µ3

3!
+

µ4

4!
+

µ5

5!
+ξ

µ6

6!
.

In this case we determine the optimal value of ξ numerically by a dichotomy algorithm
and we get ξ ≃ 6.15746160. The stability interval is then [−1.491320186i,1.491320186i]
(Fig. 5) and the stability constraint becomes ∆tρ(A)≤1.491320186.

We conclude with the stabilization of the order 6 discretization for which the modified
stability polynomial is

R(µ)=1+µ+
µ2

2!
+

µ3

3!
+

µ4

4!
+

µ5

5!
+

µ6

6!
+ξ

µ7

7!
.

Numerically we get the optimal value ξ≃ 2.505288240, the stability interval then being
[−2.751711543i,2.751711543i] (Fig. 6) and the stability constraint ∆tρ(A)≤2.751711543.
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4.1.3 Low dissipation time discretization

As recognized by Hu et al. in [26], Runge-Kutta solvers like RK3 and RK4 can suffer
from high dissipation when the maximal stability time step is used. This problem needs
also be addressed with our stabilized Taylor expansion method, although the behavior
is different as we shall see. Let us now look more closely at this dissipation problem
in order to be able to choose a time step yielding lower dissipation and thus more cost-
effective for the same accuracy in spite of a smaller time-step. This analysis will also be
performed for the stable order 3 and 4 solvers in order to pinpoint the differences. Let
us now proceed order by order to analyze the stability and dissipativity properties of the
scheme.

For µ= iy on the imaginary axis, we define for a stabilized order p method

Tξ(y)= |R(µ)|2 =
∣
∣
∣
∣
1+iy+

(iy)2

2
+···+ (iy)p

p!
+ξ

(iy)p+1

(p+1)!

∣
∣
∣
∣

2

.

The method is stable, if there exists τ > 0 such that Tξ(y)≤ 1 for |y|< τ. Moreover, in
order to minimize dissipativity we want to have Tξ(y) as close as possible to 1 for |y|<τ.
Introducing Dξ(y) = 1−Tξ(y) our problems amount to finding a stability zone defined
by τ > 0 such that Dξ(y) ≥ 0 for |y|< τ. Moreover the amount of dissipation will be
characterized by σ(ξ)=max|y|<τ Dξ(y). In some cases, as for RK3 and RK4, it is useful to
take τ less than the maximal stability zone in order to minimize dissipativity.

Order 1. In this case

Dξ(y)=1−Tξ(y)=1−
∣
∣
∣
∣
1+iy+ξ

(iy)2

2

∣
∣
∣
∣

2

=y2

(

(ξ−1)−ξ2 y2

4

)

.

The method is stable if Dξ(y)≥ 0 in some neighborhood of 0, which is the case if ξ > 1,
in this case Dξ(y)≥ 0 for |y|< τξ =

2
ξ

√
ξ−1. The maximal stability zone is recovered by

maximizing τξ for ξ>1. We then find that the maximal value of τξ is one and is attained
for ξ = 2. This gives us the maximal stability zone that we already computed in the
previous subsection.

Now for a given value of ξ such that there exists a non empty stability zone, the
dissipation is measured by σ(ξ) = max|y|<τξ

Dξ(y). This value can be easily computed

here and is σ(ξ)=(ξ−1)/ξ2.
In Fig. 7, we see on the left picture that the amount of dissipation can be reduced a

lot when going from the maximal stability zone of ξ=2 to ξ=1.1 whereas the maximum
time step is less than a factor of two between these two values of ξ. The amount of
dissipation is plotted on the right picture. It is highest (0.13397) for the maximal stability
zone. Depending on the amount of dissipation one wants, or one can afford, it is possible
to choose an appropriate value of ξ between 1 and 2.

Order 2. We now get Tξ(y)=(1− y2

2 )
2+(y−ξ

y3

6 )
2, so that

Dξ(y)=1−Tξ(y)=
y4

36
(12ξ−9−ξ2y2).
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Figure 7: Order 1. Left. Plots of Dξ (y) for ξ =1.1 (solid), ξ =1.4 (dotted), ξ =2 (dashed). Right. Maximum
dissipation for different values of ξ going for 1 (minimal stability zone) to 2 (maximal stability zone).
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Figure 8: Order 2. Left. Plots of Dξ (y) for ξ=0.75 (solid), ξ=1.0 (dash), ξ=1.5 (dash-dot). Right. Maximum
dissipation for different values of ξ going for 0.75 (minimal stability zone) to 1.5 (maximal stability zone).

Hence Dξ(y)≥ 0 in the neighborhood of 0 provided ξ > 3/4, in which case the stability
zone is |y|< τξ =

√
12ξ−9/ξ. The maximal stability zone is reached for ξ = 3/2 and the

corresponding τξ=2. The maximal dissipation is here σ(ξ)=(4ξ−3)3/(9ξ4). For ξ=0.78,
we have τξ≈0.75 and σ(ξ)<0.001. For ξ=0.96, we have τξ≈0.96 and σ(ξ)<0.0023. For
ξ=1.5, we have τξ =2 and σ(ξ)≈0.6. See Fig. 8.

Order 3. We now get

Dξ(y)=1−Tξ(y)=1−
∣
∣
∣
∣
1+iy+

(iy)2

2
+
(iy)3

3!
+ξ

(iy)4

4!

∣
∣
∣
∣

2

=
y4

24

(

(1−ξ)+

(
ξ

2
− 1

3

)

y2− ξ2

48
y4

)

.

Hence Dξ(y)≥0 in the neighborhood of 0 provided ξ≤1. The maximal stability zone is
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Figure 9: Order 3. Left. Plots of Dξ (y) for ξ = 0 (dash dot), ξ = 0.5 (dash), ξ = 1 (solid). Right. Maximum
dissipation for different values of ξ going for 0 (minimal stability zone) to 1 (maximal stability zone).

obtained for ξ0=1 and τξ0
=2
√

2. Note that for ξ=1, the scheme is exactly our fourth order
scheme. In this case Fig. 9 shows that the dissipation is larger than 0.1 for any value of
ξ∈[0,1]. Moreover, we see on the left hand side of the figure, that the dissipation is lowest
close to 0 for larger values of ξ. Hence the best option in this case to reduce dissipation is
to take ξ=1, but not to go to the maximal stability condition, but use a smaller time step.
For ξ = 1, Dξ(y)∼ y6/72 in the neighborhood of 0. Hence it goes quickly to 0 for fairly
large values of y. For example D1(0.75)≈2.3×10−2, D1(0.5)≈2.1×10−3.

Order 4. We have

Dξ(y)=1−Tξ(y)=1−
∣
∣
∣
∣
1+iy+

(iy)2

2
+
(iy)3

3!
+
(iy)4

4!
+ξ

(iy)5

5!

∣
∣
∣
∣

2

=y6

(
1

72
− ξ

60
+

(
ξ

360
− 1

242

)

y2− ξ2

1202
y4

)

.

The dominating term close to 0 in the expression is y6(1/72−ξ/60). This is positive
provided ξ ≤ 5/6 so that Dξ(y)≥ 0 in the neighborhood of 0 provided ξ ≤ 5/6, which
yields a non vanishing stability zone. The maximal stability zone is obtained for ξ0=5/6
and by dichotomy we get that τξ0

≈ 3.46. The situation here is the same as for order 3.
The dissipation does not go to 0 for small ξ (see Fig. 10). The smallest dissipation around
0 is given for ξ = 5/6, in which case Dξ(y)∼Cy8 in the neighborhood of 0, where C is a
positive constant. So by taking y small enough, we can get very small dissipation. For
example D5/6(1.5)=0.012, D5/6(1)=0.00053, D5/6(0.5)=5.5×10−5.

Order 5. We have

Dξ(y)=1−Tξ(y)=1−
∣
∣
∣
∣
1+iy+

(iy)2

2
+
(iy)3

3!
+
(iy)4

4!
+
(iy)5

5!
+ξ

(iy)6

6!

∣
∣
∣
∣

2

.

Here we proceed numerically. We find a maximal stability zone around τ = 1.49 that is
attained for ξ≈6.15, as in the previous section. A non vanishing stability zone is obtained
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Figure 10: Order 4. Left. Plots of Dξ (y) for ξ=0.1 (solid), ξ=0.5 (dash), ξ=5/6 (dash-dot). Right. Maximum
dissipation for different values of ξ going for 0 (minimal stability zone) to 5/6 (maximal stability zone).
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Figure 11: Order 5. Left. Plots of Dξ(y) for ξ =1.2 (solid), ξ =3 (dash), ξ =6 (dash-dot). Right. Maximum
dissipation for different values of ξ going for 0 (minimal stability zone) to 6.15 (maximal stability zone).

for values of ξ>1 approximately. Here we are again in the case which is unstable for small
values of ξ. Hence in order to have a small dissipation, one needs to take a small value
of ξ but large enough so that the stability zone is not too small. Values of ξ close to 1.2
appear to be the most favorable. For example we have τ1.3≈1.11 and σ(1.3)≈1.5×10−4,
and also τ1.2≈1 and σ(1.2)≈5.26×10−5.

Order 6. We have

Dξ(y)=1−Tξ(y)=1−
∣
∣
∣
∣
1+iy+

(iy)2

2
+
(iy)3

3!
+
(iy)4

4!
+
(iy)5

5!
+
(iy)6

6!
+ξ

(iy)7

7!

∣
∣
∣
∣

2

.

Numerically, we find a non vanishing stable zone around 0 for 0.88≤ ξ≤2.5. For ξ=0.9,
we have τξ≈0.89 and σ(ξ)≈3.14×10−7. For ξ=1.05, we have τξ≈1.98 and σ(ξ)≈0.001.
For ξ=2.5, we have τξ≈2.75 and σ(ξ)≈0.136.

Summary. We notice a different behavior with respect to dissipation of the schemes that
needed to be stabilized (orders 1,2,5,6) compared to the others (3 and 4). In the first case
the curves for different values of ξ do not cross. So in this case the best choice is to take a
value of ξ smaller than the one given the largest stability zone and to take a CFL condition
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Figure 12: Order 6. Left. Plots of Dξ (y) for ξ=1.1 (solid), ξ=1.2 (dash), ξ=2.5 (dash-dot). Right. Maximum
dissipation for different values of ξ going for 0.5 (minimal stability zone) to 2.8 (maximal stability zone).

corresponding to the stability condition for this ξ. In the other case, the curves cross, and
the best option is to take the value of ξ giving the largest stability zone, but to take a
CFL well below the stability condition in order to minimize dissipation. This effect was
studied by Hu et al. [26].

We summarize in the following table, for different orders, values of ξ giving a fairly
large stability zone for dissipation values always less than 1%.

Order ξ CFL dissipation
1 1.11 0.59 0.0098
2 0.79 0.88 0.0011
2 0.77 0.62 0.00016
3 1 0.75 0.0022
3 1 0.5 0.00021
4 5/6 1 0.00053
4 5/6 0.5 5.5×10−5

5 1.3 1.11 0.00015
5 1.2 1 5.26×10−5

6 1.05 1.98 0.001
6 0.9 0.89 5×10−7

4.2 High order symplectic time discretizations

Let us now introduce the symplectic time discretization schemes, starting again from the
space discretized Maxwell equations (4.3)-(4.4) that we recall for convenience

{
MwĖ−KB=0,
MvḂ+KTB=0,
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or in matrix form

d

dt

(
E
B

)

=

(
0 M−1

w K
−M−1

v KT 0

)

︸ ︷︷ ︸

A

(
E
B

)

=

(
0 0

−M−1
v KT 0

)

︸ ︷︷ ︸

T

(
E
0

)

+

(
0 M−1

w K
0 0

)

︸ ︷︷ ︸

V

(
0
B

)

.

After having introduced a uniform time discretization tn=n∆t, for a time step ∆t, the
solution of the problem at time tn+1 can be expressed formally from the solution at time
step tn by

(
En+1

Bn+1

)

=exp(∆tA)

(
En

Bn

)

=exp(∆t(T+V))

(
En

Bn

)

.

Assume now that we know a set of real numbers {(ai,bi), i=1,··· ,p}, such that

exp(∆t(T+V))=
p

∏
i=1

(exp(ai∆tT)exp(bi∆tV))+O(∆tm),

then by definition
p

∏
i=1

(exp(ai∆tT)exp(bi∆tV))

(
En

Bn

)

(4.7)

is an approximation of order m of (En+1 Bn+1)T. Thus, it is possible to build symplectic
time discretizations by finding {(ai,bi), i=1,··· ,p} using an identification of the terms of
the development of the product ∏

p
i=1(exp(ai∆tT)exp(bi∆tV)) in powers of ∆t with the

terms of the development of exp(∆t(T+V)).
The scheme defined by (4.7) can be obtained by the algorithm described in [32], that

we adapt here to the system of equations we consider.
We initialize Bin=Bn and Ein=En, where Bn and En denote the solution at time tn and

we iterate for i from 1 to p:

ti = tn+∑
i−1
k=1 ak∆t,

Eout = Ein+bi∆tM−1(−KBin),
Bout = Bin+ai∆tEout,
Ein ← Eout,
Bin ← Bout,

where the number of intermediate steps p, is equal to the order of the method for the first
four orders and the coefficients {(ai,bi), i=1,··· ,p} are given in Table 1 for these orders.

For higher order methods, Yoshida proposes in [38] to compose methods of even
order (2m) with themselves to get a method of order (2m+2) in the following manner:
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Table 1: Coefficients for symplectic time discretizations.

p=1
a1=1 b1=1

p=2

a1=
1
2 b1=0

a2=
1
2 b2=1

p=3

a1=
2
3 b1=

7
24

a2=− 2
3 b2=

3
4

a3=1 b3=− 1
24

p=4

a1=
2+2

1
3 +2

− 1
3

6 b1=0

a2=
1−2

1
3−2

− 1
3

6 b2=
1

2−2
1
3

a3=
1−2

1
3−2

− 1
3

6 b3=
1

1−2
2
3

a4=
2+2

1
3 +2

− 1
3

6 b4=
1

2−2
1
3

Denoting by S2m the operator taking the solution from time tn to time tn+1, i.e.

(
En+1

Bn+1

)

=S2m(∆t)

(
En

Bn

)

,

a method of order (2m+2) is given by the composition

S2m+2(∆t)=S2m(α∆t)S2m(β∆t)S2m(α∆t),

with

α=
1

2−2
1

2m+1

and β=− 2
1

2m+1

2−2
1

2m+1

.

Note that the fourth order discretization is the second order discretization composed with
itself.

5 Efficiency of the time schemes

Let us now compare the efficiency of the different time schemes we just introduced by
determining their stability conditions and evaluating their numerical dissipation and dis-
persion. We want to find out in particular if the numerical order of the schemes corre-
sponds to the theoretical order and if the mass lumping does not lead to a decrease in
order.
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5.1 Rectangular edge finite elements on structured meshes

We consider here the edge finite elements on quads defined in Subsection 2.2 and their
lumped version defined in Section 3.

Let us first determine the stability limit by propagating a plane wave across a diagonal
of the domain Ω=[0,1]×[0,1] so that we do not favor one of the directions. Indeed, we
solve the following problem







∂E

∂t
−∇×B=0,

∂B

∂t
+∇×E=0,

E(x,y,0)=

(
αw
2k sin(k(x−y))
αw
2k sin(k(x−y))

)

,

B(x,y,0)=αsin(k(x−y)),

(5.1)

with w=
√

2k, the solution of which is given by

E(x,y,t)=

(
αw
2k sin(k(x−y)−wt)
αw
2k sin(k(x−y)−wt)

)

,

B(x,y,t)=αsin(k(x−y)−wt).

We call optimal CFL numbers the largest CFL numbers that allow us to propagate
stably the wave over a hundred periods. These optimal CFL numbers are given for each
time discretization in Table 2 for the discretization by standard edge elements and in
Table 3 for the lumped edge elements. Notice that for lumped elements, optimal CFL
numbers are slightly higher.

The convergence orders are determined on the same test case after one (theoretical)
propagation period and listed in Table 4 for standard edge elements space discretization
and in Table 5 for the lumped edge elements. We only give here the convergence orders

Table 2: Optimal CFL number for edge element space discretization and stabilized Taylor expansion and
symplectic time discretizations.

Theoretical order of the discretization 1 2 3 4 5
stabilized Taylor expansion 0.20 0.18 0.093 0.10 0.038
symplectic 0.40 0.18 0.13 0.057 0.041

Table 3: Optimal CFL number for lumped edge element space discretization and stabilized Taylor expansion
and symplectic time discretizations.

Theoretical order of the discretization 1 2 3 4 5
stabilized Taylor expansion 0.35 0.28 0.14 0.14 0.053
symplectic 0.70 0.28 0.20 0.082 0.056
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Table 4: Numerical convergence order for standard edge elements.

Theoretical order of the discretization 1 2 3 4 5
stabilized Taylor expansion 0.94 1.97 2.99 3.99 4.99
symplectic 1.01 2.00 2.99 3.99 4.99

Table 5: Numerical convergence order for lumped edge elements.

Theoretical order of the discretization 1 2 3 4 5
stabilized Taylor expansion 0.94 1.99 2.99 3.99 4.99
symplectic 1.00 2.00 2.99 3.99 4.99

for the magnetic field in L2-norm and we verified that those for the electric field are
equivalent. We can observe that these convergence orders are in agreement with the
theory and that the mass lumping does not decrease this order.

Let us now come to the cost versus precision rate for our different schemes by finding
out the total number of degrees of freedom for the electric field and the magnetic field
(denoted respectively by #DOF E et #DOF B) and the computation time needed to reach
an error (on the magnetic field in L2-norm) less than a given threshold, after 10 (theoret-
ical) propagation periods. The results appear in Tables 6 to 9 for error thresholds from
1.36×10−3 to 1.25×10−9. In these tables and accompanying remarks we denote by Taylor
our stabilized Taylor expansion time scheme and by symplectic the symplectic time dis-
cretization of corresponding order. In order to pinpoint the advantage of taking a time
step lowering the dissipation, we tested different values of ξ for orders 1 and 2 and no-
ticed that the dissipation optimized time step is preferable. In our tests dissipation was

Table 6: Computation cost (in time and number of DOFs) to reach an error (on the magnetic field in L2(Ω)
norm) less than 1.36×10−3.

error <1.36×10−3

Space Disc. Time Disc. CFL number
error E
error B

#DOF E
#DOF B

CPU time

Standard order 1
Taylor

ξ=2.,∆topt.
0.20

9.58×10−4

1.36×10−3
26912
13456

375.s

Standard order 1
Taylor

ξ=1.1642,∆topt.
0.16

9.49×10−4

1.34×10−3
968
484

1.s

Standard order 1 symplectic 0.40
8.84×10−4

1.28×10−3
800
400

<1.s

Lumped order 1
Taylor

ξ=2.,∆topt.
0.35

9.68×10−4

1.36×10−3
81608
40804

50.s

Lumped order 1
Taylor

ξ=1.1642,∆topt.
0.27

9.49×10−4

1.34×10−3
1352
676

<1.s

Lumped order 1 symplectic 0.70
8.16×10−4

1.32×10−3
162
81

<1.s
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Table 7: Computation cost (in time and number of DOFs) to reach an error (on the magnetic field in L2(Ω)
norm) less than 1.01×10−5.

error <1.01×10−5

Space Disc. Time Disc. CFL number
error E
error B

#DOF E
#DOF B

CPU time

Standard order 2
Taylor

ξ=1.5,∆topt.
0.18

7.06×10−6

1.01×10−5
38088
19044

621.s

Standard order 2
Taylor

ξ=0.8663,∆topt.
0.13

5.96×10−6

9.83×10−6
8192
4096

39.s

Standard order 2 symplectic 0.18
6.92×10−6

1.00×10−5
20000
10000

123.s

Lumped order 2
Taylor

ξ=1.5,∆topt.
0.28

7.13×10−6

1.01×10−5
38088
19044

98.s

Lumped order 2
Taylor

ξ=0.8663,∆topt.
0.21

1.05×10−5

9.54×10−6
16200
8100

7.s

Lumped order 2 symplectic 0.28
7.06×10−6

1.00×10−5
46208
23104

26.s

Table 8: Computation cost (in time and number of DOFs) to reach an error (on the magnetic field in L2(Ω)
norm) less than 5.32×10−8.

error <5.32×10−8

Space Disc. Time Disc. CFL number
error E
error B

#DOF E
#DOF B

CPU time

Standard order 3
Taylor

optimal ∆t
0.093

3.35×10−8

5.76×10−8
45000
22500

1098.s

Standard order 3 symplectic 0.13
2.64×10−8

5.31×10−8
31752
15876

432.s

Lumped order 3
Taylor

optimal ∆t
0.14

3.74×10−8

5.37×10−8
88200
44100

179.s

Lumped order 3
Taylor

∆t constrained
0.059

2.72×10−8

5.21×10−8
33282
16641

74.s

Lumped order 3 symplectic 0.20
2.64×10−8

5.31×10−8
31752
15876

26.s

very low in any case for the order 5 scheme.

Let us notice the superiority in terms of number of degrees of freedom for the high
order schemes: For example only 4900 degrees of freedom are necessary for the order 5
scheme to reach an error less than 1.25×10−9 on the magnetic field whereas 19600 are
necessary for the order 4 scheme. However this does not necessarily lead to a smaller
computation time. The lumped space discretization combined with the Taylor expansion
of order 4 only needs 134 seconds to reach an error less than 1.25×10−9 whereas the
standard edge element space discretization of order 5 combined with the stabilized Taylor
expansion of same order takes 195 seconds. We notice the gain of using the lumped edge
finite elements versus the standard elements for all orders.
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Table 9: Computation cost (in time and number of DOFs) to reach an error (on the magnetic field in L2(Ω)
norm) less than 1.25×10−9.

error <1.25×10−9

Space disc. Time disc. CFL Number
error E
error B

#DOF E
#DOF B

CPU time

Standard order 4 Taylor 0.10
6.72×10−10

1.15×10−9
41472
20736

833.s

Standard order 4 symplectic 0.057
6.92×10−10

1.22×10−9
39200
19600

1303.s

Lumped order 4 Taylor 0.14
7.89×10−10

1.15×10−9
61952
30976

134.s

Lumped order 4 symplectic 0.082
8.13×10−10

1.18×10−9
61952
30976

229.s

Standard order 5 Taylor 0.038
4.60×10−10

9.07×10−10
9800
4900

195.s

Standard order 5 symplectic 0.041
4.55×10−10

9.07×10−10
9800
4900

360.s

Lumped order 5 Taylor 0.053
4.60×10−10

9.17×10−10
9800
4900

24.s

Lumped order 5 symplectic 0.056
4.55×10−10

9.07×10−10
9800
4900

43.s

Notice also that the comparison of the time discretizations depends on the order of
the scheme: For orders 1, 2 and 3 symplectic time discretizations are at a large advantage
in computation cost whereas they become more expensive for orders 4 and 5. For the
plane wave propagation the order 4 and 5 Taylor expansion schemes have dissipation
and dispersion errors close to machine accuracy which makes them more efficient than
the more involved symplectic schemes in this case.

5.2 Triangular finite elements

We consider in this section the triangular edge elements introduced in Subsection 2.2.
For the triangular edge elements we shall merely determine the highest CFL numbers
giving numerical stability and verify the convergence orders, the conclusion on the cost
vs. precision tests being similar to the quadrilateral finite elements. We now propagate a
plane wave along the horizontal axis, i.e. we solve the problem







∂E

∂t
−∇×B=0,

∂B

∂t
+∇×E=0,

E(x,y,0)=

(
0

αsin(kx)

)

,

B(x,y,0)=αsin(kx),

(5.2)
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Table 10: Optimal CFL numbers of stabilized Taylor expansion and symplectic time discretization.

Theoretical order of discretization 1 2 3 4 5
Stabilized Taylor expansion 0.23 0.24 0.13 0.14 0.056
Symplectic 0.47 0.24 0.19 0.082 0.060

Table 11: Numerical convergence order.

Theoretical order of discretization 1 2 3 4 5
Stabilized Taylor expansion 0.93 1.99 2.99 3.99 5.34
Symplectic 1.00 2.00 2.99 4.05 5.02

the solution of which being given by

E(x,y,t)=

(
0

αsin(k(x−t))

)

,

B(x,y,t)=αsin(k(x−t)),

where we adapt k to the computation domain in order to remain coherent with the peri-
odic boundary conditions. On the computational domain [−5,5]×[−2.5,2.5] with k=2π,
we have determined the stability limit of our schemes and listed the results in Table 10
for stabilized Taylor expansion and symplectic time discretizations.

The convergence orders are determined for the optimal CFL numbers by propagating
a plane wave of wave length 1 along the horizontal axis of the domain [0,1]×[0,1] for one
period. These orders are listed in Table 11.

5.3 Conformal coupling of triangular and quadrilateral edge elements

Let us now test the coupling between the lumped edge elements on a uniform quadrilat-
eral mesh and the triangular edge elements. To this aim, we have propagated an initial
impulsion derived from a Gaussian on a circular domain with an absorbing Silver-Müller
boundary condition, first on a hybrid mesh and then on a fully triangle mesh. The meshes
are represented in Fig. 13 an have an almost identical number of degrees of freedom for
a given order. These numbers are given in Table 12.

Table 12: Number of degrees of freedom for each order on hybrid mesh and triangle mesh.

Theoretical order of discretization 1 2 3 4 5
#DOF electric field :

hybrid mesh
triangle mesh

1795
2015

6450
6650

13965
13905

24340
23780

37575
36275

#DOF magnetic field :
hybrid mesh
triangle mesh

1030
1310

3490
3930

7380
7860

12700
13100

19450
19650



888 S. Jund, S. Salmon and E. Sonnendrücker / Commun. Comput. Phys., 11 (2012), pp. 863-892

x

y

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

x

y

-1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

Figure 13: Hybrid mesh and triangle mesh of domain.
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Figure 14: Initial impulsion with lowest order edge elements on hybrid mesh.
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Figure 15: Initial impulsion with lowest order edge elements on unstructured triangle mesh.

Figs. 14 and 15 represent the projections of the initial impulsion on the discretization
spaces associated to the schemes of lowest order for the hybrid mesh and the triangle
mesh.
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Figure 16: First component of electric field at point (0.5,0.5) on hybrid mesh.
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Figure 17: First component of electric field at point (0.5,0.5) for triangle mesh.

We first consider the time evolution of the first component of the electric field at point
(0.5,0.5), this point is in the uniform part of the mesh for the hybrid mesh. Fig. 16 displays
the results for the hybrid mesh, and Fig. 17 for the triangle mesh.

Notice that the behavior of the discretization on both meshes are very similar. For
orders 1, 2 and 3 the solutions are different but with identical profiles and for higher
orders the solutions become identical. Remember that one of our objectives in using
hybrid meshes was the existence of a mass lumped element on the regular part of the
mesh. Table 13 gives the computation times on both meshes for each order. We notice
a decrease of the computation time for the coupled finite elements. Note that this gain
could still be improved by adjusting more precisely the region where quadrilateral cells
are used to the shape of the computational domain. This will be useful in cases where the
computational domain cannot be meshed only using quads.
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Table 13: Compared computation time for hybrid and triangle meshes.

Theoretical order of discretization 1 2 3 4 5
CPU time on hybrid mesh <1.s 5.s 32.s 88.s 653.s
CPU on triangle mesh <1.s 7.s 43.s 116.s 827.s

6 Conclusion

We have investigated different schemes for solving the Maxwell equations in the time
domain on complex geometries. We have introduced an edge finite element method on
hybrid triangle and quad meshes which has proved efficient. Indeed, on the structured
quad mesh we can use mass lumped elements and thus reduce the time of the computa-
tion for obtaining the same results as those on a complete unstructured mesh. We have
also introduced a high-order time discretization scheme based on a Taylor expansion that
can be stabilized if necessary. We have shown that using symplectic schemes is interest-
ing for low order but becomes more expensive for order 4 and more. Our time schemes
of order 4 and more are thus very competitive as the dissipation and dispersion errors
are close to machine accuracy.
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solving the three-dimensional Maxwell equations, J. Comput. Phys. 109 (1993), no. 2, 222-
237.

[2] N. Canouet, L. Fezoui, S. Piperno, Discontinuous Galerkin time-domain solution of
Maxwell’s equations on locally-refined nonconforming Cartesian grids, COMPEL 24 (2005),
no. 4, 1381-1401.

[3] P. Castillo, R. Rieben, D. White, FEMSTER: An object oriented class library of high-order
discrete differential forms, ACM Trans. Math. Softw. 31 (2005), no. 4.

[4] P. J. Channell, C. Scovel, Symplectic integration of Hamiltonian systems, Nonlinearity 3
(1990), 231-259.

[5] M. J. S. Chin-Joe-Kong, W. A. Mulder, M. Van Veldhuizen, Higher-order triangular and tetra-
hedral finite elements with mass lumping for solving the wave equation, J. Engrg. Math. 35
(1999), no 4, 405-426.

[6] G. Cohen, Higher-Order Numerical Methods for Transient Wave equation, Springer-Verlag,
2001.
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Sonnendrücker, IRMA series in Mathematics and Theoretical Physics, European Mathemat-
ical Society, 2005.

[13] M. Dumbser, C.-D. Munz, ADER discontinuous Galerkin schemes for aeroacoustics, C. R.
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