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Abstract. In this paper, an immersed interface method is presented to simulate the
dynamics of inextensible interfaces in an incompressible flow. The tension is intro-
duced as an augmented variable to satisfy the constraint of interface inextensibility,
and the resulting augmented system is solved by the GMRES method. In this work,
the arclength of the interface is locally and globally conserved as the enclosed region
undergoes deformation. The forces at the interface are calculated from the configura-
tion of the interface and the computed augmented variable, and then applied to the
fluid through the related jump conditions. The governing equations are discretized on
a MAC grid via a second-order finite difference scheme which incorporates jump con-
tributions and solved by the conjugate gradient Uzawa-type method. The proposed
method is applied to several examples including the deformation of a liquid capsule
with inextensible interfaces in a shear flow. Numerical results reveal that both the area
enclosed by interface and arclength of interface are conserved well simultaneously.
These provide further evidence on the capability of the present method to simulate
incompressible flows involving inextensible interfaces.
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1 Introduction

The membrane of biological cells consisting of lipid bilayers has much attention due to
the occurrence in many biological phenomena [28] and used widely as model for the
red blood cells [24] and drug-carrying capsules [30]. Most biological membranes can
deform but resist area dilation and are often modelled as inextensible interfaces with the
position-dependent tension playing the role of surface pressure [41]. To account for the
interface inextensibility or incompressibility, the tension is an unknown quantity which
is to be computed as part of the solution so as to satisfy the condition of inextensibility. In
another word, this is to ensure that the arclength of an arbitrary element of the membrane
is conserved during the motion. The viscous flows outside and inside the membrane can
also be treated as comprising similar or different incompressible fluids.

Peskin’s immersed boundary method (IBM) [22] has been applied widely for simu-
lating such biological flows with moving interfaces. The method was originally devel-
oped to study the fluid dynamics of blood flow in a human heart [21], and has further
been developed for a wide variety of applications; in particular for the biological prob-
lems where complex geometries and immersed elastic interfaces are present, such as the
deformation of red blood cells in a shear flow [7], swimming of organisms [9], platelet
aggregation [10, 11, 37], and cochlear dynamics. Other applications can be found in [2],
biofilm processes [6], wood pulp fiber dynamics [25], and with a more extensive list given
in [22]. In the IBM, the force densities are spread to the Cartesian grid points by a dis-
crete representation of the delta function. The fluid equations with the forcing terms are
then solved for the pressure and the velocity at the mentioned Cartesian grid points. The
resulting velocities are then interpolated back to the control points using the same set
of discrete delta functions. Since the immersed boundary method uses the discrete delta
function approach, it smears out sharp interfaces and it is of first-order accuracy in space.

In order to capture the jumps in the solution across the interface, the immersed inter-
face method (IIM) incorporates the known jumps into the finite difference scheme near
the interface. As such, the IIM avoids smearing out the sharp interfaces and maintains
a second-order accuracy. The IIM was originally proposed by LeVeque and Li [15] for
solving elliptic equations, and later extended to Stokes flow with elastic boundaries or
surface tension [14]. The method was further developed for the Navier-Stokes equations
in [12, 13, 17, 19, 39]. The IIM was also used in [4, 18, 26] for solving the two-dimensional
streamfunction-vorticity equations on irregular domains. Tan et al. [36] developed an
IIM for the Stokes equations on irregular domain. In [35], Tan et al. developed an IIM for
the Navier–Stokes equations with discontinuous viscosity across the interface. Xu and
Wang [40] extended the IIM approach to the 3D Navier-Stokes equation for simulating
the fluid-solid interaction. The interested readers are referred to the recently published
book by Li and Ito [16] and the references therein for more applications of the IIM.

In [41], Zhou and Pozrikidis studied the deformation of inextensible interfaces based
on the boundary element formulation. A boundary integral method developed in [33]
for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D is
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further extended to the 3D axisymmetric vesicles [34] recently. To our knowledge, there
is no published work in the literature on IIM for solving the dynamics of inextensible
interface in an incompressible fluid. As such, it would be interesting to carry out an IIM
for solving the Stokes flows involving inextensible interfaces as in this paper. The present
IIM significantly differs from those in [33,41] and requires no Green function and is very
flexible in terms of (possible) different boundary conditions compared with theirs. Also
the boundary integral method cannot be directly applied to solve for the Navier–Stokes
equations. It should be reiterated in this work the difference or the special feature is the
area conservation enclosed by the interface and the inextensibility of the interface are
maintained simultaneously in contrast to the published works on IIM [12–14, 17, 35, 39].

In the present study, the proposed method combines the IIM with a front tracking
representation of the interface on a uniform Cartesian grid. In order to employ the IIM
for solving the inextensible interface problem, the interface tension is introduced as the
augmented variable to maintain the condition of interface inextensibility. The resulting
augmented system is then solved by the GMRES method such that a differential element
of the interface deforms while maintaining the original area enclosed by the interface
and arclength of the interface. Based on this augmented variable, the forces associated
with the inextensible interfaces exerting on the fluid are computed from the configura-
tion/shape of the interfaces. These forces are interpolated using cubic splines and related
to the jump in pressure and the jumps in the derivatives of velocity and pressure, and
then applied to the fluid through the jump conditions. The position of the deformed in-
terfaces is updated implicitly using the BFGS method within each time step. The Stokes
equations are discretized on a staggered Cartesian grid by a second order finite difference
method and solved by the conjugate gradient Uzawa-type method. The jumps in the so-
lution and its derivatives are incorporated into the finite difference discretization to ob-
tain a sharp interface resolution. Fast solvers from the FISHPACK software library [1] are
then used to solve the resulting discrete systems of the Poisson equations. The capabil-
ity of the proposed IIM to simulate the deformation of elastic capsules with inextensible
interface is demonstrated by some numerical examples. The numerical results indicate
that the present method can achieve second order accuracy for the velocity and close to
second-order accuracy for the pressure.

The remaining part of the paper is organized as follows. In Section 2, the govern-
ing equations and problem description are presented. The jump conditions across the
inextensible interface are presented in Section 3. The numerical algorithm and imple-
mentations are presented in Section 4 and 5, respectively. In Section 6, two extensive
numerical experiments are included. Finally, concluding remarks are made in Section 7.

2 Governing equations

This paper concerns the 2D viscous incompressible Stokes flows with inextensible in-
terface. In a two dimensional bounded domain Ω, which contains a closed interface Γ,
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the incompressible steady Stokes equations formulated in the primitive velocity-pressure
variables is considered and written as

∇p=µ∆u+F(x,t), x∈Ω, (2.1)

∇·u=0, x∈Ω, (2.2)

with the Dirichlet boundary condition

u|∂Ω=ub , (2.3)

where u=(u,v)T is the fluid velocity, p is the pressure, µ is the fluid viscosity (assumed
to be same across the interface) and x=(x,y) is the Cartesian coordinate variables. The
effect of the interface Γ results in a singular force F which is not zero only at the interface
and can be expressed as

F(x)=
∫

Γ

f(s,t)δ(x−X(s,t))ds. (2.4)

Here X(s,t) denotes the location of the interface Γ at time t, parameterized by the arc-
length s. f=( f1, f2)T is the force density, and δ(·) denotes the two-dimensional Dirac delta
function defined in the distribution sense. Eq. (2.2) together with the Dirichlet boundary
condition Eq. (2.3) leads to the compatibility condition that ub must satisfy:

∫

∂Ω

ub ·nbdS=0, (2.5)

where nb is the outer unit normal to ∂Ω. The motion of the interface satisfies

∂X(s,t)

∂t
=u(X(s,t),t)=

∫

Ω

u(x,t)δ(x−X(s,t))dx. (2.6)

The tangential vector on the interface Γ is given by τ(s,t) with the form of

τ(s,t)=
∂X

∂s

/∣

∣

∣

∂X

∂s

∣

∣

∣
. (2.7)

In the present study, a fluid problem involving a closed inextensible interface is consid-
ered, and the inextensibility constraint for an evolving interface in 2D is expressed by the
equation

∇s ·u|Γ =τ · ∂u

∂τ

=0. (2.8)

This is due to the fact that the material derivative of an arclength element (i.e. the local
stretching factor) for inextensible interface satisfies,

0=
d

dt
|Xs|=∇s ·u|Xs|. (2.9)
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Figure 1: Schematic illustration of a 2D capsule in shear flow.

The force strength f exerted on the fluid by the interface has the form of

f(s,t)=
∂

∂s

(

T(s,t)τ(s,t)
)

, (2.10)

with the surface tension T(s,t) as in [41]. Thus, the force density can be computed directly
from the location X of the interface Γ. An equivalent form of Eq. (2.10) can be denoted as

f(s,t)=(∂T/∂s)τ(s,t)+Tκn, (2.11)

where κ is the curvature defined by ∂τ/∂s=κn. It is noted that the other forces (e.g., the
bending force fb =−cb(κss+

1
2κ3)n in [33], where cb is a bending coefficient) can be easily

incorporated into the right hand side of Eq. (2.11). In the final part of the paper, the effect
of the bending is also tested by some cases. Note that, unlike the previous work on IIM
for moving interface in which the tension T is a function of the location of the interface,
the tension quantity is unknown here. One of the challenges for such a problem is that the
pressure and the tension are coupled implicitly by the fluid’s incompressible condition
(2.2), the interface’s inextensible condition (2.8) and no-slipping condition for motion of
interface (2.6). The introduction of the above scalar tension provides us with a degree of
freedom that allows the satisfaction of the inextensibility constraint (2.8) at every point
on the interface. In this work, the deformation of a 2D capsule subject to a incident shear
flow along the x-axis, u∞ =(γy,0), is considered, where γ is the shear rate. The readers
are referred to Fig. 1 for a schematic illustration of the problem, where θ is orientation
angle, and n=(n1,n2) and τ=(τ1,τ2) are the unit outward normal and tangential vector
to the interface, respectively.
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3 Jump conditions across the interface

The jump of an arbitrary function w(X) across the interface at X is denoted by

[w]= lim
ǫ→0+

w(X+ǫn)− lim
ǫ→0+

w(X−ǫn). (3.1)

Introducing the tension at the interface as the augmented variable, i.e., q(s) =
T(X(s,t),Y(s,t)), and denoting (ξ,η) the local coordinates associated with the directions
of n and τ, respectively, the jump conditions for the velocity and pressure across the
interface (see [12, 17] for details) are given/obtained as follows:

[u]=0, [uη ]=0, [uξ ]=− 1

µ
f̂2τ , (3.2)

[uηη]=
1

µ
κ f̂2τ, [uξη ]=− 1

µ

∂ f̂2

∂η
τ− 1

µ
κ f̂2n, (3.3)

[uξξ ]=−[uηη ]+
1

µ
[pξ ]n+

1

µ
[pη ]τ , (3.4)

[p]= f̂1, [pξ ]=
∂ f̂2

∂η
, [pη ]=

∂ f̂1

∂η
, (3.5)

[pηη ]=
∂2 f̂1

∂η2
−κ[pξ ], [pξη ]=

∂2 f̂2

∂η2
+κ[pη ], (3.6)

[pξξ ]=−[pηη ]. (3.7)

Here, f̂1 and f̂2 are the components of the force density in the normal and tangential
directions of the interface such that f̂=( f̂1, f̂2)=(∂T/∂s,Tκ), and κ is the signed curvature
of the interface. It is noted from expressions (3.2)-(3.7) that the values of the jumps of the
first and second order derivatives of velocity and pressure can be obtained by a simple
coordinate transformation:

[wx]= [wξ ]n1+[wη]τ1 , [wy]= [qξ ]n2+[wη]τ2 , (3.8)

[wxx]= [wξξ ]n
2
1+2[wξη ]n1τ1+[wηη]τ

2
1 , (3.9)

[wyy]= [wξξ ]n
2
2+2[wξη ]n2τ2+[wηη]τ

2
2 , w=u,p. (3.10)

4 Numerical algorithm

The numerical algorithm to be employed is based on the conjugate gradient Uzawa-type
method for the discretization of the Stokes equations with special treatment at the grid
points near the interface. The spatial discretization is carried out on a standard marker-
and-cell (MAC) staggered grid similar to that found in Tau [32] with mesh size h=∆x=
∆y. With the MAC mesh, the pressure field is defined at the cell center (i, j), where i ∈
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Figure 2: A diagram of the interface cutting through a staggered grid with a uniform mesh size h, where the
velocity component u is at the left-right face of the cell and v is at the top-bottom face, and the pressure is at
the cell center.

{1,2,··· ,Nx} and j∈{1,2,··· ,Ny}. The velocity fields u and v are defined at the vertical
and horizontal edges of a cell, respectively. The pressure and the velocity components u
and v are arranged as depicted in Fig. 2. An advantage of such a staggered grid is that
there is no need for pressure boundary conditions when dealing with the derivative of
pressure since the pressure nodes are at the cell center.

4.1 Stokes solver involving correction terms

The discretization of Eqs. (2.1)-(2.3) by the second order MAC finite difference scheme
leads to the following linear system

−µ
(ui+1,j+ 1

2
−2ui,j+ 1

2
+ui−1,j+ 1

2

h2
+

ui,j+ 3
2
−2ui,j+ 1

2
+ui,j− 1

2

h2

)

−µC{∆u}i,j

+
pi+ 1

2 ,j+ 1
2
−pi− 1

2 ,j+ 1
2

h
+C{px}i,j = g1

i,j , (4.1)

−µ
(vi+ 3

2 ,j−2vi+ 1
2 ,j+vi− 1

2 ,j

h2
+

vi+ 1
2 ,j+1−2vi+ 1

2 ,j+vi+ 1
2 ,j−1

h2

)

−µC{∆v}i,j

+
pi+ 1

2 ,j+ 1
2
−pi+ 1

2 ,j− 1
2

h
+C{py}i,j = g2

i,j , (4.2)

ui+1,j+ 1
2 −ui,j+ 1

2

h
+

vi+ 1
2 ,j+1−vi+ 1

2 ,j

h
+C{∇·u}i,j =0. (4.3)

Note that the discretization of the Stokes equations at the grid points near the inter-
face has been modified to account for the jump conditions across the interface due to the
presence of singular forces at the interface. In Eqs. (4.1)-(4.3), C{∆u}i,j, C{∆v}i,j, C{px}i,j,
C{py}i,j, and C{∇·u}i,j are just the corresponding spatial operator correction terms,
which are added to the finite difference equations and only non-zero at those points near
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the interface, to improve the accuracy of the local finite difference approximations. These
corrections will be evaluated later. In order to satisfy the discrete compatibility condi-
tion corresponding to (2.5) to thereby ensure the solvability of system Eqs. (4.1)-(4.3), a
solvable perturbed system in a way similar to that found in [14] via perturbing C{∇·u}i,j

to Ĉ{∇·u}i,j in Eq. (4.3) is employed. Here, Ĉ{∇·u}i,j =C{∇·u}i,j−C̄{∇·u}i,j, where
C̄{∇·u}i,j is the mean value of the correction term C{∇·u}i,j. The readers are referred

to [14] for details. Let ∆h, GMAC, and DMAC be the standard central difference operator,
the MAC gradient, and the divergence operators, respectively, then system (4.1)-(4.3) can
be written as

−µ∆hu+GMACp=g+C1 , (4.4)

DMACu=C2−C̄2 , (4.5)

where the coefficients C1 and C2 are the spatial correction terms whose expressions will
be given in the next subsection, and C̄2 is the perturbing term. Let G1 = g(x)+C1 and
G2=C2−C̄2, then (4.4)-(4.5) can be written in the matrix-vector form as

( −µ∆h GMAC

DMAC 0

)(

u

p

)

=

(

G1

G2

)

. (4.6)

There are some fast solvers for the solution of (4.6), such as the PCG method [8, 23], the
PMINRES method [8, 23], the FFT-based method [5], and the multigrid method [8, 20,
23]. In this work, the fast solvers from FISHPACK [1] are utilized to incorporate the
CG-Uzawa method. The Uzawa procedure for problems with immersed interfaces is
analogous to the fast iterative method presented in [29, 32] and it consists of two steps:

Step 1. Solve DMAC
∆
−1
h GMACp=µG2+DMAC

∆
−1
h G1 for the pressure p,

Step 2. Solve µ∆hu=G1−GMACp for the velocity u.

Here, DMAC
∆
−1
h GMAC is the Schur complement of system (4.6). In Step 1, the system

is solved by the conjugate gradient method (CG) in this work. In the CG method, each
matrix-vector product with DMAC

∆
−1
h GMAC requires the inverse of ∆h which corresponds

to solving a Poisson equation. Several fast methods can be applied, such as the ICCG
method, the FFT method and multigrid method. In the present work, the fast solvers
from FISHPACK [1] are used. Once the pressure is obtained, the velocity field u can be
solved by the fast solvers from FISHPACK [1] via Step 2.

4.2 Calculation of correction terms

The correction terms C1 and C2 are evaluated as follows:

C1=µ
(

C{∆u}
)

−C{∇p}, (4.7a)

C2=−C{∇·u}. (4.7b)
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),( ji

Irregular grid point

Regular grid point

Figure 3: Interface and mesh geometry near the irregular grid point (i, j).

To evaluate the correction term C{∆u} of (4.7a) at an irregular point (i, j) as depicted in
Fig. 3, the jump conditions [ux] and [uxx] at the intersection point α of the interface with
a grid line, and [uy] and [uyy] at β of the interface with a grid line, need to be computed.
The correction term C{∆u} is calculated as follows:

C{∆u}i,j =− [u]+h+[ux]α+
(h+)2

2 [uxx]α
h2

− [u]+k− [uy]β+
(k−)2

2 [uyy]β
h2

,

where h+=xi+1−xα, k−=yj−1−yβ, and xα and yβ are the x-coordinate of the intersection
point α and the y-coordinate of the intersection point β as shown in Fig. 3, respectively.
∆u is approximated at the irregular point (i, j) as

∆u(i, j)=∆hui,j+C{∆u}i,j+O(h).

Similarly, the other correction terms in (4.7a)-(4.7b) can be computed as follows

C{∇·u}i,j =− [u]+h+[ux]α+
(h+)2

2 [uxx]α
h

+
[v]+k− [vy]β+

(k−)2

2 [vyy]β
h

,

C{∇p}i,j =

(

− [p]+h+ [px]α+
(h+)2

2 [pxx]α
h

,
[p]+k− [py]β+

(k−)2

2 [pyy]β
h

)

.

4.3 Determination of the tension at control points

Assuming that the tension q at the interface is known, the velocity field u at all the grid
points can be computed via the CG-Uzawa method as discussed in Section 4.1. The ve-
locity at the control points, Uk, can be interpolated from the velocity u at the grid points
as shown in [12], which can be written as

Uk =U(Xk)=B(u), (4.8)



934 Z.-J. Tan, D. V. Le, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 11 (2012), pp. 925-950

where B is the interpolation operator which includes the appropriate correction terms
[12]. With this velocity at the control points, then the surface divergence at the control

points can be obtained from the formula ∇s ·Uk =τ · ∂Uk
∂τ

. Since the relationships for the
tension, the singular forces and the jumps in the solution or its derivatives are discretized
linearly and all the equations solved are linear, the surface divergence of the velocity at
the interface can be written as,

∇s ·Uk =∇s ·U0
k+Aq, (4.9)

where U0
k corresponds to the velocity at the control points obtained by solving Eqs. (2.1)

and (2.2) with q= 0 (i.e. the tension T = 0) at the control points. A is a Nb×Nb matrix,
where Nb is the number of control points. The vector Aq is the surface divergence of the
velocity at the control points obtained by solving the following equations:

∇h pq =µ∆huq+Č1 , (4.10)

∇h ·uq = Č2 , uq|∂Ω =0, (4.11)

Aq=∇s ·B(uq), (4.12)

with q being the tension at the interface. Here, Č1 and Č2 are the correction terms which
take into account the effect of the tension q at the interface. From Eq. (4.9), with the
inextensibility constraint at the interface (2.8), the tension q at the interface is determined
by solving

Aq=∇s ·Uk−∇s ·U0
k =−∇s ·U0

k . (4.13)

Note that the matrix A depends on the location of the interface. In the present work,
the interface is moving, and the system of Eq. (4.13) can be solved by the GMRES method
[27], which only requires the matrix vector multiplication.

4.4 Advancing the interface via the BFGS method

The location of the interface X is updated based on the surrounding fluid velocity. To
overcome the strict limit of very small time steps in an explicit scheme and increase the
stability of the current method, the updated location of the deformable interface is ad-
vanced implicitly in time in the following way:

Xn+1=Xn+
1

2
∆t
(

un(Xn)+un+1(Xn+1)
)

. (4.14)

Calculating the new positions of the control points Xn+1 is equivalent to seeking the so-
lution of the nonlinear equation

Q(Xn+1)=0, (4.15)
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where

Q(X)=X−Xn− 1

2
∆t
(

un(Xn)+un+1(X)
)

.

The BFGS method [31] is employed to solve the nonlinear system of Eq. (4.14) iteratively
to calculate the location of the moving interface. For more details on the immersed inter-
face method for moving interfaces, see [12–14]. In each iteration of the BFGS method, the
system of Eq. (4.13) for the augmented variable need to be solved to satisfy the condition
of the interface inextensibility.

5 Numerical implementation

In this section, the implementation of the proposed algorithm is described. Given the
location of the control points Xn, the velocity un and the pressure pn, the algorithm for
computing the velocity un+1, pressure pn+1 and the location of the control points Xn+1

can be described as follows:

IIM Algorithm for flow with inextensible interface:

Step 1: Set k :=0, make an initial guess for Xn+1, i.e. X(0) as

X(0)=2Xn−Xn−1.

Step 2:

• Compute the augmented variable q at the interface to satisfy the condition of interface inexten-
sibility. That is, calculate the right hand side vector of (4.13). Then solve for the small system
of Eq. (4.13) using GMRES method to obtain the augmented variable q along the interface.

• Compute the force strength f at the inextensible interface using expression (2.10).

• Employ the CG-Uzawa method as described in Section 4.1 to obtain the velocity field un+1 and
pressure field pn+1. This step involves computing the appropriate correction terms for the spatial
derivatives as described in Section 4.2.

• Compute the velocity un+1(X(k)) at control points X(k), which are interpolated from the velocity
un+1 at the surrounding grid points.

Step 3:

• Evaluate Q(X(k)).

• If ‖Q(k)‖<ǫ then Xn+1=X(k) and stop the iteration. Otherwise, update X(k+1) and the inverse
Jacobian matrix Bn+1

k+1 [31]. Set k=k+1 and go to Step 2.

6 Numerical experiments

In this section, two numerical experiments are carried out to demonstrate the capabilities
of the proposed method.
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Figure 4: For Example 6.1. Pressure profiles at t=0.5 (left) and t=2 (right).

Example 6.1. An initially elliptical capsule

In this example, the deformation of an initially elliptical capsule is simulated in shear
flow, where the shear rate is γ=1. The capsule initially has the semi-major axis a=0.75
and semi-minor axis b = 0.5 and is located at the center of the square domain [−4,4]×
[−2,2].

In the simulations, a 128×64 grid system is employed, and 48 control points are used
to represent the interface. The fluid viscosity µ=0.1 and the time step ∆t=10−3 are used.
The initial inclination angle of the capsule to the flow is θ0 = 0. The pressure profiles at
t=0.5 and t=2 are presented in Fig. 4 (left) and Fig. 4 (right), respectively. As expected, it
can be observed from these figures that the pressure is discontinuous across the interface,
however the jump in pressure is very sharply captured by the present method. Fig. 5
shows the shapes of deformed capsule at different times. It can be seen from this figure
that the capsule has only small deformation and reaches a steady shape.

The plot of streamlines at the steady state is presented in Fig. 6 (left), where the bold
closed solid line represents the configuration of the capsule. Single eddies formed inside
the capsule and recirculating regions are observed in this figure. The capsule rotates
around the liquid inside and the fluid flow inside the capsule moves in the clockwise
direction. In Fig. 6 (left), a closed streamline is aligned with the capsule interface, which
indicates a steady-state shape of capsule is achieved at this moment. The corresponding
pressure profile at the steady state is presented in Fig. 6 (right).

The distribution of the interface tension T and tank-treading velocity (i.e., the tangen-
tial component of the capsule velocity, u·τ) versus arclength at steady state are plotted
in Fig. 7 (left) and Fig. 7 (right), respectively. It is observed from Fig. 7 (right) that tank-
treading velocity is constant along the interface of the capsule as required by the condi-
tion of interface inextensibility, which shows that the capsule engages in a tank-treading
motion around the capsule with uniform tangential velocity. But the tension along the in-
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Figure 5: For Example 6.1. Shapes of deformed capsules at different times. The velocities at the control points
of inextensible interfaces are shown as the arrows.
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Figure 6: For Example 6.1. Streamline pattern and pressure profile at steady state.

terface show significant variations as seen from Fig. 7 (left), where the distribution of the
tension shows a nearly sinusoidal variation, and the points of maximum and minimum
tension are located near the points of minimum and maximum curvature.

Since the fluid is incompressible and the interface is inextensible, the length of the
capsule and the enclosed area should remain constant throughout the simulation. Let A0

and At be the enclosed area by the capsule at the initial time and at time t, respectively.
The maximum error in the enclosed area is defined as maxt |At−A0|, and the area loss
rate is defined as maxt |At−A0|/A0. The similar definition is for arclength. In Fig. 8 (left),
the plot of the area conservation error versus time up to t=3 is presented for θ0=0. From
the figure, the maximum error in the area is less than 1.5e−004 and it indicates only a
very small area loss rate which is less than 0.01273%. The plot of arclength conservation
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Figure 7: For Example 6.1. The interface tension (left) and tank-treading velocity (right) versus arc length at
steady state.
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Figure 8: For Example 6.1. The area conservation error (left) and arclength conservation error (right) versus
time.

error versus time is presented in Fig. 8 (right), and the error in the capsule arclength is
preserved within 8e−07. These figures show that the area enclosed by the capsule and the
arclength of capsule are both conserved very well, which results from the requirements
that the fluid enclosed in the capsule is incompressible and the interface of the capsule is
locally inextensible.

The deformation of an initially elliptical capsule with three different inclination angles
(θ0=0, θ0=π/4, and θ0=π/2) has been simulated under simple shear. In Fig. 9 (right), the
steady interface configurations corresponding to these three initial inclination angles are
presented. The corresponding initial configurations of capsules are shown in Fig. 9 (left).
It is observed that the capsule deforms into the same steady shape for three inclinations,
and this shows the existence of a unique steady state, i.e., the steady deformed capsule
shapes are independent of the initial inclination angle. Among the three computations
with different initial inclination angles, the agreement on the steady state tank-treading
velocity is fairly excellent. Also good agreement with [41] is found. Fig. 10 shows the
temporal evolution of the inclination angle of capsules with different initial inclination
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Figure 9: For Example 6.1. Initial and final shape of capsules with different initial incidences.
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Figure 10: For Example 6.1. Temporal evolution of orientation angle of capsules with different initial incidences.

angles, respectively. The angle of inclination is computed by the approach of Breyiannis
et al. [3], which involves mapping a deformed capsule to an ellipse that shares the tensor
of the moments of inertia. The principal direction of this tensor is identified with the
capsule inclination. It is seen that the time the capsule takes to reach steady state is
different for different initial inclination angles, longest for θ0 = 0 while shortest for θ0 =
π/4.

Fig. 11 shows the initial and steady shape of capsules with different capsule circular-

ity c = 1
2
√

π
LA− 1

2 , where L and A is the length and area of the capsule, respectively. It

is observed that the steady shape of capsule with high circularity is significantly differ-
ent the initial elliptical shape shown as the dash-dotted and dotted lines in the figure.
Fig. 11(right) shows that the larger the circularity of the capsule, the smaller the inclina-
tion angle of capsule at steady state. This is verified more clearly in Fig. 12 which shows
the steady inclination angle in terms of the circularity. These are in good agreement with
previous results in the literature [33, 41].
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Figure 11: For Example 6.1. Initial and steady shapes of capsules corresponding to different the values of
capsule circularity.
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Figure 12: For Example 6.1. Comparison of the orientation angle of steady capsules versus circularity with that
obtained by Zhou and Pozrikidis [41]

In Fig. 13 (left) and Fig. 13 (right), the shapes of capsules with different shear rates at
t=0.059 and at steady state are plotted, respectively, which shows the effects of different
shear rates on the deformation of capsules. Fig. 14 shows that the inclination angle of
steady capsule is almost independent of the shear rate as in [33].

In Table 1, the convergence rate analysis for the case of θ0=0 at t=0.01 is shown, using
a reference grid of 1024×516, and the expected second order accuracy for the velocity and
near second order accuracy for the pressure are observed.

Table 1: Grid refinement analysis for Example 6.1 at t=0.01.

M×N ‖Eu ‖∞ Order ‖Ep ‖∞ Order
128×64 2.3866E-04 – 3.6558E-03 –
256×128 5.3954E-05 2.15 1.0572E-03 1.79
512×256 1.2797E-05 2.08 3.2238E-04 1.71
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Figure 13: For Example 6.1. The shapes of capsules with different shear rates at t=0.059 (left) and at steady
state (right).
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Figure 15: Number of BFGS iterations (left) and Number of total GMRES iterations (right) versus time with
θ0 =0.

In Fig. 15(left) and Fig. 15(right), the plots of the number of BFGS iterations and the
number of total GMRES iterations versus time with θ0=0 are presently, respectively. The
stop tolerances for the BFGS and the GMRES method are 10−9 and 10−6, respectively. It
can be seen that the number of BFGS iterations is few and the total GMRES iterations
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is not very large for the present case. Here, the total GMRES iterations means the sum
of the number of GMRES iteration at each BFGS iteration within one time step, and the
number of average GMRES iterations is about 30 at each BFGS iteration. It takes about
14 iterations for the CG to converge with a tolerance of 10−8 at each GMRES iteration.
Above indicates that a limited number of iterations are needed.

Example 6.2. An initially biconcave capsule

In this example, the deformation of an initially biconcave capsule in shear flow is sim-
ulated to show the ability of the current method for handling a more complex geometry
problem. The shape of capsule is given by

X(ψ)=sin(ψ), (6.1)

Y(ψ)=0.5(E0+E1sin2ψ+E2sin4ψ)cosψ, (6.2)

where E0 = 0.207161, E1 = 2.002558, E2 =−1.122762, and ψ is a parameter which takes
values within the range from 0 to 2π, see [7, 41]. The shear rate taken is γ = 1. The
computational domain is [−3,3]×[−1.5,1.5], and the capsule is located at the center of
the domain. In the simulations, a 128×64 grid is used, and 96 control points are used to
represent the interface. The fluid viscosity is set as 0.1 and the time step is taken as 10−3

in the computations.

First, the biconcave capsule is aligned with shear flow, i.e., the initial orientation angle
of the capsule with respect to the x-axis is θ0 =0. Fig. 16 shows the shapes and positions
of deformed capsule at a time series of t=0.5, t=2.0, t=3.0 and t=9.0. It is found that the
capsule has large deformation compared to the previous first example. In the beginning,
the deformation leads to formation of two symmetric pockets originating at the dimples.
As the cell deforms, the depth of the pockets is flattened with their depth reduced, while
the depth at the middle of the capsule is increased. The capsule finally achieves a smooth,

X

Y

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t = 2.0

t = 0.0

t = 0.5
t = 3.0

t = 9.0

Figure 16: For Example 6.2. Shapes of deformed capsules at different times. The velocities at the control
points of inextensible interfaces are shown as the arrows.
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Figure 17: For Example 6.2. Pressure profiles at t=0.5 (left) and t=7.5 (right) around the capsule.

X

Y

-1 0 1
-1

-0.5

0

0.5

1

X

Y

-1 0 1
-1

-0.5

0

0.5

1

X

Y

-1 0 1
-1

-0.5

0

0.5

1

X

Y

-1 0 1
-1

-0.5

0

0.5

1

Figure 18: For Example 6.2. Streamline pattern at different times, t=0.5, t=2.0, t=3.0, and t=9.0 (from top
to bottom, from left to right, respectively).

elongated, narrow almost elliptical steady shape. After that, the capsule then rotates
around the liquid inside with a nearly unchanged shape and presents a tank-treading
motion. The pressure profiles at t = 0.5 and t = 7.5 are presented in Fig. 17 (left) and
Fig. 17 (right), respectively. Again it is observed that the sharp jump in pressure across
the interface is well resolved by the present method.

The plots of streamlines at time t = 0.5, t = 2.0, t = 3.0 and t = 9.0 are presented in
Fig. 18, where the bold closed solid line represents the configuration of the capsule. It is
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Figure 19: For Example 6.2. The interface tension (left) and tank-treading velocity (right) versus arc length at
steady state.
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Figure 20: For Example 6.2. The area conservation error (left) and arclength conservation error (right) versus
time.

seen that the two internal eddies are formed inside the capsule and later the two vortices
have coalesced into a single vortex and the recirculating regions are observed. At t=9.0,
it is observed that a closed streamline has been almost aligned with the capsule interface,
which indicates a steady-state shape of capsule is achieved at this moment. The capsule
with large deformation rotates around the liquid inside and the fluid flow inside the
capsule moves in the clockwise direction. Compared with those in the first example as
shown in Fig. 6, the flow patterns around the capsule has the significant changes.

The distribution of the interface tension and tank-treading velocity versus arclength
at steady state are shown in Fig. 19 (left) and Fig. 19 (right), respectively. Again it is ob-
served from Fig. 19 (right) that tank-treading velocity remains almost constant along the
interface of the capsule due to the interface inextensibility. The capsule engages in a tank-
treading motion around the capsule with uniform tangential velocity at the steady state.
The distribution of the tension versus arclength with significant variations is presented in
Fig. 19 (left). As in the case of initially elliptical capsules, the tension is minimum near the
point of maximum interface curvature and while maximum near the point of minimum
interface curvature. The results are in agreement with [41].
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Fig. 20 (left) shows the plot of the area conservation error versus time up to t=5. In
the figure, the maximum error in the area is less than 4.5e−004. The plot of arclength
conservation error versus time is presented in Fig. 20 (right), and the maximum error in
the capsule arclength is less than 4.5e−05. These figures shows that the area enclosed
by the capsule and arclength of capsule are both conserved well. Compared to the first
example, note that the losses of the area and arclength are relatively larger, the possible
reason is that the capsule is elongated due to the large deformation and therefore results
in the coarser distribution of the control points in some parts.
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Figure 21: For Example 6.2. Shapes of deformed capsules at different times with θ0 = π/4 (left) and with
θ0 =π/2 (right). The velocities at the control points of inextensible interfaces are shown as the arrows.

Fig. 21 (left) and Fig. 21 (right) show a sequence of evolving shapes of deformed
capsules at different times with different initial incidences, θ0=π/4 and θ0=π/2, respec-
tively. It is seen from these figures that the capsule undergoes a large deformation and
finally reaches a steady shape, which is compared to Fig. 16. The corresponding stream-
lines at different times with θ0 =π/4 and θ0 =π/2 are presented in Fig. 22 and Fig. 23,
respectively. The significantly different flow patterns are observed before the steady state
is achieved, which can be also contrasted to those found in Fig. 18. At the steady state,
the capsule rotates around the liquid inside. The flow patterns and shape of capsule are
almost the same at the moment, which indicates that the steady shape and orientation of
the capsule are independent of the initial inclination angle.

The deformation of the capsule is described by the Taylor shape parameter Dxy de-
fined as (L−B)/(L+B), where L and B are the maximum and minimum radial distances
of a cross-section of the cylindrical capsule, respectively. The temporal evolution of the
Taylor deformation parameter and inclination angle of capsules with different initial inci-
dences are presented in Fig. 24 (left) and Fig. 24 (right). The amplitude in the deformation
parameter with θ0=0 first decreases and then increases, which is distinct from those with
θ0 =π/4 and θ0 =π/2. The same orientation angle of capsule at the steady state is ob-
served as shown in Fig. 24 (right).
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Figure 22: For Example 6.2. Streamline pattern at different times with θ0 =π/4, t= 0.5, t= 1.0, t= 2.0, and
t=6.1 (from left to right).
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Figure 23: For Example 6.2. Streamline pattern at different times with θ0 =π/2, t= 0.5, t= 2.0, t= 3.0, and
t=10.0 (from left to right).
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Figure 24: For Example 6.2. The Taylor deformation parameter (left) and inclination angle of capsules (right)
versus time with different initial incidences.

Finally, the effect of the bending force is tested by two cases. The first test case is in
presence of fluid flow. Fig. 25 shows the deformation and shape of an initially elliptical
capsule with θ0 =

3
4 π at shear rate γ=2. It can be seen from this figure that the interface

with smaller bending coefficient has larger deformation in some part of the capsule before
reaching the steady state, however there is no significant influence on the final steady
shape for this case.

For the second test case, a capsule suspended freely in a quiescent flow is consid-
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Figure 25: For Example 6.1. The shape of capsules with different bending coefficients at t= 0.199 (left) and
t=0.999 (right), cb =0.01 (solid line) and cb =0.0001 (dashed line).

Figure 26: For Example 6.1. The shape of capsules with different bending coefficients at different times t=0,
t=2.999, t=9.999 and at steady state (left to right, respectively). The circularity is taken as 1.3653, cb=10−3

(solid line) and cb =10−7 (dashed line).

ered. In the absence of inextensibility constraint, the steady shape of a capsule is a circle.
However, the steady shape can be different from a circle since the capsule is locally inex-
tensible. In [33], it is shown that the steady shape depends only on the reduced area of
the capsule and is independent of the material properties of the capsule and surrounding
fluid. In Fig. 26, the motion of ellipse-shaped capsule with two different bending coef-
ficients at different times is shown. The ellipse with a smaller bending rigidity has the
same initial shape as shown in the dashed line, however the ellipse with a larger bending
rigidity relaxes to a biconcave shape as shown in the solid line.

7 Concluding remarks

In this paper, an immersed interface method for solving steady Stokes flows with inex-
tensible interfaces on a MAC grid is presented, which is used to simulate the deformation
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of liquid capsules enclosed by inextensible interfaces in simple shear flow. The method
combines the immersed interface method with a front tracking representation of the in-
terface on a uniform Cartesian grid. The tension is introduced as an unknown to maintain
the condition of interface inextensibility and the resulting system is solved by the GM-
RES method. Based on the determined tension, the forces that the inextensible interface
exerts on the fluid are calculated from the location of the interface, where the location
of the interface is updated implicitly within each time step. With the present method,
the area enclosed by the interface and the arclength of the interface are conserved well
simultaneously. The capability of the proposed method to simulate Stokes flows with
inextensible interfaces are demonstrated by some numerical examples. Future works in-
clude the extension to incompressible two-phase flow involving inextensible interface.
Finally, we plan to generalize the current work to 3D simulations. The present technique
can be applied to 3D. In 3D, the interface is a surface and can be discretized using trian-
gular mesh. Singular forces related to augmented variables are computed at the nodes of
the triangulations, which are used to compute the jump conditions of the solutions and
their derivatives.
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